Home | History | Annotate | Download | only in Scalar
      1 //===- ConstantHoisting.cpp - Prepare code for expensive constants --------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass identifies expensive constants to hoist and coalesces them to
     11 // better prepare it for SelectionDAG-based code generation. This works around
     12 // the limitations of the basic-block-at-a-time approach.
     13 //
     14 // First it scans all instructions for integer constants and calculates its
     15 // cost. If the constant can be folded into the instruction (the cost is
     16 // TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't
     17 // consider it expensive and leave it alone. This is the default behavior and
     18 // the default implementation of getIntImmCost will always return TCC_Free.
     19 //
     20 // If the cost is more than TCC_BASIC, then the integer constant can't be folded
     21 // into the instruction and it might be beneficial to hoist the constant.
     22 // Similar constants are coalesced to reduce register pressure and
     23 // materialization code.
     24 //
     25 // When a constant is hoisted, it is also hidden behind a bitcast to force it to
     26 // be live-out of the basic block. Otherwise the constant would be just
     27 // duplicated and each basic block would have its own copy in the SelectionDAG.
     28 // The SelectionDAG recognizes such constants as opaque and doesn't perform
     29 // certain transformations on them, which would create a new expensive constant.
     30 //
     31 // This optimization is only applied to integer constants in instructions and
     32 // simple (this means not nested) constant cast expressions. For example:
     33 // %0 = load i64* inttoptr (i64 big_constant to i64*)
     34 //===----------------------------------------------------------------------===//
     35 
     36 #include "llvm/Transforms/Scalar/ConstantHoisting.h"
     37 #include "llvm/ADT/SmallSet.h"
     38 #include "llvm/ADT/SmallVector.h"
     39 #include "llvm/ADT/Statistic.h"
     40 #include "llvm/IR/Constants.h"
     41 #include "llvm/IR/IntrinsicInst.h"
     42 #include "llvm/Pass.h"
     43 #include "llvm/Support/Debug.h"
     44 #include "llvm/Support/raw_ostream.h"
     45 #include "llvm/Transforms/Scalar.h"
     46 #include <tuple>
     47 
     48 using namespace llvm;
     49 using namespace consthoist;
     50 
     51 #define DEBUG_TYPE "consthoist"
     52 
     53 STATISTIC(NumConstantsHoisted, "Number of constants hoisted");
     54 STATISTIC(NumConstantsRebased, "Number of constants rebased");
     55 
     56 namespace {
     57 /// \brief The constant hoisting pass.
     58 class ConstantHoistingLegacyPass : public FunctionPass {
     59 public:
     60   static char ID; // Pass identification, replacement for typeid
     61   ConstantHoistingLegacyPass() : FunctionPass(ID) {
     62     initializeConstantHoistingLegacyPassPass(*PassRegistry::getPassRegistry());
     63   }
     64 
     65   bool runOnFunction(Function &Fn) override;
     66 
     67   const char *getPassName() const override { return "Constant Hoisting"; }
     68 
     69   void getAnalysisUsage(AnalysisUsage &AU) const override {
     70     AU.setPreservesCFG();
     71     AU.addRequired<DominatorTreeWrapperPass>();
     72     AU.addRequired<TargetTransformInfoWrapperPass>();
     73   }
     74 
     75   void releaseMemory() override { Impl.releaseMemory(); }
     76 
     77 private:
     78   ConstantHoistingPass Impl;
     79 };
     80 }
     81 
     82 char ConstantHoistingLegacyPass::ID = 0;
     83 INITIALIZE_PASS_BEGIN(ConstantHoistingLegacyPass, "consthoist",
     84                       "Constant Hoisting", false, false)
     85 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
     86 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
     87 INITIALIZE_PASS_END(ConstantHoistingLegacyPass, "consthoist",
     88                     "Constant Hoisting", false, false)
     89 
     90 FunctionPass *llvm::createConstantHoistingPass() {
     91   return new ConstantHoistingLegacyPass();
     92 }
     93 
     94 /// \brief Perform the constant hoisting optimization for the given function.
     95 bool ConstantHoistingLegacyPass::runOnFunction(Function &Fn) {
     96   if (skipFunction(Fn))
     97     return false;
     98 
     99   DEBUG(dbgs() << "********** Begin Constant Hoisting **********\n");
    100   DEBUG(dbgs() << "********** Function: " << Fn.getName() << '\n');
    101 
    102   bool MadeChange = Impl.runImpl(
    103       Fn, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(Fn),
    104       getAnalysis<DominatorTreeWrapperPass>().getDomTree(), Fn.getEntryBlock());
    105 
    106   if (MadeChange) {
    107     DEBUG(dbgs() << "********** Function after Constant Hoisting: "
    108                  << Fn.getName() << '\n');
    109     DEBUG(dbgs() << Fn);
    110   }
    111   DEBUG(dbgs() << "********** End Constant Hoisting **********\n");
    112 
    113   return MadeChange;
    114 }
    115 
    116 
    117 /// \brief Find the constant materialization insertion point.
    118 Instruction *ConstantHoistingPass::findMatInsertPt(Instruction *Inst,
    119                                                    unsigned Idx) const {
    120   // If the operand is a cast instruction, then we have to materialize the
    121   // constant before the cast instruction.
    122   if (Idx != ~0U) {
    123     Value *Opnd = Inst->getOperand(Idx);
    124     if (auto CastInst = dyn_cast<Instruction>(Opnd))
    125       if (CastInst->isCast())
    126         return CastInst;
    127   }
    128 
    129   // The simple and common case. This also includes constant expressions.
    130   if (!isa<PHINode>(Inst) && !Inst->isEHPad())
    131     return Inst;
    132 
    133   // We can't insert directly before a phi node or an eh pad. Insert before
    134   // the terminator of the incoming or dominating block.
    135   assert(Entry != Inst->getParent() && "PHI or landing pad in entry block!");
    136   if (Idx != ~0U && isa<PHINode>(Inst))
    137     return cast<PHINode>(Inst)->getIncomingBlock(Idx)->getTerminator();
    138 
    139   BasicBlock *IDom = DT->getNode(Inst->getParent())->getIDom()->getBlock();
    140   return IDom->getTerminator();
    141 }
    142 
    143 /// \brief Find an insertion point that dominates all uses.
    144 Instruction *ConstantHoistingPass::findConstantInsertionPoint(
    145     const ConstantInfo &ConstInfo) const {
    146   assert(!ConstInfo.RebasedConstants.empty() && "Invalid constant info entry.");
    147   // Collect all basic blocks.
    148   SmallPtrSet<BasicBlock *, 8> BBs;
    149   for (auto const &RCI : ConstInfo.RebasedConstants)
    150     for (auto const &U : RCI.Uses)
    151       BBs.insert(findMatInsertPt(U.Inst, U.OpndIdx)->getParent());
    152 
    153   if (BBs.count(Entry))
    154     return &Entry->front();
    155 
    156   while (BBs.size() >= 2) {
    157     BasicBlock *BB, *BB1, *BB2;
    158     BB1 = *BBs.begin();
    159     BB2 = *std::next(BBs.begin());
    160     BB = DT->findNearestCommonDominator(BB1, BB2);
    161     if (BB == Entry)
    162       return &Entry->front();
    163     BBs.erase(BB1);
    164     BBs.erase(BB2);
    165     BBs.insert(BB);
    166   }
    167   assert((BBs.size() == 1) && "Expected only one element.");
    168   Instruction &FirstInst = (*BBs.begin())->front();
    169   return findMatInsertPt(&FirstInst);
    170 }
    171 
    172 
    173 /// \brief Record constant integer ConstInt for instruction Inst at operand
    174 /// index Idx.
    175 ///
    176 /// The operand at index Idx is not necessarily the constant integer itself. It
    177 /// could also be a cast instruction or a constant expression that uses the
    178 // constant integer.
    179 void ConstantHoistingPass::collectConstantCandidates(
    180     ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx,
    181     ConstantInt *ConstInt) {
    182   unsigned Cost;
    183   // Ask the target about the cost of materializing the constant for the given
    184   // instruction and operand index.
    185   if (auto IntrInst = dyn_cast<IntrinsicInst>(Inst))
    186     Cost = TTI->getIntImmCost(IntrInst->getIntrinsicID(), Idx,
    187                               ConstInt->getValue(), ConstInt->getType());
    188   else
    189     Cost = TTI->getIntImmCost(Inst->getOpcode(), Idx, ConstInt->getValue(),
    190                               ConstInt->getType());
    191 
    192   // Ignore cheap integer constants.
    193   if (Cost > TargetTransformInfo::TCC_Basic) {
    194     ConstCandMapType::iterator Itr;
    195     bool Inserted;
    196     std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(ConstInt, 0));
    197     if (Inserted) {
    198       ConstCandVec.push_back(ConstantCandidate(ConstInt));
    199       Itr->second = ConstCandVec.size() - 1;
    200     }
    201     ConstCandVec[Itr->second].addUser(Inst, Idx, Cost);
    202     DEBUG(if (isa<ConstantInt>(Inst->getOperand(Idx)))
    203             dbgs() << "Collect constant " << *ConstInt << " from " << *Inst
    204                    << " with cost " << Cost << '\n';
    205           else
    206           dbgs() << "Collect constant " << *ConstInt << " indirectly from "
    207                  << *Inst << " via " << *Inst->getOperand(Idx) << " with cost "
    208                  << Cost << '\n';
    209     );
    210   }
    211 }
    212 
    213 /// \brief Scan the instruction for expensive integer constants and record them
    214 /// in the constant candidate vector.
    215 void ConstantHoistingPass::collectConstantCandidates(
    216     ConstCandMapType &ConstCandMap, Instruction *Inst) {
    217   // Skip all cast instructions. They are visited indirectly later on.
    218   if (Inst->isCast())
    219     return;
    220 
    221   // Can't handle inline asm. Skip it.
    222   if (auto Call = dyn_cast<CallInst>(Inst))
    223     if (isa<InlineAsm>(Call->getCalledValue()))
    224       return;
    225 
    226   // Switch cases must remain constant, and if the value being tested is
    227   // constant the entire thing should disappear.
    228   if (isa<SwitchInst>(Inst))
    229     return;
    230 
    231   // Static allocas (constant size in the entry block) are handled by
    232   // prologue/epilogue insertion so they're free anyway. We definitely don't
    233   // want to make them non-constant.
    234   auto AI = dyn_cast<AllocaInst>(Inst);
    235   if (AI && AI->isStaticAlloca())
    236     return;
    237 
    238   // Scan all operands.
    239   for (unsigned Idx = 0, E = Inst->getNumOperands(); Idx != E; ++Idx) {
    240     Value *Opnd = Inst->getOperand(Idx);
    241 
    242     // Visit constant integers.
    243     if (auto ConstInt = dyn_cast<ConstantInt>(Opnd)) {
    244       collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
    245       continue;
    246     }
    247 
    248     // Visit cast instructions that have constant integers.
    249     if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
    250       // Only visit cast instructions, which have been skipped. All other
    251       // instructions should have already been visited.
    252       if (!CastInst->isCast())
    253         continue;
    254 
    255       if (auto *ConstInt = dyn_cast<ConstantInt>(CastInst->getOperand(0))) {
    256         // Pretend the constant is directly used by the instruction and ignore
    257         // the cast instruction.
    258         collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
    259         continue;
    260       }
    261     }
    262 
    263     // Visit constant expressions that have constant integers.
    264     if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
    265       // Only visit constant cast expressions.
    266       if (!ConstExpr->isCast())
    267         continue;
    268 
    269       if (auto ConstInt = dyn_cast<ConstantInt>(ConstExpr->getOperand(0))) {
    270         // Pretend the constant is directly used by the instruction and ignore
    271         // the constant expression.
    272         collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
    273         continue;
    274       }
    275     }
    276   } // end of for all operands
    277 }
    278 
    279 /// \brief Collect all integer constants in the function that cannot be folded
    280 /// into an instruction itself.
    281 void ConstantHoistingPass::collectConstantCandidates(Function &Fn) {
    282   ConstCandMapType ConstCandMap;
    283   for (BasicBlock &BB : Fn)
    284     for (Instruction &Inst : BB)
    285       collectConstantCandidates(ConstCandMap, &Inst);
    286 }
    287 
    288 // This helper function is necessary to deal with values that have different
    289 // bit widths (APInt Operator- does not like that). If the value cannot be
    290 // represented in uint64 we return an "empty" APInt. This is then interpreted
    291 // as the value is not in range.
    292 static llvm::Optional<APInt> calculateOffsetDiff(APInt V1, APInt V2)
    293 {
    294   llvm::Optional<APInt> Res = None;
    295   unsigned BW = V1.getBitWidth() > V2.getBitWidth() ?
    296                 V1.getBitWidth() : V2.getBitWidth();
    297   uint64_t LimVal1 = V1.getLimitedValue();
    298   uint64_t LimVal2 = V2.getLimitedValue();
    299 
    300   if (LimVal1 == ~0ULL || LimVal2 == ~0ULL)
    301     return Res;
    302 
    303   uint64_t Diff = LimVal1 - LimVal2;
    304   return APInt(BW, Diff, true);
    305 }
    306 
    307 // From a list of constants, one needs to picked as the base and the other
    308 // constants will be transformed into an offset from that base constant. The
    309 // question is which we can pick best? For example, consider these constants
    310 // and their number of uses:
    311 //
    312 //  Constants| 2 | 4 | 12 | 42 |
    313 //  NumUses  | 3 | 2 |  8 |  7 |
    314 //
    315 // Selecting constant 12 because it has the most uses will generate negative
    316 // offsets for constants 2 and 4 (i.e. -10 and -8 respectively). If negative
    317 // offsets lead to less optimal code generation, then there might be better
    318 // solutions. Suppose immediates in the range of 0..35 are most optimally
    319 // supported by the architecture, then selecting constant 2 is most optimal
    320 // because this will generate offsets: 0, 2, 10, 40. Offsets 0, 2 and 10 are in
    321 // range 0..35, and thus 3 + 2 + 8 = 13 uses are in range. Selecting 12 would
    322 // have only 8 uses in range, so choosing 2 as a base is more optimal. Thus, in
    323 // selecting the base constant the range of the offsets is a very important
    324 // factor too that we take into account here. This algorithm calculates a total
    325 // costs for selecting a constant as the base and substract the costs if
    326 // immediates are out of range. It has quadratic complexity, so we call this
    327 // function only when we're optimising for size and there are less than 100
    328 // constants, we fall back to the straightforward algorithm otherwise
    329 // which does not do all the offset calculations.
    330 unsigned
    331 ConstantHoistingPass::maximizeConstantsInRange(ConstCandVecType::iterator S,
    332                                            ConstCandVecType::iterator E,
    333                                            ConstCandVecType::iterator &MaxCostItr) {
    334   unsigned NumUses = 0;
    335 
    336   if(!Entry->getParent()->optForSize() || std::distance(S,E) > 100) {
    337     for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
    338       NumUses += ConstCand->Uses.size();
    339       if (ConstCand->CumulativeCost > MaxCostItr->CumulativeCost)
    340         MaxCostItr = ConstCand;
    341     }
    342     return NumUses;
    343   }
    344 
    345   DEBUG(dbgs() << "== Maximize constants in range ==\n");
    346   int MaxCost = -1;
    347   for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
    348     auto Value = ConstCand->ConstInt->getValue();
    349     Type *Ty = ConstCand->ConstInt->getType();
    350     int Cost = 0;
    351     NumUses += ConstCand->Uses.size();
    352     DEBUG(dbgs() << "= Constant: " << ConstCand->ConstInt->getValue() << "\n");
    353 
    354     for (auto User : ConstCand->Uses) {
    355       unsigned Opcode = User.Inst->getOpcode();
    356       unsigned OpndIdx = User.OpndIdx;
    357       Cost += TTI->getIntImmCost(Opcode, OpndIdx, Value, Ty);
    358       DEBUG(dbgs() << "Cost: " << Cost << "\n");
    359 
    360       for (auto C2 = S; C2 != E; ++C2) {
    361         llvm::Optional<APInt> Diff = calculateOffsetDiff(
    362                                       C2->ConstInt->getValue(),
    363                                       ConstCand->ConstInt->getValue());
    364         if (Diff) {
    365           const int ImmCosts =
    366             TTI->getIntImmCodeSizeCost(Opcode, OpndIdx, Diff.getValue(), Ty);
    367           Cost -= ImmCosts;
    368           DEBUG(dbgs() << "Offset " << Diff.getValue() << " "
    369                        << "has penalty: " << ImmCosts << "\n"
    370                        << "Adjusted cost: " << Cost << "\n");
    371         }
    372       }
    373     }
    374     DEBUG(dbgs() << "Cumulative cost: " << Cost << "\n");
    375     if (Cost > MaxCost) {
    376       MaxCost = Cost;
    377       MaxCostItr = ConstCand;
    378       DEBUG(dbgs() << "New candidate: " << MaxCostItr->ConstInt->getValue()
    379                    << "\n");
    380     }
    381   }
    382   return NumUses;
    383 }
    384 
    385 /// \brief Find the base constant within the given range and rebase all other
    386 /// constants with respect to the base constant.
    387 void ConstantHoistingPass::findAndMakeBaseConstant(
    388     ConstCandVecType::iterator S, ConstCandVecType::iterator E) {
    389   auto MaxCostItr = S;
    390   unsigned NumUses = maximizeConstantsInRange(S, E, MaxCostItr);
    391 
    392   // Don't hoist constants that have only one use.
    393   if (NumUses <= 1)
    394     return;
    395 
    396   ConstantInfo ConstInfo;
    397   ConstInfo.BaseConstant = MaxCostItr->ConstInt;
    398   Type *Ty = ConstInfo.BaseConstant->getType();
    399 
    400   // Rebase the constants with respect to the base constant.
    401   for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
    402     APInt Diff = ConstCand->ConstInt->getValue() -
    403                  ConstInfo.BaseConstant->getValue();
    404     Constant *Offset = Diff == 0 ? nullptr : ConstantInt::get(Ty, Diff);
    405     ConstInfo.RebasedConstants.push_back(
    406       RebasedConstantInfo(std::move(ConstCand->Uses), Offset));
    407   }
    408   ConstantVec.push_back(std::move(ConstInfo));
    409 }
    410 
    411 /// \brief Finds and combines constant candidates that can be easily
    412 /// rematerialized with an add from a common base constant.
    413 void ConstantHoistingPass::findBaseConstants() {
    414   // Sort the constants by value and type. This invalidates the mapping!
    415   std::sort(ConstCandVec.begin(), ConstCandVec.end(),
    416             [](const ConstantCandidate &LHS, const ConstantCandidate &RHS) {
    417     if (LHS.ConstInt->getType() != RHS.ConstInt->getType())
    418       return LHS.ConstInt->getType()->getBitWidth() <
    419              RHS.ConstInt->getType()->getBitWidth();
    420     return LHS.ConstInt->getValue().ult(RHS.ConstInt->getValue());
    421   });
    422 
    423   // Simple linear scan through the sorted constant candidate vector for viable
    424   // merge candidates.
    425   auto MinValItr = ConstCandVec.begin();
    426   for (auto CC = std::next(ConstCandVec.begin()), E = ConstCandVec.end();
    427        CC != E; ++CC) {
    428     if (MinValItr->ConstInt->getType() == CC->ConstInt->getType()) {
    429       // Check if the constant is in range of an add with immediate.
    430       APInt Diff = CC->ConstInt->getValue() - MinValItr->ConstInt->getValue();
    431       if ((Diff.getBitWidth() <= 64) &&
    432           TTI->isLegalAddImmediate(Diff.getSExtValue()))
    433         continue;
    434     }
    435     // We either have now a different constant type or the constant is not in
    436     // range of an add with immediate anymore.
    437     findAndMakeBaseConstant(MinValItr, CC);
    438     // Start a new base constant search.
    439     MinValItr = CC;
    440   }
    441   // Finalize the last base constant search.
    442   findAndMakeBaseConstant(MinValItr, ConstCandVec.end());
    443 }
    444 
    445 /// \brief Updates the operand at Idx in instruction Inst with the result of
    446 ///        instruction Mat. If the instruction is a PHI node then special
    447 ///        handling for duplicate values form the same incomming basic block is
    448 ///        required.
    449 /// \return The update will always succeed, but the return value indicated if
    450 ///         Mat was used for the update or not.
    451 static bool updateOperand(Instruction *Inst, unsigned Idx, Instruction *Mat) {
    452   if (auto PHI = dyn_cast<PHINode>(Inst)) {
    453     // Check if any previous operand of the PHI node has the same incoming basic
    454     // block. This is a very odd case that happens when the incoming basic block
    455     // has a switch statement. In this case use the same value as the previous
    456     // operand(s), otherwise we will fail verification due to different values.
    457     // The values are actually the same, but the variable names are different
    458     // and the verifier doesn't like that.
    459     BasicBlock *IncomingBB = PHI->getIncomingBlock(Idx);
    460     for (unsigned i = 0; i < Idx; ++i) {
    461       if (PHI->getIncomingBlock(i) == IncomingBB) {
    462         Value *IncomingVal = PHI->getIncomingValue(i);
    463         Inst->setOperand(Idx, IncomingVal);
    464         return false;
    465       }
    466     }
    467   }
    468 
    469   Inst->setOperand(Idx, Mat);
    470   return true;
    471 }
    472 
    473 /// \brief Emit materialization code for all rebased constants and update their
    474 /// users.
    475 void ConstantHoistingPass::emitBaseConstants(Instruction *Base,
    476                                              Constant *Offset,
    477                                              const ConstantUser &ConstUser) {
    478   Instruction *Mat = Base;
    479   if (Offset) {
    480     Instruction *InsertionPt = findMatInsertPt(ConstUser.Inst,
    481                                                ConstUser.OpndIdx);
    482     Mat = BinaryOperator::Create(Instruction::Add, Base, Offset,
    483                                  "const_mat", InsertionPt);
    484 
    485     DEBUG(dbgs() << "Materialize constant (" << *Base->getOperand(0)
    486                  << " + " << *Offset << ") in BB "
    487                  << Mat->getParent()->getName() << '\n' << *Mat << '\n');
    488     Mat->setDebugLoc(ConstUser.Inst->getDebugLoc());
    489   }
    490   Value *Opnd = ConstUser.Inst->getOperand(ConstUser.OpndIdx);
    491 
    492   // Visit constant integer.
    493   if (isa<ConstantInt>(Opnd)) {
    494     DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
    495     if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat) && Offset)
    496       Mat->eraseFromParent();
    497     DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
    498     return;
    499   }
    500 
    501   // Visit cast instruction.
    502   if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
    503     assert(CastInst->isCast() && "Expected an cast instruction!");
    504     // Check if we already have visited this cast instruction before to avoid
    505     // unnecessary cloning.
    506     Instruction *&ClonedCastInst = ClonedCastMap[CastInst];
    507     if (!ClonedCastInst) {
    508       ClonedCastInst = CastInst->clone();
    509       ClonedCastInst->setOperand(0, Mat);
    510       ClonedCastInst->insertAfter(CastInst);
    511       // Use the same debug location as the original cast instruction.
    512       ClonedCastInst->setDebugLoc(CastInst->getDebugLoc());
    513       DEBUG(dbgs() << "Clone instruction: " << *CastInst << '\n'
    514                    << "To               : " << *ClonedCastInst << '\n');
    515     }
    516 
    517     DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
    518     updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ClonedCastInst);
    519     DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
    520     return;
    521   }
    522 
    523   // Visit constant expression.
    524   if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
    525     Instruction *ConstExprInst = ConstExpr->getAsInstruction();
    526     ConstExprInst->setOperand(0, Mat);
    527     ConstExprInst->insertBefore(findMatInsertPt(ConstUser.Inst,
    528                                                 ConstUser.OpndIdx));
    529 
    530     // Use the same debug location as the instruction we are about to update.
    531     ConstExprInst->setDebugLoc(ConstUser.Inst->getDebugLoc());
    532 
    533     DEBUG(dbgs() << "Create instruction: " << *ConstExprInst << '\n'
    534                  << "From              : " << *ConstExpr << '\n');
    535     DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
    536     if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ConstExprInst)) {
    537       ConstExprInst->eraseFromParent();
    538       if (Offset)
    539         Mat->eraseFromParent();
    540     }
    541     DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
    542     return;
    543   }
    544 }
    545 
    546 /// \brief Hoist and hide the base constant behind a bitcast and emit
    547 /// materialization code for derived constants.
    548 bool ConstantHoistingPass::emitBaseConstants() {
    549   bool MadeChange = false;
    550   for (auto const &ConstInfo : ConstantVec) {
    551     // Hoist and hide the base constant behind a bitcast.
    552     Instruction *IP = findConstantInsertionPoint(ConstInfo);
    553     IntegerType *Ty = ConstInfo.BaseConstant->getType();
    554     Instruction *Base =
    555       new BitCastInst(ConstInfo.BaseConstant, Ty, "const", IP);
    556     DEBUG(dbgs() << "Hoist constant (" << *ConstInfo.BaseConstant << ") to BB "
    557                  << IP->getParent()->getName() << '\n' << *Base << '\n');
    558     NumConstantsHoisted++;
    559 
    560     // Emit materialization code for all rebased constants.
    561     for (auto const &RCI : ConstInfo.RebasedConstants) {
    562       NumConstantsRebased++;
    563       for (auto const &U : RCI.Uses)
    564         emitBaseConstants(Base, RCI.Offset, U);
    565     }
    566 
    567     // Use the same debug location as the last user of the constant.
    568     assert(!Base->use_empty() && "The use list is empty!?");
    569     assert(isa<Instruction>(Base->user_back()) &&
    570            "All uses should be instructions.");
    571     Base->setDebugLoc(cast<Instruction>(Base->user_back())->getDebugLoc());
    572 
    573     // Correct for base constant, which we counted above too.
    574     NumConstantsRebased--;
    575     MadeChange = true;
    576   }
    577   return MadeChange;
    578 }
    579 
    580 /// \brief Check all cast instructions we made a copy of and remove them if they
    581 /// have no more users.
    582 void ConstantHoistingPass::deleteDeadCastInst() const {
    583   for (auto const &I : ClonedCastMap)
    584     if (I.first->use_empty())
    585       I.first->eraseFromParent();
    586 }
    587 
    588 /// \brief Optimize expensive integer constants in the given function.
    589 bool ConstantHoistingPass::runImpl(Function &Fn, TargetTransformInfo &TTI,
    590                                    DominatorTree &DT, BasicBlock &Entry) {
    591   this->TTI = &TTI;
    592   this->DT = &DT;
    593   this->Entry = &Entry;
    594   // Collect all constant candidates.
    595   collectConstantCandidates(Fn);
    596 
    597   // There are no constant candidates to worry about.
    598   if (ConstCandVec.empty())
    599     return false;
    600 
    601   // Combine constants that can be easily materialized with an add from a common
    602   // base constant.
    603   findBaseConstants();
    604 
    605   // There are no constants to emit.
    606   if (ConstantVec.empty())
    607     return false;
    608 
    609   // Finally hoist the base constant and emit materialization code for dependent
    610   // constants.
    611   bool MadeChange = emitBaseConstants();
    612 
    613   // Cleanup dead instructions.
    614   deleteDeadCastInst();
    615 
    616   return MadeChange;
    617 }
    618 
    619 PreservedAnalyses ConstantHoistingPass::run(Function &F,
    620                                             FunctionAnalysisManager &AM) {
    621   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
    622   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
    623   if (!runImpl(F, TTI, DT, F.getEntryBlock()))
    624     return PreservedAnalyses::all();
    625 
    626   // FIXME: This should also 'preserve the CFG'.
    627   return PreservedAnalyses::none();
    628 }
    629