1 //===-- IntegerDivision.cpp - Expand integer division ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains an implementation of 32bit and 64bit scalar integer 11 // division for targets that don't have native support. It's largely derived 12 // from compiler-rt's implementations of __udivsi3 and __udivmoddi4, 13 // but hand-tuned for targets that prefer less control flow. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Utils/IntegerDivision.h" 18 #include "llvm/IR/Function.h" 19 #include "llvm/IR/IRBuilder.h" 20 #include "llvm/IR/Instructions.h" 21 #include "llvm/IR/Intrinsics.h" 22 #include <utility> 23 24 using namespace llvm; 25 26 #define DEBUG_TYPE "integer-division" 27 28 /// Generate code to compute the remainder of two signed integers. Returns the 29 /// remainder, which will have the sign of the dividend. Builder's insert point 30 /// should be pointing where the caller wants code generated, e.g. at the srem 31 /// instruction. This will generate a urem in the process, and Builder's insert 32 /// point will be pointing at the uren (if present, i.e. not folded), ready to 33 /// be expanded if the user wishes 34 static Value *generateSignedRemainderCode(Value *Dividend, Value *Divisor, 35 IRBuilder<> &Builder) { 36 unsigned BitWidth = Dividend->getType()->getIntegerBitWidth(); 37 ConstantInt *Shift; 38 39 if (BitWidth == 64) { 40 Shift = Builder.getInt64(63); 41 } else { 42 assert(BitWidth == 32 && "Unexpected bit width"); 43 Shift = Builder.getInt32(31); 44 } 45 46 // Following instructions are generated for both i32 (shift 31) and 47 // i64 (shift 63). 48 49 // ; %dividend_sgn = ashr i32 %dividend, 31 50 // ; %divisor_sgn = ashr i32 %divisor, 31 51 // ; %dvd_xor = xor i32 %dividend, %dividend_sgn 52 // ; %dvs_xor = xor i32 %divisor, %divisor_sgn 53 // ; %u_dividend = sub i32 %dvd_xor, %dividend_sgn 54 // ; %u_divisor = sub i32 %dvs_xor, %divisor_sgn 55 // ; %urem = urem i32 %dividend, %divisor 56 // ; %xored = xor i32 %urem, %dividend_sgn 57 // ; %srem = sub i32 %xored, %dividend_sgn 58 Value *DividendSign = Builder.CreateAShr(Dividend, Shift); 59 Value *DivisorSign = Builder.CreateAShr(Divisor, Shift); 60 Value *DvdXor = Builder.CreateXor(Dividend, DividendSign); 61 Value *DvsXor = Builder.CreateXor(Divisor, DivisorSign); 62 Value *UDividend = Builder.CreateSub(DvdXor, DividendSign); 63 Value *UDivisor = Builder.CreateSub(DvsXor, DivisorSign); 64 Value *URem = Builder.CreateURem(UDividend, UDivisor); 65 Value *Xored = Builder.CreateXor(URem, DividendSign); 66 Value *SRem = Builder.CreateSub(Xored, DividendSign); 67 68 if (Instruction *URemInst = dyn_cast<Instruction>(URem)) 69 Builder.SetInsertPoint(URemInst); 70 71 return SRem; 72 } 73 74 75 /// Generate code to compute the remainder of two unsigned integers. Returns the 76 /// remainder. Builder's insert point should be pointing where the caller wants 77 /// code generated, e.g. at the urem instruction. This will generate a udiv in 78 /// the process, and Builder's insert point will be pointing at the udiv (if 79 /// present, i.e. not folded), ready to be expanded if the user wishes 80 static Value *generatedUnsignedRemainderCode(Value *Dividend, Value *Divisor, 81 IRBuilder<> &Builder) { 82 // Remainder = Dividend - Quotient*Divisor 83 84 // Following instructions are generated for both i32 and i64 85 86 // ; %quotient = udiv i32 %dividend, %divisor 87 // ; %product = mul i32 %divisor, %quotient 88 // ; %remainder = sub i32 %dividend, %product 89 Value *Quotient = Builder.CreateUDiv(Dividend, Divisor); 90 Value *Product = Builder.CreateMul(Divisor, Quotient); 91 Value *Remainder = Builder.CreateSub(Dividend, Product); 92 93 if (Instruction *UDiv = dyn_cast<Instruction>(Quotient)) 94 Builder.SetInsertPoint(UDiv); 95 96 return Remainder; 97 } 98 99 /// Generate code to divide two signed integers. Returns the quotient, rounded 100 /// towards 0. Builder's insert point should be pointing where the caller wants 101 /// code generated, e.g. at the sdiv instruction. This will generate a udiv in 102 /// the process, and Builder's insert point will be pointing at the udiv (if 103 /// present, i.e. not folded), ready to be expanded if the user wishes. 104 static Value *generateSignedDivisionCode(Value *Dividend, Value *Divisor, 105 IRBuilder<> &Builder) { 106 // Implementation taken from compiler-rt's __divsi3 and __divdi3 107 108 unsigned BitWidth = Dividend->getType()->getIntegerBitWidth(); 109 ConstantInt *Shift; 110 111 if (BitWidth == 64) { 112 Shift = Builder.getInt64(63); 113 } else { 114 assert(BitWidth == 32 && "Unexpected bit width"); 115 Shift = Builder.getInt32(31); 116 } 117 118 // Following instructions are generated for both i32 (shift 31) and 119 // i64 (shift 63). 120 121 // ; %tmp = ashr i32 %dividend, 31 122 // ; %tmp1 = ashr i32 %divisor, 31 123 // ; %tmp2 = xor i32 %tmp, %dividend 124 // ; %u_dvnd = sub nsw i32 %tmp2, %tmp 125 // ; %tmp3 = xor i32 %tmp1, %divisor 126 // ; %u_dvsr = sub nsw i32 %tmp3, %tmp1 127 // ; %q_sgn = xor i32 %tmp1, %tmp 128 // ; %q_mag = udiv i32 %u_dvnd, %u_dvsr 129 // ; %tmp4 = xor i32 %q_mag, %q_sgn 130 // ; %q = sub i32 %tmp4, %q_sgn 131 Value *Tmp = Builder.CreateAShr(Dividend, Shift); 132 Value *Tmp1 = Builder.CreateAShr(Divisor, Shift); 133 Value *Tmp2 = Builder.CreateXor(Tmp, Dividend); 134 Value *U_Dvnd = Builder.CreateSub(Tmp2, Tmp); 135 Value *Tmp3 = Builder.CreateXor(Tmp1, Divisor); 136 Value *U_Dvsr = Builder.CreateSub(Tmp3, Tmp1); 137 Value *Q_Sgn = Builder.CreateXor(Tmp1, Tmp); 138 Value *Q_Mag = Builder.CreateUDiv(U_Dvnd, U_Dvsr); 139 Value *Tmp4 = Builder.CreateXor(Q_Mag, Q_Sgn); 140 Value *Q = Builder.CreateSub(Tmp4, Q_Sgn); 141 142 if (Instruction *UDiv = dyn_cast<Instruction>(Q_Mag)) 143 Builder.SetInsertPoint(UDiv); 144 145 return Q; 146 } 147 148 /// Generates code to divide two unsigned scalar 32-bit or 64-bit integers. 149 /// Returns the quotient, rounded towards 0. Builder's insert point should 150 /// point where the caller wants code generated, e.g. at the udiv instruction. 151 static Value *generateUnsignedDivisionCode(Value *Dividend, Value *Divisor, 152 IRBuilder<> &Builder) { 153 // The basic algorithm can be found in the compiler-rt project's 154 // implementation of __udivsi3.c. Here, we do a lower-level IR based approach 155 // that's been hand-tuned to lessen the amount of control flow involved. 156 157 // Some helper values 158 IntegerType *DivTy = cast<IntegerType>(Dividend->getType()); 159 unsigned BitWidth = DivTy->getBitWidth(); 160 161 ConstantInt *Zero; 162 ConstantInt *One; 163 ConstantInt *NegOne; 164 ConstantInt *MSB; 165 166 if (BitWidth == 64) { 167 Zero = Builder.getInt64(0); 168 One = Builder.getInt64(1); 169 NegOne = ConstantInt::getSigned(DivTy, -1); 170 MSB = Builder.getInt64(63); 171 } else { 172 assert(BitWidth == 32 && "Unexpected bit width"); 173 Zero = Builder.getInt32(0); 174 One = Builder.getInt32(1); 175 NegOne = ConstantInt::getSigned(DivTy, -1); 176 MSB = Builder.getInt32(31); 177 } 178 179 ConstantInt *True = Builder.getTrue(); 180 181 BasicBlock *IBB = Builder.GetInsertBlock(); 182 Function *F = IBB->getParent(); 183 Function *CTLZ = Intrinsic::getDeclaration(F->getParent(), Intrinsic::ctlz, 184 DivTy); 185 186 // Our CFG is going to look like: 187 // +---------------------+ 188 // | special-cases | 189 // | ... | 190 // +---------------------+ 191 // | | 192 // | +----------+ 193 // | | bb1 | 194 // | | ... | 195 // | +----------+ 196 // | | | 197 // | | +------------+ 198 // | | | preheader | 199 // | | | ... | 200 // | | +------------+ 201 // | | | 202 // | | | +---+ 203 // | | | | | 204 // | | +------------+ | 205 // | | | do-while | | 206 // | | | ... | | 207 // | | +------------+ | 208 // | | | | | 209 // | +-----------+ +---+ 210 // | | loop-exit | 211 // | | ... | 212 // | +-----------+ 213 // | | 214 // +-------+ 215 // | ... | 216 // | end | 217 // +-------+ 218 BasicBlock *SpecialCases = Builder.GetInsertBlock(); 219 SpecialCases->setName(Twine(SpecialCases->getName(), "_udiv-special-cases")); 220 BasicBlock *End = SpecialCases->splitBasicBlock(Builder.GetInsertPoint(), 221 "udiv-end"); 222 BasicBlock *LoopExit = BasicBlock::Create(Builder.getContext(), 223 "udiv-loop-exit", F, End); 224 BasicBlock *DoWhile = BasicBlock::Create(Builder.getContext(), 225 "udiv-do-while", F, End); 226 BasicBlock *Preheader = BasicBlock::Create(Builder.getContext(), 227 "udiv-preheader", F, End); 228 BasicBlock *BB1 = BasicBlock::Create(Builder.getContext(), 229 "udiv-bb1", F, End); 230 231 // We'll be overwriting the terminator to insert our extra blocks 232 SpecialCases->getTerminator()->eraseFromParent(); 233 234 // Same instructions are generated for both i32 (msb 31) and i64 (msb 63). 235 236 // First off, check for special cases: dividend or divisor is zero, divisor 237 // is greater than dividend, and divisor is 1. 238 // ; special-cases: 239 // ; %ret0_1 = icmp eq i32 %divisor, 0 240 // ; %ret0_2 = icmp eq i32 %dividend, 0 241 // ; %ret0_3 = or i1 %ret0_1, %ret0_2 242 // ; %tmp0 = tail call i32 @llvm.ctlz.i32(i32 %divisor, i1 true) 243 // ; %tmp1 = tail call i32 @llvm.ctlz.i32(i32 %dividend, i1 true) 244 // ; %sr = sub nsw i32 %tmp0, %tmp1 245 // ; %ret0_4 = icmp ugt i32 %sr, 31 246 // ; %ret0 = or i1 %ret0_3, %ret0_4 247 // ; %retDividend = icmp eq i32 %sr, 31 248 // ; %retVal = select i1 %ret0, i32 0, i32 %dividend 249 // ; %earlyRet = or i1 %ret0, %retDividend 250 // ; br i1 %earlyRet, label %end, label %bb1 251 Builder.SetInsertPoint(SpecialCases); 252 Value *Ret0_1 = Builder.CreateICmpEQ(Divisor, Zero); 253 Value *Ret0_2 = Builder.CreateICmpEQ(Dividend, Zero); 254 Value *Ret0_3 = Builder.CreateOr(Ret0_1, Ret0_2); 255 Value *Tmp0 = Builder.CreateCall(CTLZ, {Divisor, True}); 256 Value *Tmp1 = Builder.CreateCall(CTLZ, {Dividend, True}); 257 Value *SR = Builder.CreateSub(Tmp0, Tmp1); 258 Value *Ret0_4 = Builder.CreateICmpUGT(SR, MSB); 259 Value *Ret0 = Builder.CreateOr(Ret0_3, Ret0_4); 260 Value *RetDividend = Builder.CreateICmpEQ(SR, MSB); 261 Value *RetVal = Builder.CreateSelect(Ret0, Zero, Dividend); 262 Value *EarlyRet = Builder.CreateOr(Ret0, RetDividend); 263 Builder.CreateCondBr(EarlyRet, End, BB1); 264 265 // ; bb1: ; preds = %special-cases 266 // ; %sr_1 = add i32 %sr, 1 267 // ; %tmp2 = sub i32 31, %sr 268 // ; %q = shl i32 %dividend, %tmp2 269 // ; %skipLoop = icmp eq i32 %sr_1, 0 270 // ; br i1 %skipLoop, label %loop-exit, label %preheader 271 Builder.SetInsertPoint(BB1); 272 Value *SR_1 = Builder.CreateAdd(SR, One); 273 Value *Tmp2 = Builder.CreateSub(MSB, SR); 274 Value *Q = Builder.CreateShl(Dividend, Tmp2); 275 Value *SkipLoop = Builder.CreateICmpEQ(SR_1, Zero); 276 Builder.CreateCondBr(SkipLoop, LoopExit, Preheader); 277 278 // ; preheader: ; preds = %bb1 279 // ; %tmp3 = lshr i32 %dividend, %sr_1 280 // ; %tmp4 = add i32 %divisor, -1 281 // ; br label %do-while 282 Builder.SetInsertPoint(Preheader); 283 Value *Tmp3 = Builder.CreateLShr(Dividend, SR_1); 284 Value *Tmp4 = Builder.CreateAdd(Divisor, NegOne); 285 Builder.CreateBr(DoWhile); 286 287 // ; do-while: ; preds = %do-while, %preheader 288 // ; %carry_1 = phi i32 [ 0, %preheader ], [ %carry, %do-while ] 289 // ; %sr_3 = phi i32 [ %sr_1, %preheader ], [ %sr_2, %do-while ] 290 // ; %r_1 = phi i32 [ %tmp3, %preheader ], [ %r, %do-while ] 291 // ; %q_2 = phi i32 [ %q, %preheader ], [ %q_1, %do-while ] 292 // ; %tmp5 = shl i32 %r_1, 1 293 // ; %tmp6 = lshr i32 %q_2, 31 294 // ; %tmp7 = or i32 %tmp5, %tmp6 295 // ; %tmp8 = shl i32 %q_2, 1 296 // ; %q_1 = or i32 %carry_1, %tmp8 297 // ; %tmp9 = sub i32 %tmp4, %tmp7 298 // ; %tmp10 = ashr i32 %tmp9, 31 299 // ; %carry = and i32 %tmp10, 1 300 // ; %tmp11 = and i32 %tmp10, %divisor 301 // ; %r = sub i32 %tmp7, %tmp11 302 // ; %sr_2 = add i32 %sr_3, -1 303 // ; %tmp12 = icmp eq i32 %sr_2, 0 304 // ; br i1 %tmp12, label %loop-exit, label %do-while 305 Builder.SetInsertPoint(DoWhile); 306 PHINode *Carry_1 = Builder.CreatePHI(DivTy, 2); 307 PHINode *SR_3 = Builder.CreatePHI(DivTy, 2); 308 PHINode *R_1 = Builder.CreatePHI(DivTy, 2); 309 PHINode *Q_2 = Builder.CreatePHI(DivTy, 2); 310 Value *Tmp5 = Builder.CreateShl(R_1, One); 311 Value *Tmp6 = Builder.CreateLShr(Q_2, MSB); 312 Value *Tmp7 = Builder.CreateOr(Tmp5, Tmp6); 313 Value *Tmp8 = Builder.CreateShl(Q_2, One); 314 Value *Q_1 = Builder.CreateOr(Carry_1, Tmp8); 315 Value *Tmp9 = Builder.CreateSub(Tmp4, Tmp7); 316 Value *Tmp10 = Builder.CreateAShr(Tmp9, MSB); 317 Value *Carry = Builder.CreateAnd(Tmp10, One); 318 Value *Tmp11 = Builder.CreateAnd(Tmp10, Divisor); 319 Value *R = Builder.CreateSub(Tmp7, Tmp11); 320 Value *SR_2 = Builder.CreateAdd(SR_3, NegOne); 321 Value *Tmp12 = Builder.CreateICmpEQ(SR_2, Zero); 322 Builder.CreateCondBr(Tmp12, LoopExit, DoWhile); 323 324 // ; loop-exit: ; preds = %do-while, %bb1 325 // ; %carry_2 = phi i32 [ 0, %bb1 ], [ %carry, %do-while ] 326 // ; %q_3 = phi i32 [ %q, %bb1 ], [ %q_1, %do-while ] 327 // ; %tmp13 = shl i32 %q_3, 1 328 // ; %q_4 = or i32 %carry_2, %tmp13 329 // ; br label %end 330 Builder.SetInsertPoint(LoopExit); 331 PHINode *Carry_2 = Builder.CreatePHI(DivTy, 2); 332 PHINode *Q_3 = Builder.CreatePHI(DivTy, 2); 333 Value *Tmp13 = Builder.CreateShl(Q_3, One); 334 Value *Q_4 = Builder.CreateOr(Carry_2, Tmp13); 335 Builder.CreateBr(End); 336 337 // ; end: ; preds = %loop-exit, %special-cases 338 // ; %q_5 = phi i32 [ %q_4, %loop-exit ], [ %retVal, %special-cases ] 339 // ; ret i32 %q_5 340 Builder.SetInsertPoint(End, End->begin()); 341 PHINode *Q_5 = Builder.CreatePHI(DivTy, 2); 342 343 // Populate the Phis, since all values have now been created. Our Phis were: 344 // ; %carry_1 = phi i32 [ 0, %preheader ], [ %carry, %do-while ] 345 Carry_1->addIncoming(Zero, Preheader); 346 Carry_1->addIncoming(Carry, DoWhile); 347 // ; %sr_3 = phi i32 [ %sr_1, %preheader ], [ %sr_2, %do-while ] 348 SR_3->addIncoming(SR_1, Preheader); 349 SR_3->addIncoming(SR_2, DoWhile); 350 // ; %r_1 = phi i32 [ %tmp3, %preheader ], [ %r, %do-while ] 351 R_1->addIncoming(Tmp3, Preheader); 352 R_1->addIncoming(R, DoWhile); 353 // ; %q_2 = phi i32 [ %q, %preheader ], [ %q_1, %do-while ] 354 Q_2->addIncoming(Q, Preheader); 355 Q_2->addIncoming(Q_1, DoWhile); 356 // ; %carry_2 = phi i32 [ 0, %bb1 ], [ %carry, %do-while ] 357 Carry_2->addIncoming(Zero, BB1); 358 Carry_2->addIncoming(Carry, DoWhile); 359 // ; %q_3 = phi i32 [ %q, %bb1 ], [ %q_1, %do-while ] 360 Q_3->addIncoming(Q, BB1); 361 Q_3->addIncoming(Q_1, DoWhile); 362 // ; %q_5 = phi i32 [ %q_4, %loop-exit ], [ %retVal, %special-cases ] 363 Q_5->addIncoming(Q_4, LoopExit); 364 Q_5->addIncoming(RetVal, SpecialCases); 365 366 return Q_5; 367 } 368 369 /// Generate code to calculate the remainder of two integers, replacing Rem with 370 /// the generated code. This currently generates code using the udiv expansion, 371 /// but future work includes generating more specialized code, e.g. when more 372 /// information about the operands are known. Implements both 32bit and 64bit 373 /// scalar division. 374 /// 375 /// @brief Replace Rem with generated code. 376 bool llvm::expandRemainder(BinaryOperator *Rem) { 377 assert((Rem->getOpcode() == Instruction::SRem || 378 Rem->getOpcode() == Instruction::URem) && 379 "Trying to expand remainder from a non-remainder function"); 380 381 IRBuilder<> Builder(Rem); 382 383 assert(!Rem->getType()->isVectorTy() && "Div over vectors not supported"); 384 assert((Rem->getType()->getIntegerBitWidth() == 32 || 385 Rem->getType()->getIntegerBitWidth() == 64) && 386 "Div of bitwidth other than 32 or 64 not supported"); 387 388 // First prepare the sign if it's a signed remainder 389 if (Rem->getOpcode() == Instruction::SRem) { 390 Value *Remainder = generateSignedRemainderCode(Rem->getOperand(0), 391 Rem->getOperand(1), Builder); 392 393 // Check whether this is the insert point while Rem is still valid. 394 bool IsInsertPoint = Rem->getIterator() == Builder.GetInsertPoint(); 395 Rem->replaceAllUsesWith(Remainder); 396 Rem->dropAllReferences(); 397 Rem->eraseFromParent(); 398 399 // If we didn't actually generate an urem instruction, we're done 400 // This happens for example if the input were constant. In this case the 401 // Builder insertion point was unchanged 402 if (IsInsertPoint) 403 return true; 404 405 BinaryOperator *BO = dyn_cast<BinaryOperator>(Builder.GetInsertPoint()); 406 Rem = BO; 407 } 408 409 Value *Remainder = generatedUnsignedRemainderCode(Rem->getOperand(0), 410 Rem->getOperand(1), 411 Builder); 412 413 Rem->replaceAllUsesWith(Remainder); 414 Rem->dropAllReferences(); 415 Rem->eraseFromParent(); 416 417 // Expand the udiv 418 if (BinaryOperator *UDiv = dyn_cast<BinaryOperator>(Builder.GetInsertPoint())) { 419 assert(UDiv->getOpcode() == Instruction::UDiv && "Non-udiv in expansion?"); 420 expandDivision(UDiv); 421 } 422 423 return true; 424 } 425 426 427 /// Generate code to divide two integers, replacing Div with the generated 428 /// code. This currently generates code similarly to compiler-rt's 429 /// implementations, but future work includes generating more specialized code 430 /// when more information about the operands are known. Implements both 431 /// 32bit and 64bit scalar division. 432 /// 433 /// @brief Replace Div with generated code. 434 bool llvm::expandDivision(BinaryOperator *Div) { 435 assert((Div->getOpcode() == Instruction::SDiv || 436 Div->getOpcode() == Instruction::UDiv) && 437 "Trying to expand division from a non-division function"); 438 439 IRBuilder<> Builder(Div); 440 441 assert(!Div->getType()->isVectorTy() && "Div over vectors not supported"); 442 assert((Div->getType()->getIntegerBitWidth() == 32 || 443 Div->getType()->getIntegerBitWidth() == 64) && 444 "Div of bitwidth other than 32 or 64 not supported"); 445 446 // First prepare the sign if it's a signed division 447 if (Div->getOpcode() == Instruction::SDiv) { 448 // Lower the code to unsigned division, and reset Div to point to the udiv. 449 Value *Quotient = generateSignedDivisionCode(Div->getOperand(0), 450 Div->getOperand(1), Builder); 451 452 // Check whether this is the insert point while Div is still valid. 453 bool IsInsertPoint = Div->getIterator() == Builder.GetInsertPoint(); 454 Div->replaceAllUsesWith(Quotient); 455 Div->dropAllReferences(); 456 Div->eraseFromParent(); 457 458 // If we didn't actually generate an udiv instruction, we're done 459 // This happens for example if the input were constant. In this case the 460 // Builder insertion point was unchanged 461 if (IsInsertPoint) 462 return true; 463 464 BinaryOperator *BO = dyn_cast<BinaryOperator>(Builder.GetInsertPoint()); 465 Div = BO; 466 } 467 468 // Insert the unsigned division code 469 Value *Quotient = generateUnsignedDivisionCode(Div->getOperand(0), 470 Div->getOperand(1), 471 Builder); 472 Div->replaceAllUsesWith(Quotient); 473 Div->dropAllReferences(); 474 Div->eraseFromParent(); 475 476 return true; 477 } 478 479 /// Generate code to compute the remainder of two integers of bitwidth up to 480 /// 32 bits. Uses the above routines and extends the inputs/truncates the 481 /// outputs to operate in 32 bits; that is, these routines are good for targets 482 /// that have no or very little suppport for smaller than 32 bit integer 483 /// arithmetic. 484 /// 485 /// @brief Replace Rem with emulation code. 486 bool llvm::expandRemainderUpTo32Bits(BinaryOperator *Rem) { 487 assert((Rem->getOpcode() == Instruction::SRem || 488 Rem->getOpcode() == Instruction::URem) && 489 "Trying to expand remainder from a non-remainder function"); 490 491 Type *RemTy = Rem->getType(); 492 assert(!RemTy->isVectorTy() && "Div over vectors not supported"); 493 494 unsigned RemTyBitWidth = RemTy->getIntegerBitWidth(); 495 496 assert(RemTyBitWidth <= 32 && 497 "Div of bitwidth greater than 32 not supported"); 498 499 if (RemTyBitWidth == 32) 500 return expandRemainder(Rem); 501 502 // If bitwidth smaller than 32 extend inputs, extend output and proceed 503 // with 32 bit division. 504 IRBuilder<> Builder(Rem); 505 506 Value *ExtDividend; 507 Value *ExtDivisor; 508 Value *ExtRem; 509 Value *Trunc; 510 Type *Int32Ty = Builder.getInt32Ty(); 511 512 if (Rem->getOpcode() == Instruction::SRem) { 513 ExtDividend = Builder.CreateSExt(Rem->getOperand(0), Int32Ty); 514 ExtDivisor = Builder.CreateSExt(Rem->getOperand(1), Int32Ty); 515 ExtRem = Builder.CreateSRem(ExtDividend, ExtDivisor); 516 } else { 517 ExtDividend = Builder.CreateZExt(Rem->getOperand(0), Int32Ty); 518 ExtDivisor = Builder.CreateZExt(Rem->getOperand(1), Int32Ty); 519 ExtRem = Builder.CreateURem(ExtDividend, ExtDivisor); 520 } 521 Trunc = Builder.CreateTrunc(ExtRem, RemTy); 522 523 Rem->replaceAllUsesWith(Trunc); 524 Rem->dropAllReferences(); 525 Rem->eraseFromParent(); 526 527 return expandRemainder(cast<BinaryOperator>(ExtRem)); 528 } 529 530 /// Generate code to compute the remainder of two integers of bitwidth up to 531 /// 64 bits. Uses the above routines and extends the inputs/truncates the 532 /// outputs to operate in 64 bits. 533 /// 534 /// @brief Replace Rem with emulation code. 535 bool llvm::expandRemainderUpTo64Bits(BinaryOperator *Rem) { 536 assert((Rem->getOpcode() == Instruction::SRem || 537 Rem->getOpcode() == Instruction::URem) && 538 "Trying to expand remainder from a non-remainder function"); 539 540 Type *RemTy = Rem->getType(); 541 assert(!RemTy->isVectorTy() && "Div over vectors not supported"); 542 543 unsigned RemTyBitWidth = RemTy->getIntegerBitWidth(); 544 545 assert(RemTyBitWidth <= 64 && "Div of bitwidth greater than 64 not supported"); 546 547 if (RemTyBitWidth == 64) 548 return expandRemainder(Rem); 549 550 // If bitwidth smaller than 64 extend inputs, extend output and proceed 551 // with 64 bit division. 552 IRBuilder<> Builder(Rem); 553 554 Value *ExtDividend; 555 Value *ExtDivisor; 556 Value *ExtRem; 557 Value *Trunc; 558 Type *Int64Ty = Builder.getInt64Ty(); 559 560 if (Rem->getOpcode() == Instruction::SRem) { 561 ExtDividend = Builder.CreateSExt(Rem->getOperand(0), Int64Ty); 562 ExtDivisor = Builder.CreateSExt(Rem->getOperand(1), Int64Ty); 563 ExtRem = Builder.CreateSRem(ExtDividend, ExtDivisor); 564 } else { 565 ExtDividend = Builder.CreateZExt(Rem->getOperand(0), Int64Ty); 566 ExtDivisor = Builder.CreateZExt(Rem->getOperand(1), Int64Ty); 567 ExtRem = Builder.CreateURem(ExtDividend, ExtDivisor); 568 } 569 Trunc = Builder.CreateTrunc(ExtRem, RemTy); 570 571 Rem->replaceAllUsesWith(Trunc); 572 Rem->dropAllReferences(); 573 Rem->eraseFromParent(); 574 575 return expandRemainder(cast<BinaryOperator>(ExtRem)); 576 } 577 578 /// Generate code to divide two integers of bitwidth up to 32 bits. Uses the 579 /// above routines and extends the inputs/truncates the outputs to operate 580 /// in 32 bits; that is, these routines are good for targets that have no 581 /// or very little support for smaller than 32 bit integer arithmetic. 582 /// 583 /// @brief Replace Div with emulation code. 584 bool llvm::expandDivisionUpTo32Bits(BinaryOperator *Div) { 585 assert((Div->getOpcode() == Instruction::SDiv || 586 Div->getOpcode() == Instruction::UDiv) && 587 "Trying to expand division from a non-division function"); 588 589 Type *DivTy = Div->getType(); 590 assert(!DivTy->isVectorTy() && "Div over vectors not supported"); 591 592 unsigned DivTyBitWidth = DivTy->getIntegerBitWidth(); 593 594 assert(DivTyBitWidth <= 32 && "Div of bitwidth greater than 32 not supported"); 595 596 if (DivTyBitWidth == 32) 597 return expandDivision(Div); 598 599 // If bitwidth smaller than 32 extend inputs, extend output and proceed 600 // with 32 bit division. 601 IRBuilder<> Builder(Div); 602 603 Value *ExtDividend; 604 Value *ExtDivisor; 605 Value *ExtDiv; 606 Value *Trunc; 607 Type *Int32Ty = Builder.getInt32Ty(); 608 609 if (Div->getOpcode() == Instruction::SDiv) { 610 ExtDividend = Builder.CreateSExt(Div->getOperand(0), Int32Ty); 611 ExtDivisor = Builder.CreateSExt(Div->getOperand(1), Int32Ty); 612 ExtDiv = Builder.CreateSDiv(ExtDividend, ExtDivisor); 613 } else { 614 ExtDividend = Builder.CreateZExt(Div->getOperand(0), Int32Ty); 615 ExtDivisor = Builder.CreateZExt(Div->getOperand(1), Int32Ty); 616 ExtDiv = Builder.CreateUDiv(ExtDividend, ExtDivisor); 617 } 618 Trunc = Builder.CreateTrunc(ExtDiv, DivTy); 619 620 Div->replaceAllUsesWith(Trunc); 621 Div->dropAllReferences(); 622 Div->eraseFromParent(); 623 624 return expandDivision(cast<BinaryOperator>(ExtDiv)); 625 } 626 627 /// Generate code to divide two integers of bitwidth up to 64 bits. Uses the 628 /// above routines and extends the inputs/truncates the outputs to operate 629 /// in 64 bits. 630 /// 631 /// @brief Replace Div with emulation code. 632 bool llvm::expandDivisionUpTo64Bits(BinaryOperator *Div) { 633 assert((Div->getOpcode() == Instruction::SDiv || 634 Div->getOpcode() == Instruction::UDiv) && 635 "Trying to expand division from a non-division function"); 636 637 Type *DivTy = Div->getType(); 638 assert(!DivTy->isVectorTy() && "Div over vectors not supported"); 639 640 unsigned DivTyBitWidth = DivTy->getIntegerBitWidth(); 641 642 assert(DivTyBitWidth <= 64 && 643 "Div of bitwidth greater than 64 not supported"); 644 645 if (DivTyBitWidth == 64) 646 return expandDivision(Div); 647 648 // If bitwidth smaller than 64 extend inputs, extend output and proceed 649 // with 64 bit division. 650 IRBuilder<> Builder(Div); 651 652 Value *ExtDividend; 653 Value *ExtDivisor; 654 Value *ExtDiv; 655 Value *Trunc; 656 Type *Int64Ty = Builder.getInt64Ty(); 657 658 if (Div->getOpcode() == Instruction::SDiv) { 659 ExtDividend = Builder.CreateSExt(Div->getOperand(0), Int64Ty); 660 ExtDivisor = Builder.CreateSExt(Div->getOperand(1), Int64Ty); 661 ExtDiv = Builder.CreateSDiv(ExtDividend, ExtDivisor); 662 } else { 663 ExtDividend = Builder.CreateZExt(Div->getOperand(0), Int64Ty); 664 ExtDivisor = Builder.CreateZExt(Div->getOperand(1), Int64Ty); 665 ExtDiv = Builder.CreateUDiv(ExtDividend, ExtDivisor); 666 } 667 Trunc = Builder.CreateTrunc(ExtDiv, DivTy); 668 669 Div->replaceAllUsesWith(Trunc); 670 Div->dropAllReferences(); 671 Div->eraseFromParent(); 672 673 return expandDivision(cast<BinaryOperator>(ExtDiv)); 674 } 675