Home | History | Annotate | Download | only in X86
      1 ; RUN: llc -mtriple=i686-linux -pre-RA-sched=source < %s | FileCheck %s
      2 
      3 declare void @error(i32 %i, i32 %a, i32 %b)
      4 
      5 define i32 @test_ifchains(i32 %i, i32* %a, i32 %b) {
      6 ; Test a chain of ifs, where the block guarded by the if is error handling code
      7 ; that is not expected to run.
      8 ; CHECK-LABEL: test_ifchains:
      9 ; CHECK: %entry
     10 ; CHECK-NOT: .p2align
     11 ; CHECK: %else1
     12 ; CHECK-NOT: .p2align
     13 ; CHECK: %else2
     14 ; CHECK-NOT: .p2align
     15 ; CHECK: %else3
     16 ; CHECK-NOT: .p2align
     17 ; CHECK: %else4
     18 ; CHECK-NOT: .p2align
     19 ; CHECK: %exit
     20 ; CHECK: %then1
     21 ; CHECK: %then2
     22 ; CHECK: %then3
     23 ; CHECK: %then4
     24 ; CHECK: %then5
     25 
     26 entry:
     27   %gep1 = getelementptr i32, i32* %a, i32 1
     28   %val1 = load i32, i32* %gep1
     29   %cond1 = icmp ugt i32 %val1, 1
     30   br i1 %cond1, label %then1, label %else1, !prof !0
     31 
     32 then1:
     33   call void @error(i32 %i, i32 1, i32 %b)
     34   br label %else1
     35 
     36 else1:
     37   %gep2 = getelementptr i32, i32* %a, i32 2
     38   %val2 = load i32, i32* %gep2
     39   %cond2 = icmp ugt i32 %val2, 2
     40   br i1 %cond2, label %then2, label %else2, !prof !0
     41 
     42 then2:
     43   call void @error(i32 %i, i32 1, i32 %b)
     44   br label %else2
     45 
     46 else2:
     47   %gep3 = getelementptr i32, i32* %a, i32 3
     48   %val3 = load i32, i32* %gep3
     49   %cond3 = icmp ugt i32 %val3, 3
     50   br i1 %cond3, label %then3, label %else3, !prof !0
     51 
     52 then3:
     53   call void @error(i32 %i, i32 1, i32 %b)
     54   br label %else3
     55 
     56 else3:
     57   %gep4 = getelementptr i32, i32* %a, i32 4
     58   %val4 = load i32, i32* %gep4
     59   %cond4 = icmp ugt i32 %val4, 4
     60   br i1 %cond4, label %then4, label %else4, !prof !0
     61 
     62 then4:
     63   call void @error(i32 %i, i32 1, i32 %b)
     64   br label %else4
     65 
     66 else4:
     67   %gep5 = getelementptr i32, i32* %a, i32 3
     68   %val5 = load i32, i32* %gep5
     69   %cond5 = icmp ugt i32 %val5, 3
     70   br i1 %cond5, label %then5, label %exit, !prof !0
     71 
     72 then5:
     73   call void @error(i32 %i, i32 1, i32 %b)
     74   br label %exit
     75 
     76 exit:
     77   ret i32 %b
     78 }
     79 
     80 define i32 @test_loop_cold_blocks(i32 %i, i32* %a) {
     81 ; Check that we sink cold loop blocks after the hot loop body.
     82 ; CHECK-LABEL: test_loop_cold_blocks:
     83 ; CHECK: %entry
     84 ; CHECK-NOT: .p2align
     85 ; CHECK: %unlikely1
     86 ; CHECK-NOT: .p2align
     87 ; CHECK: %unlikely2
     88 ; CHECK: .p2align
     89 ; CHECK: %body1
     90 ; CHECK: %body2
     91 ; CHECK: %body3
     92 ; CHECK: %exit
     93 
     94 entry:
     95   br label %body1
     96 
     97 body1:
     98   %iv = phi i32 [ 0, %entry ], [ %next, %body3 ]
     99   %base = phi i32 [ 0, %entry ], [ %sum, %body3 ]
    100   %unlikelycond1 = icmp slt i32 %base, 42
    101   br i1 %unlikelycond1, label %unlikely1, label %body2, !prof !0
    102 
    103 unlikely1:
    104   call void @error(i32 %i, i32 1, i32 %base)
    105   br label %body2
    106 
    107 body2:
    108   %unlikelycond2 = icmp sgt i32 %base, 21
    109   br i1 %unlikelycond2, label %unlikely2, label %body3, !prof !0
    110 
    111 unlikely2:
    112   call void @error(i32 %i, i32 2, i32 %base)
    113   br label %body3
    114 
    115 body3:
    116   %arrayidx = getelementptr inbounds i32, i32* %a, i32 %iv
    117   %0 = load i32, i32* %arrayidx
    118   %sum = add nsw i32 %0, %base
    119   %next = add i32 %iv, 1
    120   %exitcond = icmp eq i32 %next, %i
    121   br i1 %exitcond, label %exit, label %body1
    122 
    123 exit:
    124   ret i32 %sum
    125 }
    126 
    127 !0 = !{!"branch_weights", i32 4, i32 64}
    128 
    129 define i32 @test_loop_early_exits(i32 %i, i32* %a) {
    130 ; Check that we sink early exit blocks out of loop bodies.
    131 ; CHECK-LABEL: test_loop_early_exits:
    132 ; CHECK: %entry
    133 ; CHECK: %body1
    134 ; CHECK: %body2
    135 ; CHECK: %body3
    136 ; CHECK: %body4
    137 ; CHECK: %exit
    138 ; CHECK: %bail1
    139 ; CHECK: %bail2
    140 ; CHECK: %bail3
    141 
    142 entry:
    143   br label %body1
    144 
    145 body1:
    146   %iv = phi i32 [ 0, %entry ], [ %next, %body4 ]
    147   %base = phi i32 [ 0, %entry ], [ %sum, %body4 ]
    148   %bailcond1 = icmp eq i32 %base, 42
    149   br i1 %bailcond1, label %bail1, label %body2
    150 
    151 bail1:
    152   ret i32 -1
    153 
    154 body2:
    155   %bailcond2 = icmp eq i32 %base, 43
    156   br i1 %bailcond2, label %bail2, label %body3
    157 
    158 bail2:
    159   ret i32 -2
    160 
    161 body3:
    162   %bailcond3 = icmp eq i32 %base, 44
    163   br i1 %bailcond3, label %bail3, label %body4
    164 
    165 bail3:
    166   ret i32 -3
    167 
    168 body4:
    169   %arrayidx = getelementptr inbounds i32, i32* %a, i32 %iv
    170   %0 = load i32, i32* %arrayidx
    171   %sum = add nsw i32 %0, %base
    172   %next = add i32 %iv, 1
    173   %exitcond = icmp eq i32 %next, %i
    174   br i1 %exitcond, label %exit, label %body1
    175 
    176 exit:
    177   ret i32 %sum
    178 }
    179 
    180 define i32 @test_loop_rotate(i32 %i, i32* %a) {
    181 ; Check that we rotate conditional exits from the loop to the bottom of the
    182 ; loop, eliminating unconditional branches to the top.
    183 ; CHECK-LABEL: test_loop_rotate:
    184 ; CHECK: %entry
    185 ; CHECK: %body1
    186 ; CHECK: %body0
    187 ; CHECK: %exit
    188 
    189 entry:
    190   br label %body0
    191 
    192 body0:
    193   %iv = phi i32 [ 0, %entry ], [ %next, %body1 ]
    194   %base = phi i32 [ 0, %entry ], [ %sum, %body1 ]
    195   %next = add i32 %iv, 1
    196   %exitcond = icmp eq i32 %next, %i
    197   br i1 %exitcond, label %exit, label %body1
    198 
    199 body1:
    200   %arrayidx = getelementptr inbounds i32, i32* %a, i32 %iv
    201   %0 = load i32, i32* %arrayidx
    202   %sum = add nsw i32 %0, %base
    203   %bailcond1 = icmp eq i32 %sum, 42
    204   br label %body0
    205 
    206 exit:
    207   ret i32 %base
    208 }
    209 
    210 define i32 @test_no_loop_rotate(i32 %i, i32* %a) {
    211 ; Check that we don't try to rotate a loop which is already laid out with
    212 ; fallthrough opportunities into the top and out of the bottom.
    213 ; CHECK-LABEL: test_no_loop_rotate:
    214 ; CHECK: %entry
    215 ; CHECK: %body0
    216 ; CHECK: %body1
    217 ; CHECK: %exit
    218 
    219 entry:
    220   br label %body0
    221 
    222 body0:
    223   %iv = phi i32 [ 0, %entry ], [ %next, %body1 ]
    224   %base = phi i32 [ 0, %entry ], [ %sum, %body1 ]
    225   %arrayidx = getelementptr inbounds i32, i32* %a, i32 %iv
    226   %0 = load i32, i32* %arrayidx
    227   %sum = add nsw i32 %0, %base
    228   %bailcond1 = icmp eq i32 %sum, 42
    229   br i1 %bailcond1, label %exit, label %body1
    230 
    231 body1:
    232   %next = add i32 %iv, 1
    233   %exitcond = icmp eq i32 %next, %i
    234   br i1 %exitcond, label %exit, label %body0
    235 
    236 exit:
    237   ret i32 %base
    238 }
    239 
    240 define i32 @test_loop_align(i32 %i, i32* %a) {
    241 ; Check that we provide basic loop body alignment with the block placement
    242 ; pass.
    243 ; CHECK-LABEL: test_loop_align:
    244 ; CHECK: %entry
    245 ; CHECK: .p2align [[ALIGN:[0-9]+]],
    246 ; CHECK-NEXT: %body
    247 ; CHECK: %exit
    248 
    249 entry:
    250   br label %body
    251 
    252 body:
    253   %iv = phi i32 [ 0, %entry ], [ %next, %body ]
    254   %base = phi i32 [ 0, %entry ], [ %sum, %body ]
    255   %arrayidx = getelementptr inbounds i32, i32* %a, i32 %iv
    256   %0 = load i32, i32* %arrayidx
    257   %sum = add nsw i32 %0, %base
    258   %next = add i32 %iv, 1
    259   %exitcond = icmp eq i32 %next, %i
    260   br i1 %exitcond, label %exit, label %body
    261 
    262 exit:
    263   ret i32 %sum
    264 }
    265 
    266 define i32 @test_nested_loop_align(i32 %i, i32* %a, i32* %b) {
    267 ; Check that we provide nested loop body alignment.
    268 ; CHECK-LABEL: test_nested_loop_align:
    269 ; CHECK: %entry
    270 ; CHECK: .p2align [[ALIGN]],
    271 ; CHECK-NEXT: %loop.body.1
    272 ; CHECK: .p2align [[ALIGN]],
    273 ; CHECK-NEXT: %inner.loop.body
    274 ; CHECK-NOT: .p2align
    275 ; CHECK: %exit
    276 
    277 entry:
    278   br label %loop.body.1
    279 
    280 loop.body.1:
    281   %iv = phi i32 [ 0, %entry ], [ %next, %loop.body.2 ]
    282   %arrayidx = getelementptr inbounds i32, i32* %a, i32 %iv
    283   %bidx = load i32, i32* %arrayidx
    284   br label %inner.loop.body
    285 
    286 inner.loop.body:
    287   %inner.iv = phi i32 [ 0, %loop.body.1 ], [ %inner.next, %inner.loop.body ]
    288   %base = phi i32 [ 0, %loop.body.1 ], [ %sum, %inner.loop.body ]
    289   %scaled_idx = mul i32 %bidx, %iv
    290   %inner.arrayidx = getelementptr inbounds i32, i32* %b, i32 %scaled_idx
    291   %0 = load i32, i32* %inner.arrayidx
    292   %sum = add nsw i32 %0, %base
    293   %inner.next = add i32 %iv, 1
    294   %inner.exitcond = icmp eq i32 %inner.next, %i
    295   br i1 %inner.exitcond, label %loop.body.2, label %inner.loop.body
    296 
    297 loop.body.2:
    298   %next = add i32 %iv, 1
    299   %exitcond = icmp eq i32 %next, %i
    300   br i1 %exitcond, label %exit, label %loop.body.1
    301 
    302 exit:
    303   ret i32 %sum
    304 }
    305 
    306 define void @unnatural_cfg1() {
    307 ; Test that we can handle a loop with an inner unnatural loop at the end of
    308 ; a function. This is a gross CFG reduced out of the single source GCC.
    309 ; CHECK: unnatural_cfg1
    310 ; CHECK: %entry
    311 ; CHECK: %loop.body1
    312 ; CHECK: %loop.body2
    313 ; CHECK: %loop.body3
    314 
    315 entry:
    316   br label %loop.header
    317 
    318 loop.header:
    319   br label %loop.body1
    320 
    321 loop.body1:
    322   br i1 undef, label %loop.body3, label %loop.body2
    323 
    324 loop.body2:
    325   %ptr = load i32*, i32** undef, align 4
    326   br label %loop.body3
    327 
    328 loop.body3:
    329   %myptr = phi i32* [ %ptr2, %loop.body5 ], [ %ptr, %loop.body2 ], [ undef, %loop.body1 ]
    330   %bcmyptr = bitcast i32* %myptr to i32*
    331   %val = load i32, i32* %bcmyptr, align 4
    332   %comp = icmp eq i32 %val, 48
    333   br i1 %comp, label %loop.body4, label %loop.body5
    334 
    335 loop.body4:
    336   br i1 undef, label %loop.header, label %loop.body5
    337 
    338 loop.body5:
    339   %ptr2 = load i32*, i32** undef, align 4
    340   br label %loop.body3
    341 }
    342 
    343 define void @unnatural_cfg2() {
    344 ; Test that we can handle a loop with a nested natural loop *and* an unnatural
    345 ; loop. This was reduced from a crash on block placement when run over
    346 ; single-source GCC.
    347 ; CHECK: unnatural_cfg2
    348 ; CHECK: %entry
    349 ; CHECK: %loop.body1
    350 ; CHECK: %loop.body2
    351 ; CHECK: %loop.body3
    352 ; CHECK: %loop.inner1.begin
    353 ; The end block is folded with %loop.body3...
    354 ; CHECK-NOT: %loop.inner1.end
    355 ; CHECK: %loop.body4
    356 ; CHECK: %loop.inner2.begin
    357 ; The loop.inner2.end block is folded
    358 ; CHECK: %loop.header
    359 ; CHECK: %bail
    360 
    361 entry:
    362   br label %loop.header
    363 
    364 loop.header:
    365   %comp0 = icmp eq i32* undef, null
    366   br i1 %comp0, label %bail, label %loop.body1
    367 
    368 loop.body1:
    369   %val0 = load i32*, i32** undef, align 4
    370   br i1 undef, label %loop.body2, label %loop.inner1.begin
    371 
    372 loop.body2:
    373   br i1 undef, label %loop.body4, label %loop.body3
    374 
    375 loop.body3:
    376   %ptr1 = getelementptr inbounds i32, i32* %val0, i32 0
    377   %castptr1 = bitcast i32* %ptr1 to i32**
    378   %val1 = load i32*, i32** %castptr1, align 4
    379   br label %loop.inner1.begin
    380 
    381 loop.inner1.begin:
    382   %valphi = phi i32* [ %val2, %loop.inner1.end ], [ %val1, %loop.body3 ], [ %val0, %loop.body1 ]
    383   %castval = bitcast i32* %valphi to i32*
    384   %comp1 = icmp eq i32 undef, 48
    385   br i1 %comp1, label %loop.inner1.end, label %loop.body4
    386 
    387 loop.inner1.end:
    388   %ptr2 = getelementptr inbounds i32, i32* %valphi, i32 0
    389   %castptr2 = bitcast i32* %ptr2 to i32**
    390   %val2 = load i32*, i32** %castptr2, align 4
    391   br label %loop.inner1.begin
    392 
    393 loop.body4.dead:
    394   br label %loop.body4
    395 
    396 loop.body4:
    397   %comp2 = icmp ult i32 undef, 3
    398   br i1 %comp2, label %loop.inner2.begin, label %loop.end
    399 
    400 loop.inner2.begin:
    401   br i1 false, label %loop.end, label %loop.inner2.end
    402 
    403 loop.inner2.end:
    404   %comp3 = icmp eq i32 undef, 1769472
    405   br i1 %comp3, label %loop.end, label %loop.inner2.begin
    406 
    407 loop.end:
    408   br label %loop.header
    409 
    410 bail:
    411   unreachable
    412 }
    413 
    414 define i32 @problematic_switch() {
    415 ; This function's CFG caused overlow in the machine branch probability
    416 ; calculation, triggering asserts. Make sure we don't crash on it.
    417 ; CHECK: problematic_switch
    418 
    419 entry:
    420   switch i32 undef, label %exit [
    421     i32 879, label %bogus
    422     i32 877, label %step
    423     i32 876, label %step
    424     i32 875, label %step
    425     i32 874, label %step
    426     i32 873, label %step
    427     i32 872, label %step
    428     i32 868, label %step
    429     i32 867, label %step
    430     i32 866, label %step
    431     i32 861, label %step
    432     i32 860, label %step
    433     i32 856, label %step
    434     i32 855, label %step
    435     i32 854, label %step
    436     i32 831, label %step
    437     i32 830, label %step
    438     i32 829, label %step
    439     i32 828, label %step
    440     i32 815, label %step
    441     i32 814, label %step
    442     i32 811, label %step
    443     i32 806, label %step
    444     i32 805, label %step
    445     i32 804, label %step
    446     i32 803, label %step
    447     i32 802, label %step
    448     i32 801, label %step
    449     i32 800, label %step
    450     i32 799, label %step
    451     i32 798, label %step
    452     i32 797, label %step
    453     i32 796, label %step
    454     i32 795, label %step
    455   ]
    456 bogus:
    457   unreachable
    458 step:
    459   br label %exit
    460 exit:
    461   %merge = phi i32 [ 3, %step ], [ 6, %entry ]
    462   ret i32 %merge
    463 }
    464 
    465 define void @fpcmp_unanalyzable_branch(i1 %cond) {
    466 ; This function's CFG contains an once-unanalyzable branch (une on floating
    467 ; points). As now it becomes analyzable, we should get best layout in which each
    468 ; edge in 'entry' -> 'entry.if.then_crit_edge' -> 'if.then' -> 'if.end' is
    469 ; fall-through.
    470 ; CHECK-LABEL: fpcmp_unanalyzable_branch:
    471 ; CHECK:       # BB#0: # %entry
    472 ; CHECK:       # BB#1: # %entry.if.then_crit_edge
    473 ; CHECK:       .LBB10_4: # %if.then
    474 ; CHECK:       .LBB10_5: # %if.end
    475 ; CHECK:       # BB#3: # %exit
    476 ; CHECK:       jne .LBB10_4
    477 ; CHECK-NEXT:  jnp .LBB10_5
    478 ; CHECK-NEXT:  jmp .LBB10_4
    479 
    480 entry:
    481 ; Note that this branch must be strongly biased toward
    482 ; 'entry.if.then_crit_edge' to ensure that we would try to form a chain for
    483 ; 'entry' -> 'entry.if.then_crit_edge' -> 'if.then' -> 'if.end'.
    484   br i1 %cond, label %entry.if.then_crit_edge, label %lor.lhs.false, !prof !1
    485 
    486 entry.if.then_crit_edge:
    487   %.pre14 = load i8, i8* undef, align 1
    488   br label %if.then
    489 
    490 lor.lhs.false:
    491   br i1 undef, label %if.end, label %exit
    492 
    493 exit:
    494   %cmp.i = fcmp une double 0.000000e+00, undef
    495   br i1 %cmp.i, label %if.then, label %if.end, !prof !3
    496 
    497 if.then:
    498   %0 = phi i8 [ %.pre14, %entry.if.then_crit_edge ], [ undef, %exit ]
    499   %1 = and i8 %0, 1
    500   store i8 %1, i8* undef, align 4
    501   br label %if.end
    502 
    503 if.end:
    504   ret void
    505 }
    506 
    507 !1 = !{!"branch_weights", i32 1000, i32 1}
    508 !3 = !{!"branch_weights", i32 1, i32 1000}
    509 
    510 declare i32 @f()
    511 declare i32 @g()
    512 declare i32 @h(i32 %x)
    513 
    514 define i32 @test_global_cfg_break_profitability() {
    515 ; Check that our metrics for the profitability of a CFG break are global rather
    516 ; than local. A successor may be very hot, but if the current block isn't, it
    517 ; doesn't matter. Within this test the 'then' block is slightly warmer than the
    518 ; 'else' block, but not nearly enough to merit merging it with the exit block
    519 ; even though the probability of 'then' branching to the 'exit' block is very
    520 ; high.
    521 ; CHECK: test_global_cfg_break_profitability
    522 ; CHECK: calll {{_?}}f
    523 ; CHECK: calll {{_?}}g
    524 ; CHECK: calll {{_?}}h
    525 ; CHECK: ret
    526 
    527 entry:
    528   br i1 undef, label %then, label %else, !prof !2
    529 
    530 then:
    531   %then.result = call i32 @f()
    532   br label %exit
    533 
    534 else:
    535   %else.result = call i32 @g()
    536   br label %exit
    537 
    538 exit:
    539   %result = phi i32 [ %then.result, %then ], [ %else.result, %else ]
    540   %result2 = call i32 @h(i32 %result)
    541   ret i32 %result
    542 }
    543 
    544 !2 = !{!"branch_weights", i32 3, i32 1}
    545 
    546 declare i32 @__gxx_personality_v0(...)
    547 
    548 define void @test_eh_lpad_successor() personality i8* bitcast (i32 (...)* @__gxx_personality_v0 to i8*) {
    549 ; Some times the landing pad ends up as the first successor of an invoke block.
    550 ; When this happens, a strange result used to fall out of updateTerminators: we
    551 ; didn't correctly locate the fallthrough successor, assuming blindly that the
    552 ; first one was the fallthrough successor. As a result, we would add an
    553 ; erroneous jump to the landing pad thinking *that* was the default successor.
    554 ; CHECK: test_eh_lpad_successor
    555 ; CHECK: %entry
    556 ; CHECK-NOT: jmp
    557 ; CHECK: %loop
    558 
    559 entry:
    560   invoke i32 @f() to label %preheader unwind label %lpad
    561 
    562 preheader:
    563   br label %loop
    564 
    565 lpad:
    566   %lpad.val = landingpad { i8*, i32 }
    567           cleanup
    568   resume { i8*, i32 } %lpad.val
    569 
    570 loop:
    571   br label %loop
    572 }
    573 
    574 declare void @fake_throw() noreturn
    575 
    576 define void @test_eh_throw() personality i8* bitcast (i32 (...)* @__gxx_personality_v0 to i8*) {
    577 ; For blocks containing a 'throw' (or similar functionality), we have
    578 ; a no-return invoke. In this case, only EH successors will exist, and
    579 ; fallthrough simply won't occur. Make sure we don't crash trying to update
    580 ; terminators for such constructs.
    581 ;
    582 ; CHECK: test_eh_throw
    583 ; CHECK: %entry
    584 ; CHECK: %cleanup
    585 
    586 entry:
    587   invoke void @fake_throw() to label %continue unwind label %cleanup
    588 
    589 continue:
    590   unreachable
    591 
    592 cleanup:
    593   %0 = landingpad { i8*, i32 }
    594           cleanup
    595   unreachable
    596 }
    597 
    598 define void @test_unnatural_cfg_backwards_inner_loop() {
    599 ; Test that when we encounter an unnatural CFG structure after having formed
    600 ; a chain for an inner loop which happened to be laid out backwards we don't
    601 ; attempt to merge onto the wrong end of the inner loop just because we find it
    602 ; first. This was reduced from a crasher in GCC's single source.
    603 ;
    604 ; CHECK: test_unnatural_cfg_backwards_inner_loop
    605 ; CHECK: %entry
    606 ; CHECK: %loop2b
    607 ; CHECK: %loop1
    608 
    609 entry:
    610   br i1 undef, label %loop2a, label %body
    611 
    612 body:
    613   br label %loop2a
    614 
    615 loop1:
    616   %next.load = load i32*, i32** undef
    617   br i1 %comp.a, label %loop2a, label %loop2b
    618 
    619 loop2a:
    620   %var = phi i32* [ null, %entry ], [ null, %body ], [ %next.phi, %loop1 ]
    621   %next.var = phi i32* [ null, %entry ], [ undef, %body ], [ %next.load, %loop1 ]
    622   %comp.a = icmp eq i32* %var, null
    623   br label %loop3
    624 
    625 loop2b:
    626   %gep = getelementptr inbounds i32, i32* %var.phi, i32 0
    627   %next.ptr = bitcast i32* %gep to i32**
    628   store i32* %next.phi, i32** %next.ptr
    629   br label %loop3
    630 
    631 loop3:
    632   %var.phi = phi i32* [ %next.phi, %loop2b ], [ %var, %loop2a ]
    633   %next.phi = phi i32* [ %next.load, %loop2b ], [ %next.var, %loop2a ]
    634   br label %loop1
    635 }
    636 
    637 define void @unanalyzable_branch_to_loop_header() {
    638 ; Ensure that we can handle unanalyzable branches into loop headers. We
    639 ; pre-form chains for unanalyzable branches, and will find the tail end of that
    640 ; at the start of the loop. This function uses floating point comparison
    641 ; fallthrough because that happens to always produce unanalyzable branches on
    642 ; x86.
    643 ;
    644 ; CHECK: unanalyzable_branch_to_loop_header
    645 ; CHECK: %entry
    646 ; CHECK: %loop
    647 ; CHECK: %exit
    648 
    649 entry:
    650   %cmp = fcmp une double 0.000000e+00, undef
    651   br i1 %cmp, label %loop, label %exit
    652 
    653 loop:
    654   %cond = icmp eq i8 undef, 42
    655   br i1 %cond, label %exit, label %loop
    656 
    657 exit:
    658   ret void
    659 }
    660 
    661 define void @unanalyzable_branch_to_best_succ(i1 %cond) {
    662 ; Ensure that we can handle unanalyzable branches where the destination block
    663 ; gets selected as the optimal successor to merge.
    664 ;
    665 ; This branch is now analyzable and hence the destination block becomes the
    666 ; hotter one. The right order is entry->bar->exit->foo.
    667 ;
    668 ; CHECK: unanalyzable_branch_to_best_succ
    669 ; CHECK: %entry
    670 ; CHECK: %bar
    671 ; CHECK: %exit
    672 ; CHECK: %foo
    673 
    674 entry:
    675   ; Bias this branch toward bar to ensure we form that chain.
    676   br i1 %cond, label %bar, label %foo, !prof !1
    677 
    678 foo:
    679   %cmp = fcmp une double 0.000000e+00, undef
    680   br i1 %cmp, label %bar, label %exit
    681 
    682 bar:
    683   call i32 @f()
    684   br label %exit
    685 
    686 exit:
    687   ret void
    688 }
    689 
    690 define void @unanalyzable_branch_to_free_block(float %x) {
    691 ; Ensure that we can handle unanalyzable branches where the destination block
    692 ; gets selected as the best free block in the CFG.
    693 ;
    694 ; CHECK: unanalyzable_branch_to_free_block
    695 ; CHECK: %entry
    696 ; CHECK: %a
    697 ; CHECK: %b
    698 ; CHECK: %c
    699 ; CHECK: %exit
    700 
    701 entry:
    702   br i1 undef, label %a, label %b
    703 
    704 a:
    705   call i32 @f()
    706   br label %c
    707 
    708 b:
    709   %cmp = fcmp une float %x, undef
    710   br i1 %cmp, label %c, label %exit
    711 
    712 c:
    713   call i32 @g()
    714   br label %exit
    715 
    716 exit:
    717   ret void
    718 }
    719 
    720 define void @many_unanalyzable_branches() {
    721 ; Ensure that we don't crash as we're building up many unanalyzable branches,
    722 ; blocks, and loops.
    723 ;
    724 ; CHECK: many_unanalyzable_branches
    725 ; CHECK: %entry
    726 ; CHECK: %exit
    727 
    728 entry:
    729   br label %0
    730 
    731   %val0 = load volatile float, float* undef
    732   %cmp0 = fcmp une float %val0, undef
    733   br i1 %cmp0, label %1, label %0
    734   %val1 = load volatile float, float* undef
    735   %cmp1 = fcmp une float %val1, undef
    736   br i1 %cmp1, label %2, label %1
    737   %val2 = load volatile float, float* undef
    738   %cmp2 = fcmp une float %val2, undef
    739   br i1 %cmp2, label %3, label %2
    740   %val3 = load volatile float, float* undef
    741   %cmp3 = fcmp une float %val3, undef
    742   br i1 %cmp3, label %4, label %3
    743   %val4 = load volatile float, float* undef
    744   %cmp4 = fcmp une float %val4, undef
    745   br i1 %cmp4, label %5, label %4
    746   %val5 = load volatile float, float* undef
    747   %cmp5 = fcmp une float %val5, undef
    748   br i1 %cmp5, label %6, label %5
    749   %val6 = load volatile float, float* undef
    750   %cmp6 = fcmp une float %val6, undef
    751   br i1 %cmp6, label %7, label %6
    752   %val7 = load volatile float, float* undef
    753   %cmp7 = fcmp une float %val7, undef
    754   br i1 %cmp7, label %8, label %7
    755   %val8 = load volatile float, float* undef
    756   %cmp8 = fcmp une float %val8, undef
    757   br i1 %cmp8, label %9, label %8
    758   %val9 = load volatile float, float* undef
    759   %cmp9 = fcmp une float %val9, undef
    760   br i1 %cmp9, label %10, label %9
    761   %val10 = load volatile float, float* undef
    762   %cmp10 = fcmp une float %val10, undef
    763   br i1 %cmp10, label %11, label %10
    764   %val11 = load volatile float, float* undef
    765   %cmp11 = fcmp une float %val11, undef
    766   br i1 %cmp11, label %12, label %11
    767   %val12 = load volatile float, float* undef
    768   %cmp12 = fcmp une float %val12, undef
    769   br i1 %cmp12, label %13, label %12
    770   %val13 = load volatile float, float* undef
    771   %cmp13 = fcmp une float %val13, undef
    772   br i1 %cmp13, label %14, label %13
    773   %val14 = load volatile float, float* undef
    774   %cmp14 = fcmp une float %val14, undef
    775   br i1 %cmp14, label %15, label %14
    776   %val15 = load volatile float, float* undef
    777   %cmp15 = fcmp une float %val15, undef
    778   br i1 %cmp15, label %16, label %15
    779   %val16 = load volatile float, float* undef
    780   %cmp16 = fcmp une float %val16, undef
    781   br i1 %cmp16, label %17, label %16
    782   %val17 = load volatile float, float* undef
    783   %cmp17 = fcmp une float %val17, undef
    784   br i1 %cmp17, label %18, label %17
    785   %val18 = load volatile float, float* undef
    786   %cmp18 = fcmp une float %val18, undef
    787   br i1 %cmp18, label %19, label %18
    788   %val19 = load volatile float, float* undef
    789   %cmp19 = fcmp une float %val19, undef
    790   br i1 %cmp19, label %20, label %19
    791   %val20 = load volatile float, float* undef
    792   %cmp20 = fcmp une float %val20, undef
    793   br i1 %cmp20, label %21, label %20
    794   %val21 = load volatile float, float* undef
    795   %cmp21 = fcmp une float %val21, undef
    796   br i1 %cmp21, label %22, label %21
    797   %val22 = load volatile float, float* undef
    798   %cmp22 = fcmp une float %val22, undef
    799   br i1 %cmp22, label %23, label %22
    800   %val23 = load volatile float, float* undef
    801   %cmp23 = fcmp une float %val23, undef
    802   br i1 %cmp23, label %24, label %23
    803   %val24 = load volatile float, float* undef
    804   %cmp24 = fcmp une float %val24, undef
    805   br i1 %cmp24, label %25, label %24
    806   %val25 = load volatile float, float* undef
    807   %cmp25 = fcmp une float %val25, undef
    808   br i1 %cmp25, label %26, label %25
    809   %val26 = load volatile float, float* undef
    810   %cmp26 = fcmp une float %val26, undef
    811   br i1 %cmp26, label %27, label %26
    812   %val27 = load volatile float, float* undef
    813   %cmp27 = fcmp une float %val27, undef
    814   br i1 %cmp27, label %28, label %27
    815   %val28 = load volatile float, float* undef
    816   %cmp28 = fcmp une float %val28, undef
    817   br i1 %cmp28, label %29, label %28
    818   %val29 = load volatile float, float* undef
    819   %cmp29 = fcmp une float %val29, undef
    820   br i1 %cmp29, label %30, label %29
    821   %val30 = load volatile float, float* undef
    822   %cmp30 = fcmp une float %val30, undef
    823   br i1 %cmp30, label %31, label %30
    824   %val31 = load volatile float, float* undef
    825   %cmp31 = fcmp une float %val31, undef
    826   br i1 %cmp31, label %32, label %31
    827   %val32 = load volatile float, float* undef
    828   %cmp32 = fcmp une float %val32, undef
    829   br i1 %cmp32, label %33, label %32
    830   %val33 = load volatile float, float* undef
    831   %cmp33 = fcmp une float %val33, undef
    832   br i1 %cmp33, label %34, label %33
    833   %val34 = load volatile float, float* undef
    834   %cmp34 = fcmp une float %val34, undef
    835   br i1 %cmp34, label %35, label %34
    836   %val35 = load volatile float, float* undef
    837   %cmp35 = fcmp une float %val35, undef
    838   br i1 %cmp35, label %36, label %35
    839   %val36 = load volatile float, float* undef
    840   %cmp36 = fcmp une float %val36, undef
    841   br i1 %cmp36, label %37, label %36
    842   %val37 = load volatile float, float* undef
    843   %cmp37 = fcmp une float %val37, undef
    844   br i1 %cmp37, label %38, label %37
    845   %val38 = load volatile float, float* undef
    846   %cmp38 = fcmp une float %val38, undef
    847   br i1 %cmp38, label %39, label %38
    848   %val39 = load volatile float, float* undef
    849   %cmp39 = fcmp une float %val39, undef
    850   br i1 %cmp39, label %40, label %39
    851   %val40 = load volatile float, float* undef
    852   %cmp40 = fcmp une float %val40, undef
    853   br i1 %cmp40, label %41, label %40
    854   %val41 = load volatile float, float* undef
    855   %cmp41 = fcmp une float %val41, undef
    856   br i1 %cmp41, label %42, label %41
    857   %val42 = load volatile float, float* undef
    858   %cmp42 = fcmp une float %val42, undef
    859   br i1 %cmp42, label %43, label %42
    860   %val43 = load volatile float, float* undef
    861   %cmp43 = fcmp une float %val43, undef
    862   br i1 %cmp43, label %44, label %43
    863   %val44 = load volatile float, float* undef
    864   %cmp44 = fcmp une float %val44, undef
    865   br i1 %cmp44, label %45, label %44
    866   %val45 = load volatile float, float* undef
    867   %cmp45 = fcmp une float %val45, undef
    868   br i1 %cmp45, label %46, label %45
    869   %val46 = load volatile float, float* undef
    870   %cmp46 = fcmp une float %val46, undef
    871   br i1 %cmp46, label %47, label %46
    872   %val47 = load volatile float, float* undef
    873   %cmp47 = fcmp une float %val47, undef
    874   br i1 %cmp47, label %48, label %47
    875   %val48 = load volatile float, float* undef
    876   %cmp48 = fcmp une float %val48, undef
    877   br i1 %cmp48, label %49, label %48
    878   %val49 = load volatile float, float* undef
    879   %cmp49 = fcmp une float %val49, undef
    880   br i1 %cmp49, label %50, label %49
    881   %val50 = load volatile float, float* undef
    882   %cmp50 = fcmp une float %val50, undef
    883   br i1 %cmp50, label %51, label %50
    884   %val51 = load volatile float, float* undef
    885   %cmp51 = fcmp une float %val51, undef
    886   br i1 %cmp51, label %52, label %51
    887   %val52 = load volatile float, float* undef
    888   %cmp52 = fcmp une float %val52, undef
    889   br i1 %cmp52, label %53, label %52
    890   %val53 = load volatile float, float* undef
    891   %cmp53 = fcmp une float %val53, undef
    892   br i1 %cmp53, label %54, label %53
    893   %val54 = load volatile float, float* undef
    894   %cmp54 = fcmp une float %val54, undef
    895   br i1 %cmp54, label %55, label %54
    896   %val55 = load volatile float, float* undef
    897   %cmp55 = fcmp une float %val55, undef
    898   br i1 %cmp55, label %56, label %55
    899   %val56 = load volatile float, float* undef
    900   %cmp56 = fcmp une float %val56, undef
    901   br i1 %cmp56, label %57, label %56
    902   %val57 = load volatile float, float* undef
    903   %cmp57 = fcmp une float %val57, undef
    904   br i1 %cmp57, label %58, label %57
    905   %val58 = load volatile float, float* undef
    906   %cmp58 = fcmp une float %val58, undef
    907   br i1 %cmp58, label %59, label %58
    908   %val59 = load volatile float, float* undef
    909   %cmp59 = fcmp une float %val59, undef
    910   br i1 %cmp59, label %60, label %59
    911   %val60 = load volatile float, float* undef
    912   %cmp60 = fcmp une float %val60, undef
    913   br i1 %cmp60, label %61, label %60
    914   %val61 = load volatile float, float* undef
    915   %cmp61 = fcmp une float %val61, undef
    916   br i1 %cmp61, label %62, label %61
    917   %val62 = load volatile float, float* undef
    918   %cmp62 = fcmp une float %val62, undef
    919   br i1 %cmp62, label %63, label %62
    920   %val63 = load volatile float, float* undef
    921   %cmp63 = fcmp une float %val63, undef
    922   br i1 %cmp63, label %64, label %63
    923   %val64 = load volatile float, float* undef
    924   %cmp64 = fcmp une float %val64, undef
    925   br i1 %cmp64, label %65, label %64
    926 
    927   br label %exit
    928 exit:
    929   ret void
    930 }
    931 
    932 define void @benchmark_heapsort(i32 %n, double* nocapture %ra) {
    933 ; This test case comes from the heapsort benchmark, and exemplifies several
    934 ; important aspects to block placement in the presence of loops:
    935 ; 1) Loop rotation needs to *ensure* that the desired exiting edge can be
    936 ;    a fallthrough.
    937 ; 2) The exiting edge from the loop which is rotated to be laid out at the
    938 ;    bottom of the loop needs to be exiting into the nearest enclosing loop (to
    939 ;    which there is an exit). Otherwise, we force that enclosing loop into
    940 ;    strange layouts that are siginificantly less efficient, often times maing
    941 ;    it discontiguous.
    942 ;
    943 ; CHECK: @benchmark_heapsort
    944 ; CHECK: %entry
    945 ; First rotated loop top.
    946 ; CHECK: .p2align
    947 ; CHECK: %while.end
    948 ; CHECK: %for.cond
    949 ; CHECK: %if.then
    950 ; CHECK: %if.else
    951 ; CHECK: %if.end10
    952 ; Second rotated loop top
    953 ; CHECK: .p2align
    954 ; CHECK: %if.then24
    955 ; CHECK: %while.cond.outer
    956 ; Third rotated loop top
    957 ; CHECK: .p2align
    958 ; CHECK: %while.cond
    959 ; CHECK: %while.body
    960 ; CHECK: %land.lhs.true
    961 ; CHECK: %if.then19
    962 ; CHECK: %if.end20
    963 ; CHECK: %if.then8
    964 ; CHECK: ret
    965 
    966 entry:
    967   %shr = ashr i32 %n, 1
    968   %add = add nsw i32 %shr, 1
    969   %arrayidx3 = getelementptr inbounds double, double* %ra, i64 1
    970   br label %for.cond
    971 
    972 for.cond:
    973   %ir.0 = phi i32 [ %n, %entry ], [ %ir.1, %while.end ]
    974   %l.0 = phi i32 [ %add, %entry ], [ %l.1, %while.end ]
    975   %cmp = icmp sgt i32 %l.0, 1
    976   br i1 %cmp, label %if.then, label %if.else
    977 
    978 if.then:
    979   %dec = add nsw i32 %l.0, -1
    980   %idxprom = sext i32 %dec to i64
    981   %arrayidx = getelementptr inbounds double, double* %ra, i64 %idxprom
    982   %0 = load double, double* %arrayidx, align 8
    983   br label %if.end10
    984 
    985 if.else:
    986   %idxprom1 = sext i32 %ir.0 to i64
    987   %arrayidx2 = getelementptr inbounds double, double* %ra, i64 %idxprom1
    988   %1 = load double, double* %arrayidx2, align 8
    989   %2 = load double, double* %arrayidx3, align 8
    990   store double %2, double* %arrayidx2, align 8
    991   %dec6 = add nsw i32 %ir.0, -1
    992   %cmp7 = icmp eq i32 %dec6, 1
    993   br i1 %cmp7, label %if.then8, label %if.end10
    994 
    995 if.then8:
    996   store double %1, double* %arrayidx3, align 8
    997   ret void
    998 
    999 if.end10:
   1000   %ir.1 = phi i32 [ %ir.0, %if.then ], [ %dec6, %if.else ]
   1001   %l.1 = phi i32 [ %dec, %if.then ], [ %l.0, %if.else ]
   1002   %rra.0 = phi double [ %0, %if.then ], [ %1, %if.else ]
   1003   %add31 = add nsw i32 %ir.1, 1
   1004   br label %while.cond.outer
   1005 
   1006 while.cond.outer:
   1007   %j.0.ph.in = phi i32 [ %l.1, %if.end10 ], [ %j.1, %if.then24 ]
   1008   %j.0.ph = shl i32 %j.0.ph.in, 1
   1009   br label %while.cond
   1010 
   1011 while.cond:
   1012   %j.0 = phi i32 [ %add31, %if.end20 ], [ %j.0.ph, %while.cond.outer ]
   1013   %cmp11 = icmp sgt i32 %j.0, %ir.1
   1014   br i1 %cmp11, label %while.end, label %while.body
   1015 
   1016 while.body:
   1017   %cmp12 = icmp slt i32 %j.0, %ir.1
   1018   br i1 %cmp12, label %land.lhs.true, label %if.end20
   1019 
   1020 land.lhs.true:
   1021   %idxprom13 = sext i32 %j.0 to i64
   1022   %arrayidx14 = getelementptr inbounds double, double* %ra, i64 %idxprom13
   1023   %3 = load double, double* %arrayidx14, align 8
   1024   %add15 = add nsw i32 %j.0, 1
   1025   %idxprom16 = sext i32 %add15 to i64
   1026   %arrayidx17 = getelementptr inbounds double, double* %ra, i64 %idxprom16
   1027   %4 = load double, double* %arrayidx17, align 8
   1028   %cmp18 = fcmp olt double %3, %4
   1029   br i1 %cmp18, label %if.then19, label %if.end20
   1030 
   1031 if.then19:
   1032   br label %if.end20
   1033 
   1034 if.end20:
   1035   %j.1 = phi i32 [ %add15, %if.then19 ], [ %j.0, %land.lhs.true ], [ %j.0, %while.body ]
   1036   %idxprom21 = sext i32 %j.1 to i64
   1037   %arrayidx22 = getelementptr inbounds double, double* %ra, i64 %idxprom21
   1038   %5 = load double, double* %arrayidx22, align 8
   1039   %cmp23 = fcmp olt double %rra.0, %5
   1040   br i1 %cmp23, label %if.then24, label %while.cond
   1041 
   1042 if.then24:
   1043   %idxprom27 = sext i32 %j.0.ph.in to i64
   1044   %arrayidx28 = getelementptr inbounds double, double* %ra, i64 %idxprom27
   1045   store double %5, double* %arrayidx28, align 8
   1046   br label %while.cond.outer
   1047 
   1048 while.end:
   1049   %idxprom33 = sext i32 %j.0.ph.in to i64
   1050   %arrayidx34 = getelementptr inbounds double, double* %ra, i64 %idxprom33
   1051   store double %rra.0, double* %arrayidx34, align 8
   1052   br label %for.cond
   1053 }
   1054 
   1055 declare void @cold_function() cold
   1056 
   1057 define i32 @test_cold_calls(i32* %a) {
   1058 ; Test that edges to blocks post-dominated by cold calls are
   1059 ; marked as not expected to be taken.  They should be laid out
   1060 ; at the bottom.
   1061 ; CHECK-LABEL: test_cold_calls:
   1062 ; CHECK: %entry
   1063 ; CHECK: %else
   1064 ; CHECK: %exit
   1065 ; CHECK: %then
   1066 
   1067 entry:
   1068   %gep1 = getelementptr i32, i32* %a, i32 1
   1069   %val1 = load i32, i32* %gep1
   1070   %cond1 = icmp ugt i32 %val1, 1
   1071   br i1 %cond1, label %then, label %else
   1072 
   1073 then:
   1074   call void @cold_function()
   1075   br label %exit
   1076 
   1077 else:
   1078   %gep2 = getelementptr i32, i32* %a, i32 2
   1079   %val2 = load i32, i32* %gep2
   1080   br label %exit
   1081 
   1082 exit:
   1083   %ret = phi i32 [ %val1, %then ], [ %val2, %else ]
   1084   ret i32 %ret
   1085 }
   1086 
   1087 ; Make sure we put landingpads out of the way.
   1088 declare i32 @pers(...)
   1089 
   1090 declare i32 @foo();
   1091 
   1092 declare i32 @bar();
   1093 
   1094 define i32 @test_lp(i32 %a) personality i32 (...)* @pers {
   1095 ; CHECK-LABEL: test_lp:
   1096 ; CHECK: %entry
   1097 ; CHECK: %hot
   1098 ; CHECK: %then
   1099 ; CHECK: %cold
   1100 ; CHECK: %coldlp
   1101 ; CHECK: %hotlp
   1102 ; CHECK: %lpret
   1103 entry:
   1104   %0 = icmp sgt i32 %a, 1
   1105   br i1 %0, label %hot, label %cold, !prof !4
   1106 
   1107 hot:
   1108   %1 = invoke i32 @foo()
   1109           to label %then unwind label %hotlp
   1110 
   1111 cold:
   1112   %2 = invoke i32 @bar()
   1113           to label %then unwind label %coldlp
   1114 
   1115 then:
   1116   %3 = phi i32 [ %1, %hot ], [ %2, %cold ]
   1117   ret i32 %3
   1118 
   1119 hotlp:
   1120   %4 = landingpad { i8*, i32 }
   1121           cleanup
   1122   br label %lpret
   1123 
   1124 coldlp:
   1125   %5 = landingpad { i8*, i32 }
   1126           cleanup
   1127   br label %lpret
   1128 
   1129 lpret:
   1130   %6 = phi i32 [-1, %hotlp], [-2, %coldlp]
   1131   %7 = add i32 %6, 42
   1132   ret i32 %7
   1133 }
   1134 
   1135 !4 = !{!"branch_weights", i32 65536, i32 0}
   1136 
   1137 ; Make sure that ehpad are scheduled from the least probable one
   1138 ; to the most probable one. See selectBestCandidateBlock as to why.
   1139 declare void @clean();
   1140 
   1141 define void @test_flow_unwind() personality i32 (...)* @pers {
   1142 ; CHECK-LABEL: test_flow_unwind:
   1143 ; CHECK: %entry
   1144 ; CHECK: %then
   1145 ; CHECK: %exit
   1146 ; CHECK: %innerlp
   1147 ; CHECK: %outerlp
   1148 ; CHECK: %outercleanup
   1149 entry:
   1150   %0 = invoke i32 @foo()
   1151           to label %then unwind label %outerlp
   1152 
   1153 then:
   1154   %1 = invoke i32 @bar()
   1155           to label %exit unwind label %innerlp
   1156 
   1157 exit:
   1158   ret void
   1159 
   1160 innerlp:
   1161   %2 = landingpad { i8*, i32 }
   1162           cleanup
   1163   br label %innercleanup
   1164 
   1165 outerlp:
   1166   %3 = landingpad { i8*, i32 }
   1167           cleanup
   1168   br label %outercleanup
   1169 
   1170 outercleanup:
   1171   %4 = phi { i8*, i32 } [%2, %innercleanup], [%3, %outerlp]
   1172   call void @clean()
   1173   resume { i8*, i32 } %4
   1174 
   1175 innercleanup:
   1176   call void @clean()
   1177   br label %outercleanup
   1178 }
   1179 
   1180 declare void @hot_function()
   1181 
   1182 define void @test_hot_branch(i32* %a) {
   1183 ; Test that a hot branch that has a probability a little larger than 80% will
   1184 ; break CFG constrains when doing block placement.
   1185 ; CHECK-LABEL: test_hot_branch:
   1186 ; CHECK: %entry
   1187 ; CHECK: %then
   1188 ; CHECK: %exit
   1189 ; CHECK: %else
   1190 
   1191 entry:
   1192   %gep1 = getelementptr i32, i32* %a, i32 1
   1193   %val1 = load i32, i32* %gep1
   1194   %cond1 = icmp ugt i32 %val1, 1
   1195   br i1 %cond1, label %then, label %else, !prof !5
   1196 
   1197 then:
   1198   call void @hot_function()
   1199   br label %exit
   1200 
   1201 else:
   1202   call void @cold_function()
   1203   br label %exit
   1204 
   1205 exit:
   1206   call void @hot_function()
   1207   ret void
   1208 }
   1209 
   1210 define void @test_hot_branch_profile(i32* %a) !prof !6 {
   1211 ; Test that a hot branch that has a probability a little larger than 50% will
   1212 ; break CFG constrains when doing block placement when profile is available.
   1213 ; CHECK-LABEL: test_hot_branch_profile:
   1214 ; CHECK: %entry
   1215 ; CHECK: %then
   1216 ; CHECK: %exit
   1217 ; CHECK: %else
   1218 
   1219 entry:
   1220   %gep1 = getelementptr i32, i32* %a, i32 1
   1221   %val1 = load i32, i32* %gep1
   1222   %cond1 = icmp ugt i32 %val1, 1
   1223   br i1 %cond1, label %then, label %else, !prof !7
   1224 
   1225 then:
   1226   call void @hot_function()
   1227   br label %exit
   1228 
   1229 else:
   1230   call void @cold_function()
   1231   br label %exit
   1232 
   1233 exit:
   1234   call void @hot_function()
   1235   ret void
   1236 }
   1237 
   1238 define void @test_hot_branch_triangle_profile(i32* %a) !prof !6 {
   1239 ; Test that a hot branch that has a probability a little larger than 80% will
   1240 ; break triangle shaped CFG constrains when doing block placement if profile
   1241 ; is present.
   1242 ; CHECK-LABEL: test_hot_branch_triangle_profile:
   1243 ; CHECK: %entry
   1244 ; CHECK: %exit
   1245 ; CHECK: %then
   1246 
   1247 entry:
   1248   %gep1 = getelementptr i32, i32* %a, i32 1
   1249   %val1 = load i32, i32* %gep1
   1250   %cond1 = icmp ugt i32 %val1, 1
   1251   br i1 %cond1, label %exit, label %then, !prof !5
   1252 
   1253 then:
   1254   call void @hot_function()
   1255   br label %exit
   1256 
   1257 exit:
   1258   call void @hot_function()
   1259   ret void
   1260 }
   1261 
   1262 define void @test_hot_branch_triangle_profile_topology(i32* %a) !prof !6 {
   1263 ; Test that a hot branch that has a probability between 50% and 66% will not
   1264 ; break triangle shaped CFG constrains when doing block placement if profile
   1265 ; is present.
   1266 ; CHECK-LABEL: test_hot_branch_triangle_profile_topology:
   1267 ; CHECK: %entry
   1268 ; CHECK: %then
   1269 ; CHECK: %exit
   1270 
   1271 entry:
   1272   %gep1 = getelementptr i32, i32* %a, i32 1
   1273   %val1 = load i32, i32* %gep1
   1274   %cond1 = icmp ugt i32 %val1, 1
   1275   br i1 %cond1, label %exit, label %then, !prof !7
   1276 
   1277 then:
   1278   call void @hot_function()
   1279   br label %exit
   1280 
   1281 exit:
   1282   call void @hot_function()
   1283   ret void
   1284 }
   1285 
   1286 !5 = !{!"branch_weights", i32 84, i32 16}
   1287 !6 = !{!"function_entry_count", i32 10}
   1288 !7 = !{!"branch_weights", i32 60, i32 40}
   1289