Home | History | Annotate | Download | only in X86
      1 ; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
      2 ; RUN: llc < %s -mtriple=x86_64-unknown-unknown -mattr=+bmi,+bmi2 | FileCheck %s
      3 
      4 declare i8 @llvm.cttz.i8(i8, i1)
      5 declare i16 @llvm.cttz.i16(i16, i1)
      6 declare i32 @llvm.cttz.i32(i32, i1)
      7 declare i64 @llvm.cttz.i64(i64, i1)
      8 
      9 define i8 @t1(i8 %x)   {
     10 ; CHECK-LABEL: t1:
     11 ; CHECK:       # BB#0:
     12 ; CHECK-NEXT:    movzbl %dil, %eax
     13 ; CHECK-NEXT:    orl $256, %eax # imm = 0x100
     14 ; CHECK-NEXT:    tzcntl %eax, %eax
     15 ; CHECK-NEXT:    # kill: %AL<def> %AL<kill> %EAX<kill>
     16 ; CHECK-NEXT:    retq
     17   %tmp = tail call i8 @llvm.cttz.i8( i8 %x, i1 false )
     18   ret i8 %tmp
     19 }
     20 
     21 define i16 @t2(i16 %x)   {
     22 ; CHECK-LABEL: t2:
     23 ; CHECK:       # BB#0:
     24 ; CHECK-NEXT:    tzcntw %di, %ax
     25 ; CHECK-NEXT:    retq
     26   %tmp = tail call i16 @llvm.cttz.i16( i16 %x, i1 false )
     27   ret i16 %tmp
     28 }
     29 
     30 define i32 @t3(i32 %x)   {
     31 ; CHECK-LABEL: t3:
     32 ; CHECK:       # BB#0:
     33 ; CHECK-NEXT:    tzcntl %edi, %eax
     34 ; CHECK-NEXT:    retq
     35   %tmp = tail call i32 @llvm.cttz.i32( i32 %x, i1 false )
     36   ret i32 %tmp
     37 }
     38 
     39 define i32 @tzcnt32_load(i32* %x)   {
     40 ; CHECK-LABEL: tzcnt32_load:
     41 ; CHECK:       # BB#0:
     42 ; CHECK-NEXT:    tzcntl (%rdi), %eax
     43 ; CHECK-NEXT:    retq
     44   %x1 = load i32, i32* %x
     45   %tmp = tail call i32 @llvm.cttz.i32(i32 %x1, i1 false )
     46   ret i32 %tmp
     47 }
     48 
     49 define i64 @t4(i64 %x)   {
     50 ; CHECK-LABEL: t4:
     51 ; CHECK:       # BB#0:
     52 ; CHECK-NEXT:    tzcntq %rdi, %rax
     53 ; CHECK-NEXT:    retq
     54   %tmp = tail call i64 @llvm.cttz.i64( i64 %x, i1 false )
     55   ret i64 %tmp
     56 }
     57 
     58 define i8 @t5(i8 %x)   {
     59 ; CHECK-LABEL: t5:
     60 ; CHECK:       # BB#0:
     61 ; CHECK-NEXT:    movzbl %dil, %eax
     62 ; CHECK-NEXT:    tzcntl %eax, %eax
     63 ; CHECK-NEXT:    # kill: %AL<def> %AL<kill> %EAX<kill>
     64 ; CHECK-NEXT:    retq
     65   %tmp = tail call i8 @llvm.cttz.i8( i8 %x, i1 true )
     66   ret i8 %tmp
     67 }
     68 
     69 define i16 @t6(i16 %x)   {
     70 ; CHECK-LABEL: t6:
     71 ; CHECK:       # BB#0:
     72 ; CHECK-NEXT:    tzcntw %di, %ax
     73 ; CHECK-NEXT:    retq
     74   %tmp = tail call i16 @llvm.cttz.i16( i16 %x, i1 true )
     75   ret i16 %tmp
     76 }
     77 
     78 define i32 @t7(i32 %x)   {
     79 ; CHECK-LABEL: t7:
     80 ; CHECK:       # BB#0:
     81 ; CHECK-NEXT:    tzcntl %edi, %eax
     82 ; CHECK-NEXT:    retq
     83   %tmp = tail call i32 @llvm.cttz.i32( i32 %x, i1 true )
     84   ret i32 %tmp
     85 }
     86 
     87 define i64 @t8(i64 %x)   {
     88 ; CHECK-LABEL: t8:
     89 ; CHECK:       # BB#0:
     90 ; CHECK-NEXT:    tzcntq %rdi, %rax
     91 ; CHECK-NEXT:    retq
     92   %tmp = tail call i64 @llvm.cttz.i64( i64 %x, i1 true )
     93   ret i64 %tmp
     94 }
     95 
     96 define i32 @andn32(i32 %x, i32 %y)   {
     97 ; CHECK-LABEL: andn32:
     98 ; CHECK:       # BB#0:
     99 ; CHECK-NEXT:    andnl %esi, %edi, %eax
    100 ; CHECK-NEXT:    retq
    101   %tmp1 = xor i32 %x, -1
    102   %tmp2 = and i32 %y, %tmp1
    103   ret i32 %tmp2
    104 }
    105 
    106 define i32 @andn32_load(i32 %x, i32* %y)   {
    107 ; CHECK-LABEL: andn32_load:
    108 ; CHECK:       # BB#0:
    109 ; CHECK-NEXT:    andnl (%rsi), %edi, %eax
    110 ; CHECK-NEXT:    retq
    111   %y1 = load i32, i32* %y
    112   %tmp1 = xor i32 %x, -1
    113   %tmp2 = and i32 %y1, %tmp1
    114   ret i32 %tmp2
    115 }
    116 
    117 define i64 @andn64(i64 %x, i64 %y)   {
    118 ; CHECK-LABEL: andn64:
    119 ; CHECK:       # BB#0:
    120 ; CHECK-NEXT:    andnq %rsi, %rdi, %rax
    121 ; CHECK-NEXT:    retq
    122   %tmp1 = xor i64 %x, -1
    123   %tmp2 = and i64 %tmp1, %y
    124   ret i64 %tmp2
    125 }
    126 
    127 ; Don't choose a 'test' if an 'andn' can be used.
    128 define i1 @andn_cmp(i32 %x, i32 %y) {
    129 ; CHECK-LABEL: andn_cmp:
    130 ; CHECK:       # BB#0:
    131 ; CHECK-NEXT:    andnl %esi, %edi, %eax
    132 ; CHECK-NEXT:    sete %al
    133 ; CHECK-NEXT:    retq
    134   %notx = xor i32 %x, -1
    135   %and = and i32 %notx, %y
    136   %cmp = icmp eq i32 %and, 0
    137   ret i1 %cmp
    138 }
    139 
    140 ; Recognize a disguised andn in the following 4 tests.
    141 define i1 @and_cmp1(i32 %x, i32 %y) {
    142 ; CHECK-LABEL: and_cmp1:
    143 ; CHECK:       # BB#0:
    144 ; CHECK-NEXT:    andnl %esi, %edi, %eax
    145 ; CHECK-NEXT:    sete %al
    146 ; CHECK-NEXT:    retq
    147   %and = and i32 %x, %y
    148   %cmp = icmp eq i32 %and, %y
    149   ret i1 %cmp
    150 }
    151 
    152 define i1 @and_cmp2(i32 %x, i32 %y) {
    153 ; CHECK-LABEL: and_cmp2:
    154 ; CHECK:       # BB#0:
    155 ; CHECK-NEXT:    andnl %esi, %edi, %eax
    156 ; CHECK-NEXT:    setne %al
    157 ; CHECK-NEXT:    retq
    158   %and = and i32 %y, %x
    159   %cmp = icmp ne i32 %and, %y
    160   ret i1 %cmp
    161 }
    162 
    163 define i1 @and_cmp3(i32 %x, i32 %y) {
    164 ; CHECK-LABEL: and_cmp3:
    165 ; CHECK:       # BB#0:
    166 ; CHECK-NEXT:    andnl %esi, %edi, %eax
    167 ; CHECK-NEXT:    sete %al
    168 ; CHECK-NEXT:    retq
    169   %and = and i32 %x, %y
    170   %cmp = icmp eq i32 %y, %and
    171   ret i1 %cmp
    172 }
    173 
    174 define i1 @and_cmp4(i32 %x, i32 %y) {
    175 ; CHECK-LABEL: and_cmp4:
    176 ; CHECK:       # BB#0:
    177 ; CHECK-NEXT:    andnl %esi, %edi, %eax
    178 ; CHECK-NEXT:    setne %al
    179 ; CHECK-NEXT:    retq
    180   %and = and i32 %y, %x
    181   %cmp = icmp ne i32 %y, %and
    182   ret i1 %cmp
    183 }
    184 
    185 ; A mask and compare against constant is ok for an 'andn' too
    186 ; even though the BMI instruction doesn't have an immediate form.
    187 define i1 @and_cmp_const(i32 %x) {
    188 ; CHECK-LABEL: and_cmp_const:
    189 ; CHECK:       # BB#0:
    190 ; CHECK-NEXT:    movl $43, %eax
    191 ; CHECK-NEXT:    andnl %eax, %edi, %eax
    192 ; CHECK-NEXT:    sete %al
    193 ; CHECK-NEXT:    retq
    194   %and = and i32 %x, 43
    195   %cmp = icmp eq i32 %and, 43
    196   ret i1 %cmp
    197 }
    198 
    199 ; But don't use 'andn' if the mask is a power-of-two.
    200 define i1 @and_cmp_const_power_of_two(i32 %x, i32 %y) {
    201 ; CHECK-LABEL: and_cmp_const_power_of_two:
    202 ; CHECK:       # BB#0:
    203 ; CHECK-NEXT:    btl %esi, %edi
    204 ; CHECK-NEXT:    setae %al
    205 ; CHECK-NEXT:    retq
    206   %shl = shl i32 1, %y
    207   %and = and i32 %x, %shl
    208   %cmp = icmp ne i32 %and, %shl
    209   ret i1 %cmp
    210 }
    211 
    212 ; Don't transform to 'andn' if there's another use of the 'and'.
    213 define i32 @and_cmp_not_one_use(i32 %x) {
    214 ; CHECK-LABEL: and_cmp_not_one_use:
    215 ; CHECK:       # BB#0:
    216 ; CHECK-NEXT:    andl $37, %edi
    217 ; CHECK-NEXT:    xorl %eax, %eax
    218 ; CHECK-NEXT:    cmpl $37, %edi
    219 ; CHECK-NEXT:    sete %al
    220 ; CHECK-NEXT:    addl %edi, %eax
    221 ; CHECK-NEXT:    retq
    222   %and = and i32 %x, 37
    223   %cmp = icmp eq i32 %and, 37
    224   %ext = zext i1 %cmp to i32
    225   %add = add i32 %and, %ext
    226   ret i32 %add
    227 }
    228 
    229 ; Verify that we're not transforming invalid comparison predicates.
    230 define i1 @not_an_andn1(i32 %x, i32 %y) {
    231 ; CHECK-LABEL: not_an_andn1:
    232 ; CHECK:       # BB#0:
    233 ; CHECK-NEXT:    andl %esi, %edi
    234 ; CHECK-NEXT:    cmpl %edi, %esi
    235 ; CHECK-NEXT:    setg %al
    236 ; CHECK-NEXT:    retq
    237   %and = and i32 %x, %y
    238   %cmp = icmp sgt i32 %y, %and
    239   ret i1 %cmp
    240 }
    241 
    242 define i1 @not_an_andn2(i32 %x, i32 %y) {
    243 ; CHECK-LABEL: not_an_andn2:
    244 ; CHECK:       # BB#0:
    245 ; CHECK-NEXT:    andl %esi, %edi
    246 ; CHECK-NEXT:    cmpl %edi, %esi
    247 ; CHECK-NEXT:    setbe %al
    248 ; CHECK-NEXT:    retq
    249   %and = and i32 %y, %x
    250   %cmp = icmp ule i32 %y, %and
    251   ret i1 %cmp
    252 }
    253 
    254 ; Don't choose a 'test' if an 'andn' can be used.
    255 define i1 @andn_cmp_swap_ops(i64 %x, i64 %y) {
    256 ; CHECK-LABEL: andn_cmp_swap_ops:
    257 ; CHECK:       # BB#0:
    258 ; CHECK-NEXT:    andnq %rsi, %rdi, %rax
    259 ; CHECK-NEXT:    sete %al
    260 ; CHECK-NEXT:    retq
    261   %notx = xor i64 %x, -1
    262   %and = and i64 %y, %notx
    263   %cmp = icmp eq i64 %and, 0
    264   ret i1 %cmp
    265 }
    266 
    267 ; Use a 'test' (not an 'and') because 'andn' only works for i32/i64.
    268 define i1 @andn_cmp_i8(i8 %x, i8 %y) {
    269 ; CHECK-LABEL: andn_cmp_i8:
    270 ; CHECK:       # BB#0:
    271 ; CHECK-NEXT:    notb %sil
    272 ; CHECK-NEXT:    testb %sil, %dil
    273 ; CHECK-NEXT:    sete %al
    274 ; CHECK-NEXT:    retq
    275   %noty = xor i8 %y, -1
    276   %and = and i8 %x, %noty
    277   %cmp = icmp eq i8 %and, 0
    278   ret i1 %cmp
    279 }
    280 
    281 define i32 @bextr32(i32 %x, i32 %y)   {
    282 ; CHECK-LABEL: bextr32:
    283 ; CHECK:       # BB#0:
    284 ; CHECK-NEXT:    bextrl %esi, %edi, %eax
    285 ; CHECK-NEXT:    retq
    286   %tmp = tail call i32 @llvm.x86.bmi.bextr.32(i32 %x, i32 %y)
    287   ret i32 %tmp
    288 }
    289 
    290 define i32 @bextr32_load(i32* %x, i32 %y)   {
    291 ; CHECK-LABEL: bextr32_load:
    292 ; CHECK:       # BB#0:
    293 ; CHECK-NEXT:    bextrl %esi, (%rdi), %eax
    294 ; CHECK-NEXT:    retq
    295   %x1 = load i32, i32* %x
    296   %tmp = tail call i32 @llvm.x86.bmi.bextr.32(i32 %x1, i32 %y)
    297   ret i32 %tmp
    298 }
    299 
    300 declare i32 @llvm.x86.bmi.bextr.32(i32, i32)
    301 
    302 define i32 @bextr32b(i32 %x)  uwtable  ssp {
    303 ; CHECK-LABEL: bextr32b:
    304 ; CHECK:       # BB#0:
    305 ; CHECK-NEXT:    movl $3076, %eax # imm = 0xC04
    306 ; CHECK-NEXT:    bextrl %eax, %edi, %eax
    307 ; CHECK-NEXT:    retq
    308   %1 = lshr i32 %x, 4
    309   %2 = and i32 %1, 4095
    310   ret i32 %2
    311 }
    312 
    313 define i32 @bextr32b_load(i32* %x)  uwtable  ssp {
    314 ; CHECK-LABEL: bextr32b_load:
    315 ; CHECK:       # BB#0:
    316 ; CHECK-NEXT:    movl $3076, %eax # imm = 0xC04
    317 ; CHECK-NEXT:    bextrl %eax, (%rdi), %eax
    318 ; CHECK-NEXT:    retq
    319   %1 = load i32, i32* %x
    320   %2 = lshr i32 %1, 4
    321   %3 = and i32 %2, 4095
    322   ret i32 %3
    323 }
    324 
    325 define i64 @bextr64(i64 %x, i64 %y)   {
    326 ; CHECK-LABEL: bextr64:
    327 ; CHECK:       # BB#0:
    328 ; CHECK-NEXT:    bextrq %rsi, %rdi, %rax
    329 ; CHECK-NEXT:    retq
    330   %tmp = tail call i64 @llvm.x86.bmi.bextr.64(i64 %x, i64 %y)
    331   ret i64 %tmp
    332 }
    333 
    334 declare i64 @llvm.x86.bmi.bextr.64(i64, i64)
    335 
    336 define i64 @bextr64b(i64 %x)  uwtable  ssp {
    337 ; CHECK-LABEL: bextr64b:
    338 ; CHECK:       # BB#0:
    339 ; CHECK-NEXT:    movl $3076, %eax # imm = 0xC04
    340 ; CHECK-NEXT:    bextrl %eax, %edi, %eax
    341 ; CHECK-NEXT:    retq
    342   %1 = lshr i64 %x, 4
    343   %2 = and i64 %1, 4095
    344   ret i64 %2
    345 }
    346 
    347 define i64 @bextr64b_load(i64* %x) {
    348 ; CHECK-LABEL: bextr64b_load:
    349 ; CHECK:       # BB#0:
    350 ; CHECK-NEXT:    movl $3076, %eax # imm = 0xC04
    351 ; CHECK-NEXT:    bextrl %eax, (%rdi), %eax
    352 ; CHECK-NEXT:    retq
    353   %1 = load i64, i64* %x, align 8
    354   %2 = lshr i64 %1, 4
    355   %3 = and i64 %2, 4095
    356   ret i64 %3
    357 }
    358 
    359 define i32 @non_bextr32(i32 %x) {
    360 ; CHECK-LABEL: non_bextr32:
    361 ; CHECK:       # BB#0: # %entry
    362 ; CHECK-NEXT:    shrl $2, %edi
    363 ; CHECK-NEXT:    andl $111, %edi
    364 ; CHECK-NEXT:    movl %edi, %eax
    365 ; CHECK-NEXT:    retq
    366 entry:
    367   %shr = lshr i32 %x, 2
    368   %and = and i32 %shr, 111
    369   ret i32 %and
    370 }
    371 
    372 define i64 @non_bextr64(i64 %x) {
    373 ; CHECK-LABEL: non_bextr64:
    374 ; CHECK:       # BB#0: # %entry
    375 ; CHECK-NEXT:    shrq $2, %rdi
    376 ; CHECK-NEXT:    movabsq $8589934590, %rax # imm = 0x1FFFFFFFE
    377 ; CHECK-NEXT:    andq %rdi, %rax
    378 ; CHECK-NEXT:    retq
    379 entry:
    380   %shr = lshr i64 %x, 2
    381   %and = and i64 %shr, 8589934590
    382   ret i64 %and
    383 }
    384 
    385 define i32 @bzhi32(i32 %x, i32 %y)   {
    386 ; CHECK-LABEL: bzhi32:
    387 ; CHECK:       # BB#0:
    388 ; CHECK-NEXT:    bzhil %esi, %edi, %eax
    389 ; CHECK-NEXT:    retq
    390   %tmp = tail call i32 @llvm.x86.bmi.bzhi.32(i32 %x, i32 %y)
    391   ret i32 %tmp
    392 }
    393 
    394 define i32 @bzhi32_load(i32* %x, i32 %y)   {
    395 ; CHECK-LABEL: bzhi32_load:
    396 ; CHECK:       # BB#0:
    397 ; CHECK-NEXT:    bzhil %esi, (%rdi), %eax
    398 ; CHECK-NEXT:    retq
    399   %x1 = load i32, i32* %x
    400   %tmp = tail call i32 @llvm.x86.bmi.bzhi.32(i32 %x1, i32 %y)
    401   ret i32 %tmp
    402 }
    403 
    404 declare i32 @llvm.x86.bmi.bzhi.32(i32, i32)
    405 
    406 define i64 @bzhi64(i64 %x, i64 %y)   {
    407 ; CHECK-LABEL: bzhi64:
    408 ; CHECK:       # BB#0:
    409 ; CHECK-NEXT:    bzhiq %rsi, %rdi, %rax
    410 ; CHECK-NEXT:    retq
    411   %tmp = tail call i64 @llvm.x86.bmi.bzhi.64(i64 %x, i64 %y)
    412   ret i64 %tmp
    413 }
    414 
    415 declare i64 @llvm.x86.bmi.bzhi.64(i64, i64)
    416 
    417 define i32 @bzhi32b(i32 %x, i8 zeroext %index) {
    418 ; CHECK-LABEL: bzhi32b:
    419 ; CHECK:       # BB#0: # %entry
    420 ; CHECK-NEXT:    bzhil %esi, %edi, %eax
    421 ; CHECK-NEXT:    retq
    422 entry:
    423   %conv = zext i8 %index to i32
    424   %shl = shl i32 1, %conv
    425   %sub = add nsw i32 %shl, -1
    426   %and = and i32 %sub, %x
    427   ret i32 %and
    428 }
    429 
    430 define i32 @bzhi32b_load(i32* %w, i8 zeroext %index) {
    431 ; CHECK-LABEL: bzhi32b_load:
    432 ; CHECK:       # BB#0: # %entry
    433 ; CHECK-NEXT:    bzhil %esi, (%rdi), %eax
    434 ; CHECK-NEXT:    retq
    435 entry:
    436   %x = load i32, i32* %w
    437   %conv = zext i8 %index to i32
    438   %shl = shl i32 1, %conv
    439   %sub = add nsw i32 %shl, -1
    440   %and = and i32 %sub, %x
    441   ret i32 %and
    442 }
    443 
    444 define i32 @bzhi32c(i32 %x, i8 zeroext %index) {
    445 ; CHECK-LABEL: bzhi32c:
    446 ; CHECK:       # BB#0: # %entry
    447 ; CHECK-NEXT:    bzhil %esi, %edi, %eax
    448 ; CHECK-NEXT:    retq
    449 entry:
    450   %conv = zext i8 %index to i32
    451   %shl = shl i32 1, %conv
    452   %sub = add nsw i32 %shl, -1
    453   %and = and i32 %x, %sub
    454   ret i32 %and
    455 }
    456 
    457 define i64 @bzhi64b(i64 %x, i8 zeroext %index) {
    458 ; CHECK-LABEL: bzhi64b:
    459 ; CHECK:       # BB#0: # %entry
    460 ; CHECK-NEXT:    # kill: %ESI<def> %ESI<kill> %RSI<def>
    461 ; CHECK-NEXT:    bzhiq %rsi, %rdi, %rax
    462 ; CHECK-NEXT:    retq
    463 entry:
    464   %conv = zext i8 %index to i64
    465   %shl = shl i64 1, %conv
    466   %sub = add nsw i64 %shl, -1
    467   %and = and i64 %x, %sub
    468   ret i64 %and
    469 }
    470 
    471 define i64 @bzhi64_constant_mask(i64 %x) {
    472 ; CHECK-LABEL: bzhi64_constant_mask:
    473 ; CHECK:       # BB#0: # %entry
    474 ; CHECK-NEXT:    movb $62, %al
    475 ; CHECK-NEXT:    bzhiq %rax, %rdi, %rax
    476 ; CHECK-NEXT:    retq
    477 entry:
    478   %and = and i64 %x, 4611686018427387903
    479   ret i64 %and
    480 }
    481 
    482 define i64 @bzhi64_small_constant_mask(i64 %x) {
    483 ; CHECK-LABEL: bzhi64_small_constant_mask:
    484 ; CHECK:       # BB#0: # %entry
    485 ; CHECK-NEXT:    andl $2147483647, %edi # imm = 0x7FFFFFFF
    486 ; CHECK-NEXT:    movq %rdi, %rax
    487 ; CHECK-NEXT:    retq
    488 entry:
    489   %and = and i64 %x, 2147483647
    490   ret i64 %and
    491 }
    492 
    493 define i32 @blsi32(i32 %x)   {
    494 ; CHECK-LABEL: blsi32:
    495 ; CHECK:       # BB#0:
    496 ; CHECK-NEXT:    blsil %edi, %eax
    497 ; CHECK-NEXT:    retq
    498   %tmp = sub i32 0, %x
    499   %tmp2 = and i32 %x, %tmp
    500   ret i32 %tmp2
    501 }
    502 
    503 define i32 @blsi32_load(i32* %x)   {
    504 ; CHECK-LABEL: blsi32_load:
    505 ; CHECK:       # BB#0:
    506 ; CHECK-NEXT:    blsil (%rdi), %eax
    507 ; CHECK-NEXT:    retq
    508   %x1 = load i32, i32* %x
    509   %tmp = sub i32 0, %x1
    510   %tmp2 = and i32 %x1, %tmp
    511   ret i32 %tmp2
    512 }
    513 
    514 define i64 @blsi64(i64 %x)   {
    515 ; CHECK-LABEL: blsi64:
    516 ; CHECK:       # BB#0:
    517 ; CHECK-NEXT:    blsiq %rdi, %rax
    518 ; CHECK-NEXT:    retq
    519   %tmp = sub i64 0, %x
    520   %tmp2 = and i64 %tmp, %x
    521   ret i64 %tmp2
    522 }
    523 
    524 define i32 @blsmsk32(i32 %x)   {
    525 ; CHECK-LABEL: blsmsk32:
    526 ; CHECK:       # BB#0:
    527 ; CHECK-NEXT:    blsmskl %edi, %eax
    528 ; CHECK-NEXT:    retq
    529   %tmp = sub i32 %x, 1
    530   %tmp2 = xor i32 %x, %tmp
    531   ret i32 %tmp2
    532 }
    533 
    534 define i32 @blsmsk32_load(i32* %x)   {
    535 ; CHECK-LABEL: blsmsk32_load:
    536 ; CHECK:       # BB#0:
    537 ; CHECK-NEXT:    blsmskl (%rdi), %eax
    538 ; CHECK-NEXT:    retq
    539   %x1 = load i32, i32* %x
    540   %tmp = sub i32 %x1, 1
    541   %tmp2 = xor i32 %x1, %tmp
    542   ret i32 %tmp2
    543 }
    544 
    545 define i64 @blsmsk64(i64 %x)   {
    546 ; CHECK-LABEL: blsmsk64:
    547 ; CHECK:       # BB#0:
    548 ; CHECK-NEXT:    blsmskq %rdi, %rax
    549 ; CHECK-NEXT:    retq
    550   %tmp = sub i64 %x, 1
    551   %tmp2 = xor i64 %tmp, %x
    552   ret i64 %tmp2
    553 }
    554 
    555 define i32 @blsr32(i32 %x)   {
    556 ; CHECK-LABEL: blsr32:
    557 ; CHECK:       # BB#0:
    558 ; CHECK-NEXT:    blsrl %edi, %eax
    559 ; CHECK-NEXT:    retq
    560   %tmp = sub i32 %x, 1
    561   %tmp2 = and i32 %x, %tmp
    562   ret i32 %tmp2
    563 }
    564 
    565 define i32 @blsr32_load(i32* %x)   {
    566 ; CHECK-LABEL: blsr32_load:
    567 ; CHECK:       # BB#0:
    568 ; CHECK-NEXT:    blsrl (%rdi), %eax
    569 ; CHECK-NEXT:    retq
    570   %x1 = load i32, i32* %x
    571   %tmp = sub i32 %x1, 1
    572   %tmp2 = and i32 %x1, %tmp
    573   ret i32 %tmp2
    574 }
    575 
    576 define i64 @blsr64(i64 %x)   {
    577 ; CHECK-LABEL: blsr64:
    578 ; CHECK:       # BB#0:
    579 ; CHECK-NEXT:    blsrq %rdi, %rax
    580 ; CHECK-NEXT:    retq
    581   %tmp = sub i64 %x, 1
    582   %tmp2 = and i64 %tmp, %x
    583   ret i64 %tmp2
    584 }
    585 
    586 define i32 @pdep32(i32 %x, i32 %y)   {
    587 ; CHECK-LABEL: pdep32:
    588 ; CHECK:       # BB#0:
    589 ; CHECK-NEXT:    pdepl %esi, %edi, %eax
    590 ; CHECK-NEXT:    retq
    591   %tmp = tail call i32 @llvm.x86.bmi.pdep.32(i32 %x, i32 %y)
    592   ret i32 %tmp
    593 }
    594 
    595 define i32 @pdep32_load(i32 %x, i32* %y)   {
    596 ; CHECK-LABEL: pdep32_load:
    597 ; CHECK:       # BB#0:
    598 ; CHECK-NEXT:    pdepl (%rsi), %edi, %eax
    599 ; CHECK-NEXT:    retq
    600   %y1 = load i32, i32* %y
    601   %tmp = tail call i32 @llvm.x86.bmi.pdep.32(i32 %x, i32 %y1)
    602   ret i32 %tmp
    603 }
    604 
    605 declare i32 @llvm.x86.bmi.pdep.32(i32, i32)
    606 
    607 define i64 @pdep64(i64 %x, i64 %y)   {
    608 ; CHECK-LABEL: pdep64:
    609 ; CHECK:       # BB#0:
    610 ; CHECK-NEXT:    pdepq %rsi, %rdi, %rax
    611 ; CHECK-NEXT:    retq
    612   %tmp = tail call i64 @llvm.x86.bmi.pdep.64(i64 %x, i64 %y)
    613   ret i64 %tmp
    614 }
    615 
    616 declare i64 @llvm.x86.bmi.pdep.64(i64, i64)
    617 
    618 define i32 @pext32(i32 %x, i32 %y)   {
    619 ; CHECK-LABEL: pext32:
    620 ; CHECK:       # BB#0:
    621 ; CHECK-NEXT:    pextl %esi, %edi, %eax
    622 ; CHECK-NEXT:    retq
    623   %tmp = tail call i32 @llvm.x86.bmi.pext.32(i32 %x, i32 %y)
    624   ret i32 %tmp
    625 }
    626 
    627 define i32 @pext32_load(i32 %x, i32* %y)   {
    628 ; CHECK-LABEL: pext32_load:
    629 ; CHECK:       # BB#0:
    630 ; CHECK-NEXT:    pextl (%rsi), %edi, %eax
    631 ; CHECK-NEXT:    retq
    632   %y1 = load i32, i32* %y
    633   %tmp = tail call i32 @llvm.x86.bmi.pext.32(i32 %x, i32 %y1)
    634   ret i32 %tmp
    635 }
    636 
    637 declare i32 @llvm.x86.bmi.pext.32(i32, i32)
    638 
    639 define i64 @pext64(i64 %x, i64 %y)   {
    640 ; CHECK-LABEL: pext64:
    641 ; CHECK:       # BB#0:
    642 ; CHECK-NEXT:    pextq %rsi, %rdi, %rax
    643 ; CHECK-NEXT:    retq
    644   %tmp = tail call i64 @llvm.x86.bmi.pext.64(i64 %x, i64 %y)
    645   ret i64 %tmp
    646 }
    647 
    648 declare i64 @llvm.x86.bmi.pext.64(i64, i64)
    649 
    650