Home | History | Annotate | Download | only in TableGen
      1 //===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "DAGISelMatcher.h"
     11 #include "CodeGenDAGPatterns.h"
     12 #include "CodeGenRegisters.h"
     13 #include "llvm/ADT/SmallVector.h"
     14 #include "llvm/ADT/StringMap.h"
     15 #include "llvm/TableGen/Error.h"
     16 #include "llvm/TableGen/Record.h"
     17 #include <utility>
     18 using namespace llvm;
     19 
     20 
     21 /// getRegisterValueType - Look up and return the ValueType of the specified
     22 /// register. If the register is a member of multiple register classes which
     23 /// have different associated types, return MVT::Other.
     24 static MVT::SimpleValueType getRegisterValueType(Record *R,
     25                                                  const CodeGenTarget &T) {
     26   bool FoundRC = false;
     27   MVT::SimpleValueType VT = MVT::Other;
     28   const CodeGenRegister *Reg = T.getRegBank().getReg(R);
     29 
     30   for (const auto &RC : T.getRegBank().getRegClasses()) {
     31     if (!RC.contains(Reg))
     32       continue;
     33 
     34     if (!FoundRC) {
     35       FoundRC = true;
     36       VT = RC.getValueTypeNum(0);
     37       continue;
     38     }
     39 
     40     // If this occurs in multiple register classes, they all have to agree.
     41     assert(VT == RC.getValueTypeNum(0));
     42   }
     43   return VT;
     44 }
     45 
     46 
     47 namespace {
     48   class MatcherGen {
     49     const PatternToMatch &Pattern;
     50     const CodeGenDAGPatterns &CGP;
     51 
     52     /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts
     53     /// out with all of the types removed.  This allows us to insert type checks
     54     /// as we scan the tree.
     55     TreePatternNode *PatWithNoTypes;
     56 
     57     /// VariableMap - A map from variable names ('$dst') to the recorded operand
     58     /// number that they were captured as.  These are biased by 1 to make
     59     /// insertion easier.
     60     StringMap<unsigned> VariableMap;
     61 
     62     /// This maintains the recorded operand number that OPC_CheckComplexPattern
     63     /// drops each sub-operand into. We don't want to insert these into
     64     /// VariableMap because that leads to identity checking if they are
     65     /// encountered multiple times. Biased by 1 like VariableMap for
     66     /// consistency.
     67     StringMap<unsigned> NamedComplexPatternOperands;
     68 
     69     /// NextRecordedOperandNo - As we emit opcodes to record matched values in
     70     /// the RecordedNodes array, this keeps track of which slot will be next to
     71     /// record into.
     72     unsigned NextRecordedOperandNo;
     73 
     74     /// MatchedChainNodes - This maintains the position in the recorded nodes
     75     /// array of all of the recorded input nodes that have chains.
     76     SmallVector<unsigned, 2> MatchedChainNodes;
     77 
     78     /// MatchedComplexPatterns - This maintains a list of all of the
     79     /// ComplexPatterns that we need to check. The second element of each pair
     80     /// is the recorded operand number of the input node.
     81     SmallVector<std::pair<const TreePatternNode*,
     82                           unsigned>, 2> MatchedComplexPatterns;
     83 
     84     /// PhysRegInputs - List list has an entry for each explicitly specified
     85     /// physreg input to the pattern.  The first elt is the Register node, the
     86     /// second is the recorded slot number the input pattern match saved it in.
     87     SmallVector<std::pair<Record*, unsigned>, 2> PhysRegInputs;
     88 
     89     /// Matcher - This is the top level of the generated matcher, the result.
     90     Matcher *TheMatcher;
     91 
     92     /// CurPredicate - As we emit matcher nodes, this points to the latest check
     93     /// which should have future checks stuck into its Next position.
     94     Matcher *CurPredicate;
     95   public:
     96     MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp);
     97 
     98     ~MatcherGen() {
     99       delete PatWithNoTypes;
    100     }
    101 
    102     bool EmitMatcherCode(unsigned Variant);
    103     void EmitResultCode();
    104 
    105     Matcher *GetMatcher() const { return TheMatcher; }
    106   private:
    107     void AddMatcher(Matcher *NewNode);
    108     void InferPossibleTypes();
    109 
    110     // Matcher Generation.
    111     void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes);
    112     void EmitLeafMatchCode(const TreePatternNode *N);
    113     void EmitOperatorMatchCode(const TreePatternNode *N,
    114                                TreePatternNode *NodeNoTypes);
    115 
    116     /// If this is the first time a node with unique identifier Name has been
    117     /// seen, record it. Otherwise, emit a check to make sure this is the same
    118     /// node. Returns true if this is the first encounter.
    119     bool recordUniqueNode(const std::string &Name);
    120 
    121     // Result Code Generation.
    122     unsigned getNamedArgumentSlot(StringRef Name) {
    123       unsigned VarMapEntry = VariableMap[Name];
    124       assert(VarMapEntry != 0 &&
    125              "Variable referenced but not defined and not caught earlier!");
    126       return VarMapEntry-1;
    127     }
    128 
    129     /// GetInstPatternNode - Get the pattern for an instruction.
    130     const TreePatternNode *GetInstPatternNode(const DAGInstruction &Ins,
    131                                               const TreePatternNode *N);
    132 
    133     void EmitResultOperand(const TreePatternNode *N,
    134                            SmallVectorImpl<unsigned> &ResultOps);
    135     void EmitResultOfNamedOperand(const TreePatternNode *N,
    136                                   SmallVectorImpl<unsigned> &ResultOps);
    137     void EmitResultLeafAsOperand(const TreePatternNode *N,
    138                                  SmallVectorImpl<unsigned> &ResultOps);
    139     void EmitResultInstructionAsOperand(const TreePatternNode *N,
    140                                         SmallVectorImpl<unsigned> &ResultOps);
    141     void EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
    142                                         SmallVectorImpl<unsigned> &ResultOps);
    143     };
    144 
    145 } // end anon namespace.
    146 
    147 MatcherGen::MatcherGen(const PatternToMatch &pattern,
    148                        const CodeGenDAGPatterns &cgp)
    149 : Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0),
    150   TheMatcher(nullptr), CurPredicate(nullptr) {
    151   // We need to produce the matcher tree for the patterns source pattern.  To do
    152   // this we need to match the structure as well as the types.  To do the type
    153   // matching, we want to figure out the fewest number of type checks we need to
    154   // emit.  For example, if there is only one integer type supported by a
    155   // target, there should be no type comparisons at all for integer patterns!
    156   //
    157   // To figure out the fewest number of type checks needed, clone the pattern,
    158   // remove the types, then perform type inference on the pattern as a whole.
    159   // If there are unresolved types, emit an explicit check for those types,
    160   // apply the type to the tree, then rerun type inference.  Iterate until all
    161   // types are resolved.
    162   //
    163   PatWithNoTypes = Pattern.getSrcPattern()->clone();
    164   PatWithNoTypes->RemoveAllTypes();
    165 
    166   // If there are types that are manifestly known, infer them.
    167   InferPossibleTypes();
    168 }
    169 
    170 /// InferPossibleTypes - As we emit the pattern, we end up generating type
    171 /// checks and applying them to the 'PatWithNoTypes' tree.  As we do this, we
    172 /// want to propagate implied types as far throughout the tree as possible so
    173 /// that we avoid doing redundant type checks.  This does the type propagation.
    174 void MatcherGen::InferPossibleTypes() {
    175   // TP - Get *SOME* tree pattern, we don't care which.  It is only used for
    176   // diagnostics, which we know are impossible at this point.
    177   TreePattern &TP = *CGP.pf_begin()->second;
    178 
    179   bool MadeChange = true;
    180   while (MadeChange)
    181     MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP,
    182                                               true/*Ignore reg constraints*/);
    183 }
    184 
    185 
    186 /// AddMatcher - Add a matcher node to the current graph we're building.
    187 void MatcherGen::AddMatcher(Matcher *NewNode) {
    188   if (CurPredicate)
    189     CurPredicate->setNext(NewNode);
    190   else
    191     TheMatcher = NewNode;
    192   CurPredicate = NewNode;
    193 }
    194 
    195 
    196 //===----------------------------------------------------------------------===//
    197 // Pattern Match Generation
    198 //===----------------------------------------------------------------------===//
    199 
    200 /// EmitLeafMatchCode - Generate matching code for leaf nodes.
    201 void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) {
    202   assert(N->isLeaf() && "Not a leaf?");
    203 
    204   // Direct match against an integer constant.
    205   if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
    206     // If this is the root of the dag we're matching, we emit a redundant opcode
    207     // check to ensure that this gets folded into the normal top-level
    208     // OpcodeSwitch.
    209     if (N == Pattern.getSrcPattern()) {
    210       const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm"));
    211       AddMatcher(new CheckOpcodeMatcher(NI));
    212     }
    213 
    214     return AddMatcher(new CheckIntegerMatcher(II->getValue()));
    215   }
    216 
    217   // An UnsetInit represents a named node without any constraints.
    218   if (isa<UnsetInit>(N->getLeafValue())) {
    219     assert(N->hasName() && "Unnamed ? leaf");
    220     return;
    221   }
    222 
    223   DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
    224   if (!DI) {
    225     errs() << "Unknown leaf kind: " << *N << "\n";
    226     abort();
    227   }
    228 
    229   Record *LeafRec = DI->getDef();
    230 
    231   // A ValueType leaf node can represent a register when named, or itself when
    232   // unnamed.
    233   if (LeafRec->isSubClassOf("ValueType")) {
    234     // A named ValueType leaf always matches: (add i32:$a, i32:$b).
    235     if (N->hasName())
    236       return;
    237     // An unnamed ValueType as in (sext_inreg GPR:$foo, i8).
    238     return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName()));
    239   }
    240 
    241   if (// Handle register references.  Nothing to do here, they always match.
    242       LeafRec->isSubClassOf("RegisterClass") ||
    243       LeafRec->isSubClassOf("RegisterOperand") ||
    244       LeafRec->isSubClassOf("PointerLikeRegClass") ||
    245       LeafRec->isSubClassOf("SubRegIndex") ||
    246       // Place holder for SRCVALUE nodes. Nothing to do here.
    247       LeafRec->getName() == "srcvalue")
    248     return;
    249 
    250   // If we have a physreg reference like (mul gpr:$src, EAX) then we need to
    251   // record the register
    252   if (LeafRec->isSubClassOf("Register")) {
    253     AddMatcher(new RecordMatcher("physreg input "+LeafRec->getName(),
    254                                  NextRecordedOperandNo));
    255     PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++));
    256     return;
    257   }
    258 
    259   if (LeafRec->isSubClassOf("CondCode"))
    260     return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName()));
    261 
    262   if (LeafRec->isSubClassOf("ComplexPattern")) {
    263     // We can't model ComplexPattern uses that don't have their name taken yet.
    264     // The OPC_CheckComplexPattern operation implicitly records the results.
    265     if (N->getName().empty()) {
    266       std::string S;
    267       raw_string_ostream OS(S);
    268       OS << "We expect complex pattern uses to have names: " << *N;
    269       PrintFatalError(OS.str());
    270     }
    271 
    272     // Remember this ComplexPattern so that we can emit it after all the other
    273     // structural matches are done.
    274     unsigned InputOperand = VariableMap[N->getName()] - 1;
    275     MatchedComplexPatterns.push_back(std::make_pair(N, InputOperand));
    276     return;
    277   }
    278 
    279   errs() << "Unknown leaf kind: " << *N << "\n";
    280   abort();
    281 }
    282 
    283 void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N,
    284                                        TreePatternNode *NodeNoTypes) {
    285   assert(!N->isLeaf() && "Not an operator?");
    286 
    287   if (N->getOperator()->isSubClassOf("ComplexPattern")) {
    288     // The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is
    289     // "MY_PAT:op1:op2". We should already have validated that the uses are
    290     // consistent.
    291     std::string PatternName = N->getOperator()->getName();
    292     for (unsigned i = 0; i < N->getNumChildren(); ++i) {
    293       PatternName += ":";
    294       PatternName += N->getChild(i)->getName();
    295     }
    296 
    297     if (recordUniqueNode(PatternName)) {
    298       auto NodeAndOpNum = std::make_pair(N, NextRecordedOperandNo - 1);
    299       MatchedComplexPatterns.push_back(NodeAndOpNum);
    300     }
    301 
    302     return;
    303   }
    304 
    305   const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator());
    306 
    307   // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
    308   // a constant without a predicate fn that has more that one bit set, handle
    309   // this as a special case.  This is usually for targets that have special
    310   // handling of certain large constants (e.g. alpha with it's 8/16/32-bit
    311   // handling stuff).  Using these instructions is often far more efficient
    312   // than materializing the constant.  Unfortunately, both the instcombiner
    313   // and the dag combiner can often infer that bits are dead, and thus drop
    314   // them from the mask in the dag.  For example, it might turn 'AND X, 255'
    315   // into 'AND X, 254' if it knows the low bit is set.  Emit code that checks
    316   // to handle this.
    317   if ((N->getOperator()->getName() == "and" ||
    318        N->getOperator()->getName() == "or") &&
    319       N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateFns().empty() &&
    320       N->getPredicateFns().empty()) {
    321     if (IntInit *II = dyn_cast<IntInit>(N->getChild(1)->getLeafValue())) {
    322       if (!isPowerOf2_32(II->getValue())) {  // Don't bother with single bits.
    323         // If this is at the root of the pattern, we emit a redundant
    324         // CheckOpcode so that the following checks get factored properly under
    325         // a single opcode check.
    326         if (N == Pattern.getSrcPattern())
    327           AddMatcher(new CheckOpcodeMatcher(CInfo));
    328 
    329         // Emit the CheckAndImm/CheckOrImm node.
    330         if (N->getOperator()->getName() == "and")
    331           AddMatcher(new CheckAndImmMatcher(II->getValue()));
    332         else
    333           AddMatcher(new CheckOrImmMatcher(II->getValue()));
    334 
    335         // Match the LHS of the AND as appropriate.
    336         AddMatcher(new MoveChildMatcher(0));
    337         EmitMatchCode(N->getChild(0), NodeNoTypes->getChild(0));
    338         AddMatcher(new MoveParentMatcher());
    339         return;
    340       }
    341     }
    342   }
    343 
    344   // Check that the current opcode lines up.
    345   AddMatcher(new CheckOpcodeMatcher(CInfo));
    346 
    347   // If this node has memory references (i.e. is a load or store), tell the
    348   // interpreter to capture them in the memref array.
    349   if (N->NodeHasProperty(SDNPMemOperand, CGP))
    350     AddMatcher(new RecordMemRefMatcher());
    351 
    352   // If this node has a chain, then the chain is operand #0 is the SDNode, and
    353   // the child numbers of the node are all offset by one.
    354   unsigned OpNo = 0;
    355   if (N->NodeHasProperty(SDNPHasChain, CGP)) {
    356     // Record the node and remember it in our chained nodes list.
    357     AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() +
    358                                          "' chained node",
    359                                  NextRecordedOperandNo));
    360     // Remember all of the input chains our pattern will match.
    361     MatchedChainNodes.push_back(NextRecordedOperandNo++);
    362 
    363     // Don't look at the input chain when matching the tree pattern to the
    364     // SDNode.
    365     OpNo = 1;
    366 
    367     // If this node is not the root and the subtree underneath it produces a
    368     // chain, then the result of matching the node is also produce a chain.
    369     // Beyond that, this means that we're also folding (at least) the root node
    370     // into the node that produce the chain (for example, matching
    371     // "(add reg, (load ptr))" as a add_with_memory on X86).  This is
    372     // problematic, if the 'reg' node also uses the load (say, its chain).
    373     // Graphically:
    374     //
    375     //         [LD]
    376     //         ^  ^
    377     //         |  \                              DAG's like cheese.
    378     //        /    |
    379     //       /    [YY]
    380     //       |     ^
    381     //      [XX]--/
    382     //
    383     // It would be invalid to fold XX and LD.  In this case, folding the two
    384     // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG'
    385     // To prevent this, we emit a dynamic check for legality before allowing
    386     // this to be folded.
    387     //
    388     const TreePatternNode *Root = Pattern.getSrcPattern();
    389     if (N != Root) {                             // Not the root of the pattern.
    390       // If there is a node between the root and this node, then we definitely
    391       // need to emit the check.
    392       bool NeedCheck = !Root->hasChild(N);
    393 
    394       // If it *is* an immediate child of the root, we can still need a check if
    395       // the root SDNode has multiple inputs.  For us, this means that it is an
    396       // intrinsic, has multiple operands, or has other inputs like chain or
    397       // glue).
    398       if (!NeedCheck) {
    399         const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root->getOperator());
    400         NeedCheck =
    401           Root->getOperator() == CGP.get_intrinsic_void_sdnode() ||
    402           Root->getOperator() == CGP.get_intrinsic_w_chain_sdnode() ||
    403           Root->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() ||
    404           PInfo.getNumOperands() > 1 ||
    405           PInfo.hasProperty(SDNPHasChain) ||
    406           PInfo.hasProperty(SDNPInGlue) ||
    407           PInfo.hasProperty(SDNPOptInGlue);
    408       }
    409 
    410       if (NeedCheck)
    411         AddMatcher(new CheckFoldableChainNodeMatcher());
    412     }
    413   }
    414 
    415   // If this node has an output glue and isn't the root, remember it.
    416   if (N->NodeHasProperty(SDNPOutGlue, CGP) &&
    417       N != Pattern.getSrcPattern()) {
    418     // TODO: This redundantly records nodes with both glues and chains.
    419 
    420     // Record the node and remember it in our chained nodes list.
    421     AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() +
    422                                          "' glue output node",
    423                                  NextRecordedOperandNo));
    424   }
    425 
    426   // If this node is known to have an input glue or if it *might* have an input
    427   // glue, capture it as the glue input of the pattern.
    428   if (N->NodeHasProperty(SDNPOptInGlue, CGP) ||
    429       N->NodeHasProperty(SDNPInGlue, CGP))
    430     AddMatcher(new CaptureGlueInputMatcher());
    431 
    432   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
    433     // Get the code suitable for matching this child.  Move to the child, check
    434     // it then move back to the parent.
    435     AddMatcher(new MoveChildMatcher(OpNo));
    436     EmitMatchCode(N->getChild(i), NodeNoTypes->getChild(i));
    437     AddMatcher(new MoveParentMatcher());
    438   }
    439 }
    440 
    441 bool MatcherGen::recordUniqueNode(const std::string &Name) {
    442   unsigned &VarMapEntry = VariableMap[Name];
    443   if (VarMapEntry == 0) {
    444     // If it is a named node, we must emit a 'Record' opcode.
    445     AddMatcher(new RecordMatcher("$" + Name, NextRecordedOperandNo));
    446     VarMapEntry = ++NextRecordedOperandNo;
    447     return true;
    448   }
    449 
    450   // If we get here, this is a second reference to a specific name.  Since
    451   // we already have checked that the first reference is valid, we don't
    452   // have to recursively match it, just check that it's the same as the
    453   // previously named thing.
    454   AddMatcher(new CheckSameMatcher(VarMapEntry-1));
    455   return false;
    456 }
    457 
    458 void MatcherGen::EmitMatchCode(const TreePatternNode *N,
    459                                TreePatternNode *NodeNoTypes) {
    460   // If N and NodeNoTypes don't agree on a type, then this is a case where we
    461   // need to do a type check.  Emit the check, apply the type to NodeNoTypes and
    462   // reinfer any correlated types.
    463   SmallVector<unsigned, 2> ResultsToTypeCheck;
    464 
    465   for (unsigned i = 0, e = NodeNoTypes->getNumTypes(); i != e; ++i) {
    466     if (NodeNoTypes->getExtType(i) == N->getExtType(i)) continue;
    467     NodeNoTypes->setType(i, N->getExtType(i));
    468     InferPossibleTypes();
    469     ResultsToTypeCheck.push_back(i);
    470   }
    471 
    472   // If this node has a name associated with it, capture it in VariableMap. If
    473   // we already saw this in the pattern, emit code to verify dagness.
    474   if (!N->getName().empty())
    475     if (!recordUniqueNode(N->getName()))
    476       return;
    477 
    478   if (N->isLeaf())
    479     EmitLeafMatchCode(N);
    480   else
    481     EmitOperatorMatchCode(N, NodeNoTypes);
    482 
    483   // If there are node predicates for this node, generate their checks.
    484   for (unsigned i = 0, e = N->getPredicateFns().size(); i != e; ++i)
    485     AddMatcher(new CheckPredicateMatcher(N->getPredicateFns()[i]));
    486 
    487   for (unsigned i = 0, e = ResultsToTypeCheck.size(); i != e; ++i)
    488     AddMatcher(new CheckTypeMatcher(N->getType(ResultsToTypeCheck[i]),
    489                                     ResultsToTypeCheck[i]));
    490 }
    491 
    492 /// EmitMatcherCode - Generate the code that matches the predicate of this
    493 /// pattern for the specified Variant.  If the variant is invalid this returns
    494 /// true and does not generate code, if it is valid, it returns false.
    495 bool MatcherGen::EmitMatcherCode(unsigned Variant) {
    496   // If the root of the pattern is a ComplexPattern and if it is specified to
    497   // match some number of root opcodes, these are considered to be our variants.
    498   // Depending on which variant we're generating code for, emit the root opcode
    499   // check.
    500   if (const ComplexPattern *CP =
    501                    Pattern.getSrcPattern()->getComplexPatternInfo(CGP)) {
    502     const std::vector<Record*> &OpNodes = CP->getRootNodes();
    503     assert(!OpNodes.empty() &&"Complex Pattern must specify what it can match");
    504     if (Variant >= OpNodes.size()) return true;
    505 
    506     AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant])));
    507   } else {
    508     if (Variant != 0) return true;
    509   }
    510 
    511   // Emit the matcher for the pattern structure and types.
    512   EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes);
    513 
    514   // If the pattern has a predicate on it (e.g. only enabled when a subtarget
    515   // feature is around, do the check).
    516   if (!Pattern.getPredicateCheck().empty())
    517     AddMatcher(new CheckPatternPredicateMatcher(Pattern.getPredicateCheck()));
    518 
    519   // Now that we've completed the structural type match, emit any ComplexPattern
    520   // checks (e.g. addrmode matches).  We emit this after the structural match
    521   // because they are generally more expensive to evaluate and more difficult to
    522   // factor.
    523   for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) {
    524     const TreePatternNode *N = MatchedComplexPatterns[i].first;
    525 
    526     // Remember where the results of this match get stuck.
    527     if (N->isLeaf()) {
    528       NamedComplexPatternOperands[N->getName()] = NextRecordedOperandNo + 1;
    529     } else {
    530       unsigned CurOp = NextRecordedOperandNo;
    531       for (unsigned i = 0; i < N->getNumChildren(); ++i) {
    532         NamedComplexPatternOperands[N->getChild(i)->getName()] = CurOp + 1;
    533         CurOp += N->getChild(i)->getNumMIResults(CGP);
    534       }
    535     }
    536 
    537     // Get the slot we recorded the value in from the name on the node.
    538     unsigned RecNodeEntry = MatchedComplexPatterns[i].second;
    539 
    540     const ComplexPattern &CP = *N->getComplexPatternInfo(CGP);
    541 
    542     // Emit a CheckComplexPat operation, which does the match (aborting if it
    543     // fails) and pushes the matched operands onto the recorded nodes list.
    544     AddMatcher(new CheckComplexPatMatcher(CP, RecNodeEntry,
    545                                           N->getName(), NextRecordedOperandNo));
    546 
    547     // Record the right number of operands.
    548     NextRecordedOperandNo += CP.getNumOperands();
    549     if (CP.hasProperty(SDNPHasChain)) {
    550       // If the complex pattern has a chain, then we need to keep track of the
    551       // fact that we just recorded a chain input.  The chain input will be
    552       // matched as the last operand of the predicate if it was successful.
    553       ++NextRecordedOperandNo; // Chained node operand.
    554 
    555       // It is the last operand recorded.
    556       assert(NextRecordedOperandNo > 1 &&
    557              "Should have recorded input/result chains at least!");
    558       MatchedChainNodes.push_back(NextRecordedOperandNo-1);
    559     }
    560 
    561     // TODO: Complex patterns can't have output glues, if they did, we'd want
    562     // to record them.
    563   }
    564 
    565   return false;
    566 }
    567 
    568 
    569 //===----------------------------------------------------------------------===//
    570 // Node Result Generation
    571 //===----------------------------------------------------------------------===//
    572 
    573 void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N,
    574                                           SmallVectorImpl<unsigned> &ResultOps){
    575   assert(!N->getName().empty() && "Operand not named!");
    576 
    577   if (unsigned SlotNo = NamedComplexPatternOperands[N->getName()]) {
    578     // Complex operands have already been completely selected, just find the
    579     // right slot ant add the arguments directly.
    580     for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i)
    581       ResultOps.push_back(SlotNo - 1 + i);
    582 
    583     return;
    584   }
    585 
    586   unsigned SlotNo = getNamedArgumentSlot(N->getName());
    587 
    588   // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target
    589   // version of the immediate so that it doesn't get selected due to some other
    590   // node use.
    591   if (!N->isLeaf()) {
    592     StringRef OperatorName = N->getOperator()->getName();
    593     if (OperatorName == "imm" || OperatorName == "fpimm") {
    594       AddMatcher(new EmitConvertToTargetMatcher(SlotNo));
    595       ResultOps.push_back(NextRecordedOperandNo++);
    596       return;
    597     }
    598   }
    599 
    600   for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i)
    601     ResultOps.push_back(SlotNo + i);
    602 }
    603 
    604 void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N,
    605                                          SmallVectorImpl<unsigned> &ResultOps) {
    606   assert(N->isLeaf() && "Must be a leaf");
    607 
    608   if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
    609     AddMatcher(new EmitIntegerMatcher(II->getValue(), N->getType(0)));
    610     ResultOps.push_back(NextRecordedOperandNo++);
    611     return;
    612   }
    613 
    614   // If this is an explicit register reference, handle it.
    615   if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
    616     Record *Def = DI->getDef();
    617     if (Def->isSubClassOf("Register")) {
    618       const CodeGenRegister *Reg =
    619         CGP.getTargetInfo().getRegBank().getReg(Def);
    620       AddMatcher(new EmitRegisterMatcher(Reg, N->getType(0)));
    621       ResultOps.push_back(NextRecordedOperandNo++);
    622       return;
    623     }
    624 
    625     if (Def->getName() == "zero_reg") {
    626       AddMatcher(new EmitRegisterMatcher(nullptr, N->getType(0)));
    627       ResultOps.push_back(NextRecordedOperandNo++);
    628       return;
    629     }
    630 
    631     // Handle a reference to a register class. This is used
    632     // in COPY_TO_SUBREG instructions.
    633     if (Def->isSubClassOf("RegisterOperand"))
    634       Def = Def->getValueAsDef("RegClass");
    635     if (Def->isSubClassOf("RegisterClass")) {
    636       std::string Value = getQualifiedName(Def) + "RegClassID";
    637       AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
    638       ResultOps.push_back(NextRecordedOperandNo++);
    639       return;
    640     }
    641 
    642     // Handle a subregister index. This is used for INSERT_SUBREG etc.
    643     if (Def->isSubClassOf("SubRegIndex")) {
    644       std::string Value = getQualifiedName(Def);
    645       AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
    646       ResultOps.push_back(NextRecordedOperandNo++);
    647       return;
    648     }
    649   }
    650 
    651   errs() << "unhandled leaf node: \n";
    652   N->dump();
    653 }
    654 
    655 /// GetInstPatternNode - Get the pattern for an instruction.
    656 ///
    657 const TreePatternNode *MatcherGen::
    658 GetInstPatternNode(const DAGInstruction &Inst, const TreePatternNode *N) {
    659   const TreePattern *InstPat = Inst.getPattern();
    660 
    661   // FIXME2?: Assume actual pattern comes before "implicit".
    662   TreePatternNode *InstPatNode;
    663   if (InstPat)
    664     InstPatNode = InstPat->getTree(0);
    665   else if (/*isRoot*/ N == Pattern.getDstPattern())
    666     InstPatNode = Pattern.getSrcPattern();
    667   else
    668     return nullptr;
    669 
    670   if (InstPatNode && !InstPatNode->isLeaf() &&
    671       InstPatNode->getOperator()->getName() == "set")
    672     InstPatNode = InstPatNode->getChild(InstPatNode->getNumChildren()-1);
    673 
    674   return InstPatNode;
    675 }
    676 
    677 static bool
    678 mayInstNodeLoadOrStore(const TreePatternNode *N,
    679                        const CodeGenDAGPatterns &CGP) {
    680   Record *Op = N->getOperator();
    681   const CodeGenTarget &CGT = CGP.getTargetInfo();
    682   CodeGenInstruction &II = CGT.getInstruction(Op);
    683   return II.mayLoad || II.mayStore;
    684 }
    685 
    686 static unsigned
    687 numNodesThatMayLoadOrStore(const TreePatternNode *N,
    688                            const CodeGenDAGPatterns &CGP) {
    689   if (N->isLeaf())
    690     return 0;
    691 
    692   Record *OpRec = N->getOperator();
    693   if (!OpRec->isSubClassOf("Instruction"))
    694     return 0;
    695 
    696   unsigned Count = 0;
    697   if (mayInstNodeLoadOrStore(N, CGP))
    698     ++Count;
    699 
    700   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
    701     Count += numNodesThatMayLoadOrStore(N->getChild(i), CGP);
    702 
    703   return Count;
    704 }
    705 
    706 void MatcherGen::
    707 EmitResultInstructionAsOperand(const TreePatternNode *N,
    708                                SmallVectorImpl<unsigned> &OutputOps) {
    709   Record *Op = N->getOperator();
    710   const CodeGenTarget &CGT = CGP.getTargetInfo();
    711   CodeGenInstruction &II = CGT.getInstruction(Op);
    712   const DAGInstruction &Inst = CGP.getInstruction(Op);
    713 
    714   // If we can, get the pattern for the instruction we're generating. We derive
    715   // a variety of information from this pattern, such as whether it has a chain.
    716   //
    717   // FIXME2: This is extremely dubious for several reasons, not the least of
    718   // which it gives special status to instructions with patterns that Pat<>
    719   // nodes can't duplicate.
    720   const TreePatternNode *InstPatNode = GetInstPatternNode(Inst, N);
    721 
    722   // NodeHasChain - Whether the instruction node we're creating takes chains.
    723   bool NodeHasChain = InstPatNode &&
    724                       InstPatNode->TreeHasProperty(SDNPHasChain, CGP);
    725 
    726   // Instructions which load and store from memory should have a chain,
    727   // regardless of whether they happen to have an internal pattern saying so.
    728   if (Pattern.getSrcPattern()->TreeHasProperty(SDNPHasChain, CGP)
    729       && (II.hasCtrlDep || II.mayLoad || II.mayStore || II.canFoldAsLoad ||
    730           II.hasSideEffects))
    731       NodeHasChain = true;
    732 
    733   bool isRoot = N == Pattern.getDstPattern();
    734 
    735   // TreeHasOutGlue - True if this tree has glue.
    736   bool TreeHasInGlue = false, TreeHasOutGlue = false;
    737   if (isRoot) {
    738     const TreePatternNode *SrcPat = Pattern.getSrcPattern();
    739     TreeHasInGlue = SrcPat->TreeHasProperty(SDNPOptInGlue, CGP) ||
    740                     SrcPat->TreeHasProperty(SDNPInGlue, CGP);
    741 
    742     // FIXME2: this is checking the entire pattern, not just the node in
    743     // question, doing this just for the root seems like a total hack.
    744     TreeHasOutGlue = SrcPat->TreeHasProperty(SDNPOutGlue, CGP);
    745   }
    746 
    747   // NumResults - This is the number of results produced by the instruction in
    748   // the "outs" list.
    749   unsigned NumResults = Inst.getNumResults();
    750 
    751   // Number of operands we know the output instruction must have. If it is
    752   // variadic, we could have more operands.
    753   unsigned NumFixedOperands = II.Operands.size();
    754 
    755   SmallVector<unsigned, 8> InstOps;
    756 
    757   // Loop over all of the fixed operands of the instruction pattern, emitting
    758   // code to fill them all in. The node 'N' usually has number children equal to
    759   // the number of input operands of the instruction.  However, in cases where
    760   // there are predicate operands for an instruction, we need to fill in the
    761   // 'execute always' values. Match up the node operands to the instruction
    762   // operands to do this.
    763   unsigned ChildNo = 0;
    764   for (unsigned InstOpNo = NumResults, e = NumFixedOperands;
    765        InstOpNo != e; ++InstOpNo) {
    766     // Determine what to emit for this operand.
    767     Record *OperandNode = II.Operands[InstOpNo].Rec;
    768     if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
    769         !CGP.getDefaultOperand(OperandNode).DefaultOps.empty()) {
    770       // This is a predicate or optional def operand; emit the
    771       // 'default ops' operands.
    772       const DAGDefaultOperand &DefaultOp
    773         = CGP.getDefaultOperand(OperandNode);
    774       for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i)
    775         EmitResultOperand(DefaultOp.DefaultOps[i], InstOps);
    776       continue;
    777     }
    778 
    779     // Otherwise this is a normal operand or a predicate operand without
    780     // 'execute always'; emit it.
    781 
    782     // For operands with multiple sub-operands we may need to emit
    783     // multiple child patterns to cover them all.  However, ComplexPattern
    784     // children may themselves emit multiple MI operands.
    785     unsigned NumSubOps = 1;
    786     if (OperandNode->isSubClassOf("Operand")) {
    787       DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
    788       if (unsigned NumArgs = MIOpInfo->getNumArgs())
    789         NumSubOps = NumArgs;
    790     }
    791 
    792     unsigned FinalNumOps = InstOps.size() + NumSubOps;
    793     while (InstOps.size() < FinalNumOps) {
    794       const TreePatternNode *Child = N->getChild(ChildNo);
    795       unsigned BeforeAddingNumOps = InstOps.size();
    796       EmitResultOperand(Child, InstOps);
    797       assert(InstOps.size() > BeforeAddingNumOps && "Didn't add any operands");
    798 
    799       // If the operand is an instruction and it produced multiple results, just
    800       // take the first one.
    801       if (!Child->isLeaf() && Child->getOperator()->isSubClassOf("Instruction"))
    802         InstOps.resize(BeforeAddingNumOps+1);
    803 
    804       ++ChildNo;
    805     }
    806   }
    807 
    808   // If this is a variadic output instruction (i.e. REG_SEQUENCE), we can't
    809   // expand suboperands, use default operands, or other features determined from
    810   // the CodeGenInstruction after the fixed operands, which were handled
    811   // above. Emit the remaining instructions implicitly added by the use for
    812   // variable_ops.
    813   if (II.Operands.isVariadic) {
    814     for (unsigned I = ChildNo, E = N->getNumChildren(); I < E; ++I)
    815       EmitResultOperand(N->getChild(I), InstOps);
    816   }
    817 
    818   // If this node has input glue or explicitly specified input physregs, we
    819   // need to add chained and glued copyfromreg nodes and materialize the glue
    820   // input.
    821   if (isRoot && !PhysRegInputs.empty()) {
    822     // Emit all of the CopyToReg nodes for the input physical registers.  These
    823     // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src).
    824     for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i)
    825       AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs[i].second,
    826                                           PhysRegInputs[i].first));
    827     // Even if the node has no other glue inputs, the resultant node must be
    828     // glued to the CopyFromReg nodes we just generated.
    829     TreeHasInGlue = true;
    830   }
    831 
    832   // Result order: node results, chain, glue
    833 
    834   // Determine the result types.
    835   SmallVector<MVT::SimpleValueType, 4> ResultVTs;
    836   for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i)
    837     ResultVTs.push_back(N->getType(i));
    838 
    839   // If this is the root instruction of a pattern that has physical registers in
    840   // its result pattern, add output VTs for them.  For example, X86 has:
    841   //   (set AL, (mul ...))
    842   // This also handles implicit results like:
    843   //   (implicit EFLAGS)
    844   if (isRoot && !Pattern.getDstRegs().empty()) {
    845     // If the root came from an implicit def in the instruction handling stuff,
    846     // don't re-add it.
    847     Record *HandledReg = nullptr;
    848     if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
    849       HandledReg = II.ImplicitDefs[0];
    850 
    851     for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) {
    852       Record *Reg = Pattern.getDstRegs()[i];
    853       if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
    854       ResultVTs.push_back(getRegisterValueType(Reg, CGT));
    855     }
    856   }
    857 
    858   // If this is the root of the pattern and the pattern we're matching includes
    859   // a node that is variadic, mark the generated node as variadic so that it
    860   // gets the excess operands from the input DAG.
    861   int NumFixedArityOperands = -1;
    862   if (isRoot &&
    863       Pattern.getSrcPattern()->NodeHasProperty(SDNPVariadic, CGP))
    864     NumFixedArityOperands = Pattern.getSrcPattern()->getNumChildren();
    865 
    866   // If this is the root node and multiple matched nodes in the input pattern
    867   // have MemRefs in them, have the interpreter collect them and plop them onto
    868   // this node. If there is just one node with MemRefs, leave them on that node
    869   // even if it is not the root.
    870   //
    871   // FIXME3: This is actively incorrect for result patterns with multiple
    872   // memory-referencing instructions.
    873   bool PatternHasMemOperands =
    874     Pattern.getSrcPattern()->TreeHasProperty(SDNPMemOperand, CGP);
    875 
    876   bool NodeHasMemRefs = false;
    877   if (PatternHasMemOperands) {
    878     unsigned NumNodesThatLoadOrStore =
    879       numNodesThatMayLoadOrStore(Pattern.getDstPattern(), CGP);
    880     bool NodeIsUniqueLoadOrStore = mayInstNodeLoadOrStore(N, CGP) &&
    881                                    NumNodesThatLoadOrStore == 1;
    882     NodeHasMemRefs =
    883       NodeIsUniqueLoadOrStore || (isRoot && (mayInstNodeLoadOrStore(N, CGP) ||
    884                                              NumNodesThatLoadOrStore != 1));
    885   }
    886 
    887   assert((!ResultVTs.empty() || TreeHasOutGlue || NodeHasChain) &&
    888          "Node has no result");
    889 
    890   AddMatcher(new EmitNodeMatcher(II.Namespace+"::"+II.TheDef->getName(),
    891                                  ResultVTs, InstOps,
    892                                  NodeHasChain, TreeHasInGlue, TreeHasOutGlue,
    893                                  NodeHasMemRefs, NumFixedArityOperands,
    894                                  NextRecordedOperandNo));
    895 
    896   // The non-chain and non-glue results of the newly emitted node get recorded.
    897   for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) {
    898     if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Glue) break;
    899     OutputOps.push_back(NextRecordedOperandNo++);
    900   }
    901 }
    902 
    903 void MatcherGen::
    904 EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
    905                                SmallVectorImpl<unsigned> &ResultOps) {
    906   assert(N->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?");
    907 
    908   // Emit the operand.
    909   SmallVector<unsigned, 8> InputOps;
    910 
    911   // FIXME2: Could easily generalize this to support multiple inputs and outputs
    912   // to the SDNodeXForm.  For now we just support one input and one output like
    913   // the old instruction selector.
    914   assert(N->getNumChildren() == 1);
    915   EmitResultOperand(N->getChild(0), InputOps);
    916 
    917   // The input currently must have produced exactly one result.
    918   assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm");
    919 
    920   AddMatcher(new EmitNodeXFormMatcher(InputOps[0], N->getOperator()));
    921   ResultOps.push_back(NextRecordedOperandNo++);
    922 }
    923 
    924 void MatcherGen::EmitResultOperand(const TreePatternNode *N,
    925                                    SmallVectorImpl<unsigned> &ResultOps) {
    926   // This is something selected from the pattern we matched.
    927   if (!N->getName().empty())
    928     return EmitResultOfNamedOperand(N, ResultOps);
    929 
    930   if (N->isLeaf())
    931     return EmitResultLeafAsOperand(N, ResultOps);
    932 
    933   Record *OpRec = N->getOperator();
    934   if (OpRec->isSubClassOf("Instruction"))
    935     return EmitResultInstructionAsOperand(N, ResultOps);
    936   if (OpRec->isSubClassOf("SDNodeXForm"))
    937     return EmitResultSDNodeXFormAsOperand(N, ResultOps);
    938   errs() << "Unknown result node to emit code for: " << *N << '\n';
    939   PrintFatalError("Unknown node in result pattern!");
    940 }
    941 
    942 void MatcherGen::EmitResultCode() {
    943   // Patterns that match nodes with (potentially multiple) chain inputs have to
    944   // merge them together into a token factor.  This informs the generated code
    945   // what all the chained nodes are.
    946   if (!MatchedChainNodes.empty())
    947     AddMatcher(new EmitMergeInputChainsMatcher(MatchedChainNodes));
    948 
    949   // Codegen the root of the result pattern, capturing the resulting values.
    950   SmallVector<unsigned, 8> Ops;
    951   EmitResultOperand(Pattern.getDstPattern(), Ops);
    952 
    953   // At this point, we have however many values the result pattern produces.
    954   // However, the input pattern might not need all of these.  If there are
    955   // excess values at the end (such as implicit defs of condition codes etc)
    956   // just lop them off.  This doesn't need to worry about glue or chains, just
    957   // explicit results.
    958   //
    959   unsigned NumSrcResults = Pattern.getSrcPattern()->getNumTypes();
    960 
    961   // If the pattern also has (implicit) results, count them as well.
    962   if (!Pattern.getDstRegs().empty()) {
    963     // If the root came from an implicit def in the instruction handling stuff,
    964     // don't re-add it.
    965     Record *HandledReg = nullptr;
    966     const TreePatternNode *DstPat = Pattern.getDstPattern();
    967     if (!DstPat->isLeaf() &&DstPat->getOperator()->isSubClassOf("Instruction")){
    968       const CodeGenTarget &CGT = CGP.getTargetInfo();
    969       CodeGenInstruction &II = CGT.getInstruction(DstPat->getOperator());
    970 
    971       if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
    972         HandledReg = II.ImplicitDefs[0];
    973     }
    974 
    975     for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) {
    976       Record *Reg = Pattern.getDstRegs()[i];
    977       if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
    978       ++NumSrcResults;
    979     }
    980   }
    981 
    982   assert(Ops.size() >= NumSrcResults && "Didn't provide enough results");
    983   Ops.resize(NumSrcResults);
    984 
    985   AddMatcher(new CompleteMatchMatcher(Ops, Pattern));
    986 }
    987 
    988 
    989 /// ConvertPatternToMatcher - Create the matcher for the specified pattern with
    990 /// the specified variant.  If the variant number is invalid, this returns null.
    991 Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern,
    992                                        unsigned Variant,
    993                                        const CodeGenDAGPatterns &CGP) {
    994   MatcherGen Gen(Pattern, CGP);
    995 
    996   // Generate the code for the matcher.
    997   if (Gen.EmitMatcherCode(Variant))
    998     return nullptr;
    999 
   1000   // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence.
   1001   // FIXME2: Split result code out to another table, and make the matcher end
   1002   // with an "Emit <index>" command.  This allows result generation stuff to be
   1003   // shared and factored?
   1004 
   1005   // If the match succeeds, then we generate Pattern.
   1006   Gen.EmitResultCode();
   1007 
   1008   // Unconditional match.
   1009   return Gen.GetMatcher();
   1010 }
   1011