Home | History | Annotate | Download | only in TableGen
      1 //===- X86RecognizableInstr.cpp - Disassembler instruction spec --*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file is part of the X86 Disassembler Emitter.
     11 // It contains the implementation of a single recognizable instruction.
     12 // Documentation for the disassembler emitter in general can be found in
     13 //  X86DisasemblerEmitter.h.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #include "X86RecognizableInstr.h"
     18 #include "X86DisassemblerShared.h"
     19 #include "X86ModRMFilters.h"
     20 #include "llvm/Support/ErrorHandling.h"
     21 #include <string>
     22 
     23 using namespace llvm;
     24 
     25 #define MRM_MAPPING     \
     26   MAP(C0, 32)           \
     27   MAP(C1, 33)           \
     28   MAP(C2, 34)           \
     29   MAP(C3, 35)           \
     30   MAP(C4, 36)           \
     31   MAP(C5, 37)           \
     32   MAP(C6, 38)           \
     33   MAP(C7, 39)           \
     34   MAP(C8, 40)           \
     35   MAP(C9, 41)           \
     36   MAP(CA, 42)           \
     37   MAP(CB, 43)           \
     38   MAP(CC, 44)           \
     39   MAP(CD, 45)           \
     40   MAP(CE, 46)           \
     41   MAP(CF, 47)           \
     42   MAP(D0, 48)           \
     43   MAP(D1, 49)           \
     44   MAP(D2, 50)           \
     45   MAP(D3, 51)           \
     46   MAP(D4, 52)           \
     47   MAP(D5, 53)           \
     48   MAP(D6, 54)           \
     49   MAP(D7, 55)           \
     50   MAP(D8, 56)           \
     51   MAP(D9, 57)           \
     52   MAP(DA, 58)           \
     53   MAP(DB, 59)           \
     54   MAP(DC, 60)           \
     55   MAP(DD, 61)           \
     56   MAP(DE, 62)           \
     57   MAP(DF, 63)           \
     58   MAP(E0, 64)           \
     59   MAP(E1, 65)           \
     60   MAP(E2, 66)           \
     61   MAP(E3, 67)           \
     62   MAP(E4, 68)           \
     63   MAP(E5, 69)           \
     64   MAP(E6, 70)           \
     65   MAP(E7, 71)           \
     66   MAP(E8, 72)           \
     67   MAP(E9, 73)           \
     68   MAP(EA, 74)           \
     69   MAP(EB, 75)           \
     70   MAP(EC, 76)           \
     71   MAP(ED, 77)           \
     72   MAP(EE, 78)           \
     73   MAP(EF, 79)           \
     74   MAP(F0, 80)           \
     75   MAP(F1, 81)           \
     76   MAP(F2, 82)           \
     77   MAP(F3, 83)           \
     78   MAP(F4, 84)           \
     79   MAP(F5, 85)           \
     80   MAP(F6, 86)           \
     81   MAP(F7, 87)           \
     82   MAP(F8, 88)           \
     83   MAP(F9, 89)           \
     84   MAP(FA, 90)           \
     85   MAP(FB, 91)           \
     86   MAP(FC, 92)           \
     87   MAP(FD, 93)           \
     88   MAP(FE, 94)           \
     89   MAP(FF, 95)
     90 
     91 // A clone of X86 since we can't depend on something that is generated.
     92 namespace X86Local {
     93   enum {
     94     Pseudo      = 0,
     95     RawFrm      = 1,
     96     AddRegFrm   = 2,
     97     MRMDestReg  = 3,
     98     MRMDestMem  = 4,
     99     MRMSrcReg   = 5,
    100     MRMSrcMem   = 6,
    101     RawFrmMemOffs = 7,
    102     RawFrmSrc   = 8,
    103     RawFrmDst   = 9,
    104     RawFrmDstSrc = 10,
    105     RawFrmImm8  = 11,
    106     RawFrmImm16 = 12,
    107     MRMXr = 14, MRMXm = 15,
    108     MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19,
    109     MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23,
    110     MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27,
    111     MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31,
    112 #define MAP(from, to) MRM_##from = to,
    113     MRM_MAPPING
    114 #undef MAP
    115     lastMRM
    116   };
    117 
    118   enum {
    119     OB = 0, TB = 1, T8 = 2, TA = 3, XOP8 = 4, XOP9 = 5, XOPA = 6
    120   };
    121 
    122   enum {
    123     PS = 1, PD = 2, XS = 3, XD = 4
    124   };
    125 
    126   enum {
    127     VEX = 1, XOP = 2, EVEX = 3
    128   };
    129 
    130   enum {
    131     OpSize16 = 1, OpSize32 = 2
    132   };
    133 
    134   enum {
    135     AdSize16 = 1, AdSize32 = 2, AdSize64 = 3
    136   };
    137 }
    138 
    139 using namespace X86Disassembler;
    140 
    141 /// isRegFormat - Indicates whether a particular form requires the Mod field of
    142 ///   the ModR/M byte to be 0b11.
    143 ///
    144 /// @param form - The form of the instruction.
    145 /// @return     - true if the form implies that Mod must be 0b11, false
    146 ///               otherwise.
    147 static bool isRegFormat(uint8_t form) {
    148   return (form == X86Local::MRMDestReg ||
    149           form == X86Local::MRMSrcReg  ||
    150           form == X86Local::MRMXr ||
    151           (form >= X86Local::MRM0r && form <= X86Local::MRM7r));
    152 }
    153 
    154 /// byteFromBitsInit - Extracts a value at most 8 bits in width from a BitsInit.
    155 ///   Useful for switch statements and the like.
    156 ///
    157 /// @param init - A reference to the BitsInit to be decoded.
    158 /// @return     - The field, with the first bit in the BitsInit as the lowest
    159 ///               order bit.
    160 static uint8_t byteFromBitsInit(BitsInit &init) {
    161   int width = init.getNumBits();
    162 
    163   assert(width <= 8 && "Field is too large for uint8_t!");
    164 
    165   int     index;
    166   uint8_t mask = 0x01;
    167 
    168   uint8_t ret = 0;
    169 
    170   for (index = 0; index < width; index++) {
    171     if (static_cast<BitInit*>(init.getBit(index))->getValue())
    172       ret |= mask;
    173 
    174     mask <<= 1;
    175   }
    176 
    177   return ret;
    178 }
    179 
    180 /// byteFromRec - Extract a value at most 8 bits in with from a Record given the
    181 ///   name of the field.
    182 ///
    183 /// @param rec  - The record from which to extract the value.
    184 /// @param name - The name of the field in the record.
    185 /// @return     - The field, as translated by byteFromBitsInit().
    186 static uint8_t byteFromRec(const Record* rec, const std::string &name) {
    187   BitsInit* bits = rec->getValueAsBitsInit(name);
    188   return byteFromBitsInit(*bits);
    189 }
    190 
    191 RecognizableInstr::RecognizableInstr(DisassemblerTables &tables,
    192                                      const CodeGenInstruction &insn,
    193                                      InstrUID uid) {
    194   UID = uid;
    195 
    196   Rec = insn.TheDef;
    197   Name = Rec->getName();
    198   Spec = &tables.specForUID(UID);
    199 
    200   if (!Rec->isSubClassOf("X86Inst")) {
    201     ShouldBeEmitted = false;
    202     return;
    203   }
    204 
    205   OpPrefix = byteFromRec(Rec, "OpPrefixBits");
    206   OpMap    = byteFromRec(Rec, "OpMapBits");
    207   Opcode   = byteFromRec(Rec, "Opcode");
    208   Form     = byteFromRec(Rec, "FormBits");
    209   Encoding = byteFromRec(Rec, "OpEncBits");
    210 
    211   OpSize           = byteFromRec(Rec, "OpSizeBits");
    212   AdSize           = byteFromRec(Rec, "AdSizeBits");
    213   HasREX_WPrefix   = Rec->getValueAsBit("hasREX_WPrefix");
    214   HasVEX_4V        = Rec->getValueAsBit("hasVEX_4V");
    215   HasVEX_4VOp3     = Rec->getValueAsBit("hasVEX_4VOp3");
    216   HasVEX_WPrefix   = Rec->getValueAsBit("hasVEX_WPrefix");
    217   HasMemOp4Prefix  = Rec->getValueAsBit("hasMemOp4Prefix");
    218   IgnoresVEX_L     = Rec->getValueAsBit("ignoresVEX_L");
    219   HasEVEX_L2Prefix = Rec->getValueAsBit("hasEVEX_L2");
    220   HasEVEX_K        = Rec->getValueAsBit("hasEVEX_K");
    221   HasEVEX_KZ       = Rec->getValueAsBit("hasEVEX_Z");
    222   HasEVEX_B        = Rec->getValueAsBit("hasEVEX_B");
    223   IsCodeGenOnly    = Rec->getValueAsBit("isCodeGenOnly");
    224   ForceDisassemble = Rec->getValueAsBit("ForceDisassemble");
    225   CD8_Scale        = byteFromRec(Rec, "CD8_Scale");
    226 
    227   Name      = Rec->getName();
    228 
    229   Operands = &insn.Operands.OperandList;
    230 
    231   HasVEX_LPrefix   = Rec->getValueAsBit("hasVEX_L");
    232 
    233   // Check for 64-bit inst which does not require REX
    234   Is32Bit = false;
    235   Is64Bit = false;
    236   // FIXME: Is there some better way to check for In64BitMode?
    237   std::vector<Record*> Predicates = Rec->getValueAsListOfDefs("Predicates");
    238   for (unsigned i = 0, e = Predicates.size(); i != e; ++i) {
    239     if (Predicates[i]->getName().find("Not64Bit") != Name.npos ||
    240 	Predicates[i]->getName().find("In32Bit") != Name.npos) {
    241       Is32Bit = true;
    242       break;
    243     }
    244     if (Predicates[i]->getName().find("In64Bit") != Name.npos) {
    245       Is64Bit = true;
    246       break;
    247     }
    248   }
    249 
    250   if (Form == X86Local::Pseudo || (IsCodeGenOnly && !ForceDisassemble)) {
    251     ShouldBeEmitted = false;
    252     return;
    253   }
    254 
    255   // Special case since there is no attribute class for 64-bit and VEX
    256   if (Name == "VMASKMOVDQU64") {
    257     ShouldBeEmitted = false;
    258     return;
    259   }
    260 
    261   ShouldBeEmitted  = true;
    262 }
    263 
    264 void RecognizableInstr::processInstr(DisassemblerTables &tables,
    265                                      const CodeGenInstruction &insn,
    266                                      InstrUID uid)
    267 {
    268   // Ignore "asm parser only" instructions.
    269   if (insn.TheDef->getValueAsBit("isAsmParserOnly"))
    270     return;
    271 
    272   RecognizableInstr recogInstr(tables, insn, uid);
    273 
    274   if (recogInstr.shouldBeEmitted()) {
    275     recogInstr.emitInstructionSpecifier();
    276     recogInstr.emitDecodePath(tables);
    277   }
    278 }
    279 
    280 #define EVEX_KB(n) (HasEVEX_KZ && HasEVEX_B ? n##_KZ_B : \
    281                     (HasEVEX_K && HasEVEX_B ? n##_K_B : \
    282                     (HasEVEX_KZ ? n##_KZ : \
    283                     (HasEVEX_K? n##_K : (HasEVEX_B ? n##_B : n)))))
    284 
    285 InstructionContext RecognizableInstr::insnContext() const {
    286   InstructionContext insnContext;
    287 
    288   if (Encoding == X86Local::EVEX) {
    289     if (HasVEX_LPrefix && HasEVEX_L2Prefix) {
    290       errs() << "Don't support VEX.L if EVEX_L2 is enabled: " << Name << "\n";
    291       llvm_unreachable("Don't support VEX.L if EVEX_L2 is enabled");
    292     }
    293     // VEX_L & VEX_W
    294     if (HasVEX_LPrefix && HasVEX_WPrefix) {
    295       if (OpPrefix == X86Local::PD)
    296         insnContext = EVEX_KB(IC_EVEX_L_W_OPSIZE);
    297       else if (OpPrefix == X86Local::XS)
    298         insnContext = EVEX_KB(IC_EVEX_L_W_XS);
    299       else if (OpPrefix == X86Local::XD)
    300         insnContext = EVEX_KB(IC_EVEX_L_W_XD);
    301       else if (OpPrefix == X86Local::PS)
    302         insnContext = EVEX_KB(IC_EVEX_L_W);
    303       else {
    304         errs() << "Instruction does not use a prefix: " << Name << "\n";
    305         llvm_unreachable("Invalid prefix");
    306       }
    307     } else if (HasVEX_LPrefix) {
    308       // VEX_L
    309       if (OpPrefix == X86Local::PD)
    310         insnContext = EVEX_KB(IC_EVEX_L_OPSIZE);
    311       else if (OpPrefix == X86Local::XS)
    312         insnContext = EVEX_KB(IC_EVEX_L_XS);
    313       else if (OpPrefix == X86Local::XD)
    314         insnContext = EVEX_KB(IC_EVEX_L_XD);
    315       else if (OpPrefix == X86Local::PS)
    316         insnContext = EVEX_KB(IC_EVEX_L);
    317       else {
    318         errs() << "Instruction does not use a prefix: " << Name << "\n";
    319         llvm_unreachable("Invalid prefix");
    320       }
    321     }
    322     else if (HasEVEX_L2Prefix && HasVEX_WPrefix) {
    323       // EVEX_L2 & VEX_W
    324       if (OpPrefix == X86Local::PD)
    325         insnContext = EVEX_KB(IC_EVEX_L2_W_OPSIZE);
    326       else if (OpPrefix == X86Local::XS)
    327         insnContext = EVEX_KB(IC_EVEX_L2_W_XS);
    328       else if (OpPrefix == X86Local::XD)
    329         insnContext = EVEX_KB(IC_EVEX_L2_W_XD);
    330       else if (OpPrefix == X86Local::PS)
    331         insnContext = EVEX_KB(IC_EVEX_L2_W);
    332       else {
    333         errs() << "Instruction does not use a prefix: " << Name << "\n";
    334         llvm_unreachable("Invalid prefix");
    335       }
    336     } else if (HasEVEX_L2Prefix) {
    337       // EVEX_L2
    338       if (OpPrefix == X86Local::PD)
    339         insnContext = EVEX_KB(IC_EVEX_L2_OPSIZE);
    340       else if (OpPrefix == X86Local::XD)
    341         insnContext = EVEX_KB(IC_EVEX_L2_XD);
    342       else if (OpPrefix == X86Local::XS)
    343         insnContext = EVEX_KB(IC_EVEX_L2_XS);
    344       else if (OpPrefix == X86Local::PS)
    345         insnContext = EVEX_KB(IC_EVEX_L2);
    346       else {
    347         errs() << "Instruction does not use a prefix: " << Name << "\n";
    348         llvm_unreachable("Invalid prefix");
    349       }
    350     }
    351     else if (HasVEX_WPrefix) {
    352       // VEX_W
    353       if (OpPrefix == X86Local::PD)
    354         insnContext = EVEX_KB(IC_EVEX_W_OPSIZE);
    355       else if (OpPrefix == X86Local::XS)
    356         insnContext = EVEX_KB(IC_EVEX_W_XS);
    357       else if (OpPrefix == X86Local::XD)
    358         insnContext = EVEX_KB(IC_EVEX_W_XD);
    359       else if (OpPrefix == X86Local::PS)
    360         insnContext = EVEX_KB(IC_EVEX_W);
    361       else {
    362         errs() << "Instruction does not use a prefix: " << Name << "\n";
    363         llvm_unreachable("Invalid prefix");
    364       }
    365     }
    366     // No L, no W
    367     else if (OpPrefix == X86Local::PD)
    368       insnContext = EVEX_KB(IC_EVEX_OPSIZE);
    369     else if (OpPrefix == X86Local::XD)
    370       insnContext = EVEX_KB(IC_EVEX_XD);
    371     else if (OpPrefix == X86Local::XS)
    372       insnContext = EVEX_KB(IC_EVEX_XS);
    373     else
    374       insnContext = EVEX_KB(IC_EVEX);
    375     /// eof EVEX
    376   } else if (Encoding == X86Local::VEX || Encoding == X86Local::XOP) {
    377     if (HasVEX_LPrefix && HasVEX_WPrefix) {
    378       if (OpPrefix == X86Local::PD)
    379         insnContext = IC_VEX_L_W_OPSIZE;
    380       else if (OpPrefix == X86Local::XS)
    381         insnContext = IC_VEX_L_W_XS;
    382       else if (OpPrefix == X86Local::XD)
    383         insnContext = IC_VEX_L_W_XD;
    384       else if (OpPrefix == X86Local::PS)
    385         insnContext = IC_VEX_L_W;
    386       else {
    387         errs() << "Instruction does not use a prefix: " << Name << "\n";
    388         llvm_unreachable("Invalid prefix");
    389       }
    390     } else if (OpPrefix == X86Local::PD && HasVEX_LPrefix)
    391       insnContext = IC_VEX_L_OPSIZE;
    392     else if (OpPrefix == X86Local::PD && HasVEX_WPrefix)
    393       insnContext = IC_VEX_W_OPSIZE;
    394     else if (OpPrefix == X86Local::PD)
    395       insnContext = IC_VEX_OPSIZE;
    396     else if (HasVEX_LPrefix && OpPrefix == X86Local::XS)
    397       insnContext = IC_VEX_L_XS;
    398     else if (HasVEX_LPrefix && OpPrefix == X86Local::XD)
    399       insnContext = IC_VEX_L_XD;
    400     else if (HasVEX_WPrefix && OpPrefix == X86Local::XS)
    401       insnContext = IC_VEX_W_XS;
    402     else if (HasVEX_WPrefix && OpPrefix == X86Local::XD)
    403       insnContext = IC_VEX_W_XD;
    404     else if (HasVEX_WPrefix && OpPrefix == X86Local::PS)
    405       insnContext = IC_VEX_W;
    406     else if (HasVEX_LPrefix && OpPrefix == X86Local::PS)
    407       insnContext = IC_VEX_L;
    408     else if (OpPrefix == X86Local::XD)
    409       insnContext = IC_VEX_XD;
    410     else if (OpPrefix == X86Local::XS)
    411       insnContext = IC_VEX_XS;
    412     else if (OpPrefix == X86Local::PS)
    413       insnContext = IC_VEX;
    414     else {
    415       errs() << "Instruction does not use a prefix: " << Name << "\n";
    416       llvm_unreachable("Invalid prefix");
    417     }
    418   } else if (Is64Bit || HasREX_WPrefix || AdSize == X86Local::AdSize64) {
    419     if (HasREX_WPrefix && (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD))
    420       insnContext = IC_64BIT_REXW_OPSIZE;
    421     else if (HasREX_WPrefix && AdSize == X86Local::AdSize32)
    422       insnContext = IC_64BIT_REXW_ADSIZE;
    423     else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XD)
    424       insnContext = IC_64BIT_XD_OPSIZE;
    425     else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XS)
    426       insnContext = IC_64BIT_XS_OPSIZE;
    427     else if (OpSize == X86Local::OpSize16 && AdSize == X86Local::AdSize32)
    428       insnContext = IC_64BIT_OPSIZE_ADSIZE;
    429     else if (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD)
    430       insnContext = IC_64BIT_OPSIZE;
    431     else if (AdSize == X86Local::AdSize32)
    432       insnContext = IC_64BIT_ADSIZE;
    433     else if (HasREX_WPrefix && OpPrefix == X86Local::XS)
    434       insnContext = IC_64BIT_REXW_XS;
    435     else if (HasREX_WPrefix && OpPrefix == X86Local::XD)
    436       insnContext = IC_64BIT_REXW_XD;
    437     else if (OpPrefix == X86Local::XD)
    438       insnContext = IC_64BIT_XD;
    439     else if (OpPrefix == X86Local::XS)
    440       insnContext = IC_64BIT_XS;
    441     else if (HasREX_WPrefix)
    442       insnContext = IC_64BIT_REXW;
    443     else
    444       insnContext = IC_64BIT;
    445   } else {
    446     if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XD)
    447       insnContext = IC_XD_OPSIZE;
    448     else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XS)
    449       insnContext = IC_XS_OPSIZE;
    450     else if (OpSize == X86Local::OpSize16 && AdSize == X86Local::AdSize16)
    451       insnContext = IC_OPSIZE_ADSIZE;
    452     else if (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD)
    453       insnContext = IC_OPSIZE;
    454     else if (AdSize == X86Local::AdSize16)
    455       insnContext = IC_ADSIZE;
    456     else if (OpPrefix == X86Local::XD)
    457       insnContext = IC_XD;
    458     else if (OpPrefix == X86Local::XS)
    459       insnContext = IC_XS;
    460     else
    461       insnContext = IC;
    462   }
    463 
    464   return insnContext;
    465 }
    466 
    467 void RecognizableInstr::adjustOperandEncoding(OperandEncoding &encoding) {
    468   // The scaling factor for AVX512 compressed displacement encoding is an
    469   // instruction attribute.  Adjust the ModRM encoding type to include the
    470   // scale for compressed displacement.
    471   if (encoding != ENCODING_RM || CD8_Scale == 0)
    472     return;
    473   encoding = (OperandEncoding)(encoding + Log2_32(CD8_Scale));
    474   assert(encoding <= ENCODING_RM_CD64 && "Invalid CDisp scaling");
    475 }
    476 
    477 void RecognizableInstr::handleOperand(bool optional, unsigned &operandIndex,
    478                                       unsigned &physicalOperandIndex,
    479                                       unsigned numPhysicalOperands,
    480                                       const unsigned *operandMapping,
    481                                       OperandEncoding (*encodingFromString)
    482                                         (const std::string&,
    483                                          uint8_t OpSize)) {
    484   if (optional) {
    485     if (physicalOperandIndex >= numPhysicalOperands)
    486       return;
    487   } else {
    488     assert(physicalOperandIndex < numPhysicalOperands);
    489   }
    490 
    491   while (operandMapping[operandIndex] != operandIndex) {
    492     Spec->operands[operandIndex].encoding = ENCODING_DUP;
    493     Spec->operands[operandIndex].type =
    494       (OperandType)(TYPE_DUP0 + operandMapping[operandIndex]);
    495     ++operandIndex;
    496   }
    497 
    498   const std::string &typeName = (*Operands)[operandIndex].Rec->getName();
    499 
    500   OperandEncoding encoding = encodingFromString(typeName, OpSize);
    501   // Adjust the encoding type for an operand based on the instruction.
    502   adjustOperandEncoding(encoding);
    503   Spec->operands[operandIndex].encoding = encoding;
    504   Spec->operands[operandIndex].type = typeFromString(typeName,
    505                                                      HasREX_WPrefix, OpSize);
    506 
    507   ++operandIndex;
    508   ++physicalOperandIndex;
    509 }
    510 
    511 void RecognizableInstr::emitInstructionSpecifier() {
    512   Spec->name       = Name;
    513 
    514   Spec->insnContext = insnContext();
    515 
    516   const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands;
    517 
    518   unsigned numOperands = OperandList.size();
    519   unsigned numPhysicalOperands = 0;
    520 
    521   // operandMapping maps from operands in OperandList to their originals.
    522   // If operandMapping[i] != i, then the entry is a duplicate.
    523   unsigned operandMapping[X86_MAX_OPERANDS];
    524   assert(numOperands <= X86_MAX_OPERANDS && "X86_MAX_OPERANDS is not large enough");
    525 
    526   for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) {
    527     if (!OperandList[operandIndex].Constraints.empty()) {
    528       const CGIOperandList::ConstraintInfo &Constraint =
    529         OperandList[operandIndex].Constraints[0];
    530       if (Constraint.isTied()) {
    531         operandMapping[operandIndex] = operandIndex;
    532         operandMapping[Constraint.getTiedOperand()] = operandIndex;
    533       } else {
    534         ++numPhysicalOperands;
    535         operandMapping[operandIndex] = operandIndex;
    536       }
    537     } else {
    538       ++numPhysicalOperands;
    539       operandMapping[operandIndex] = operandIndex;
    540     }
    541   }
    542 
    543 #define HANDLE_OPERAND(class)               \
    544   handleOperand(false,                      \
    545                 operandIndex,               \
    546                 physicalOperandIndex,       \
    547                 numPhysicalOperands,        \
    548                 operandMapping,             \
    549                 class##EncodingFromString);
    550 
    551 #define HANDLE_OPTIONAL(class)              \
    552   handleOperand(true,                       \
    553                 operandIndex,               \
    554                 physicalOperandIndex,       \
    555                 numPhysicalOperands,        \
    556                 operandMapping,             \
    557                 class##EncodingFromString);
    558 
    559   // operandIndex should always be < numOperands
    560   unsigned operandIndex = 0;
    561   // physicalOperandIndex should always be < numPhysicalOperands
    562   unsigned physicalOperandIndex = 0;
    563 
    564 #ifndef NDEBUG
    565   // Given the set of prefix bits, how many additional operands does the
    566   // instruction have?
    567   unsigned additionalOperands = 0;
    568   if (HasVEX_4V || HasVEX_4VOp3)
    569     ++additionalOperands;
    570   if (HasEVEX_K)
    571     ++additionalOperands;
    572 #endif
    573 
    574   switch (Form) {
    575   default: llvm_unreachable("Unhandled form");
    576   case X86Local::RawFrmSrc:
    577     HANDLE_OPERAND(relocation);
    578     return;
    579   case X86Local::RawFrmDst:
    580     HANDLE_OPERAND(relocation);
    581     return;
    582   case X86Local::RawFrmDstSrc:
    583     HANDLE_OPERAND(relocation);
    584     HANDLE_OPERAND(relocation);
    585     return;
    586   case X86Local::RawFrm:
    587     // Operand 1 (optional) is an address or immediate.
    588     assert(numPhysicalOperands <= 1 &&
    589            "Unexpected number of operands for RawFrm");
    590     HANDLE_OPTIONAL(relocation)
    591     break;
    592   case X86Local::RawFrmMemOffs:
    593     // Operand 1 is an address.
    594     HANDLE_OPERAND(relocation);
    595     break;
    596   case X86Local::AddRegFrm:
    597     // Operand 1 is added to the opcode.
    598     // Operand 2 (optional) is an address.
    599     assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 &&
    600            "Unexpected number of operands for AddRegFrm");
    601     HANDLE_OPERAND(opcodeModifier)
    602     HANDLE_OPTIONAL(relocation)
    603     break;
    604   case X86Local::MRMDestReg:
    605     // Operand 1 is a register operand in the R/M field.
    606     // - In AVX512 there may be a mask operand here -
    607     // Operand 2 is a register operand in the Reg/Opcode field.
    608     // - In AVX, there is a register operand in the VEX.vvvv field here -
    609     // Operand 3 (optional) is an immediate.
    610     assert(numPhysicalOperands >= 2 + additionalOperands &&
    611            numPhysicalOperands <= 3 + additionalOperands &&
    612            "Unexpected number of operands for MRMDestRegFrm");
    613 
    614     HANDLE_OPERAND(rmRegister)
    615     if (HasEVEX_K)
    616       HANDLE_OPERAND(writemaskRegister)
    617 
    618     if (HasVEX_4V)
    619       // FIXME: In AVX, the register below becomes the one encoded
    620       // in ModRMVEX and the one above the one in the VEX.VVVV field
    621       HANDLE_OPERAND(vvvvRegister)
    622 
    623     HANDLE_OPERAND(roRegister)
    624     HANDLE_OPTIONAL(immediate)
    625     break;
    626   case X86Local::MRMDestMem:
    627     // Operand 1 is a memory operand (possibly SIB-extended)
    628     // Operand 2 is a register operand in the Reg/Opcode field.
    629     // - In AVX, there is a register operand in the VEX.vvvv field here -
    630     // Operand 3 (optional) is an immediate.
    631     assert(numPhysicalOperands >= 2 + additionalOperands &&
    632            numPhysicalOperands <= 3 + additionalOperands &&
    633            "Unexpected number of operands for MRMDestMemFrm with VEX_4V");
    634 
    635     HANDLE_OPERAND(memory)
    636 
    637     if (HasEVEX_K)
    638       HANDLE_OPERAND(writemaskRegister)
    639 
    640     if (HasVEX_4V)
    641       // FIXME: In AVX, the register below becomes the one encoded
    642       // in ModRMVEX and the one above the one in the VEX.VVVV field
    643       HANDLE_OPERAND(vvvvRegister)
    644 
    645     HANDLE_OPERAND(roRegister)
    646     HANDLE_OPTIONAL(immediate)
    647     break;
    648   case X86Local::MRMSrcReg:
    649     // Operand 1 is a register operand in the Reg/Opcode field.
    650     // Operand 2 is a register operand in the R/M field.
    651     // - In AVX, there is a register operand in the VEX.vvvv field here -
    652     // Operand 3 (optional) is an immediate.
    653     // Operand 4 (optional) is an immediate.
    654 
    655     assert(numPhysicalOperands >= 2 + additionalOperands &&
    656            numPhysicalOperands <= 4 + additionalOperands &&
    657            "Unexpected number of operands for MRMSrcRegFrm");
    658 
    659     HANDLE_OPERAND(roRegister)
    660 
    661     if (HasEVEX_K)
    662       HANDLE_OPERAND(writemaskRegister)
    663 
    664     if (HasVEX_4V)
    665       // FIXME: In AVX, the register below becomes the one encoded
    666       // in ModRMVEX and the one above the one in the VEX.VVVV field
    667       HANDLE_OPERAND(vvvvRegister)
    668 
    669     if (HasMemOp4Prefix)
    670       HANDLE_OPERAND(immediate)
    671 
    672     HANDLE_OPERAND(rmRegister)
    673 
    674     if (HasVEX_4VOp3)
    675       HANDLE_OPERAND(vvvvRegister)
    676 
    677     if (!HasMemOp4Prefix)
    678       HANDLE_OPTIONAL(immediate)
    679     HANDLE_OPTIONAL(immediate) // above might be a register in 7:4
    680     HANDLE_OPTIONAL(immediate)
    681     break;
    682   case X86Local::MRMSrcMem:
    683     // Operand 1 is a register operand in the Reg/Opcode field.
    684     // Operand 2 is a memory operand (possibly SIB-extended)
    685     // - In AVX, there is a register operand in the VEX.vvvv field here -
    686     // Operand 3 (optional) is an immediate.
    687 
    688     assert(numPhysicalOperands >= 2 + additionalOperands &&
    689            numPhysicalOperands <= 4 + additionalOperands &&
    690            "Unexpected number of operands for MRMSrcMemFrm");
    691 
    692     HANDLE_OPERAND(roRegister)
    693 
    694     if (HasEVEX_K)
    695       HANDLE_OPERAND(writemaskRegister)
    696 
    697     if (HasVEX_4V)
    698       // FIXME: In AVX, the register below becomes the one encoded
    699       // in ModRMVEX and the one above the one in the VEX.VVVV field
    700       HANDLE_OPERAND(vvvvRegister)
    701 
    702     if (HasMemOp4Prefix)
    703       HANDLE_OPERAND(immediate)
    704 
    705     HANDLE_OPERAND(memory)
    706 
    707     if (HasVEX_4VOp3)
    708       HANDLE_OPERAND(vvvvRegister)
    709 
    710     if (!HasMemOp4Prefix)
    711       HANDLE_OPTIONAL(immediate)
    712     HANDLE_OPTIONAL(immediate) // above might be a register in 7:4
    713     break;
    714   case X86Local::MRMXr:
    715   case X86Local::MRM0r:
    716   case X86Local::MRM1r:
    717   case X86Local::MRM2r:
    718   case X86Local::MRM3r:
    719   case X86Local::MRM4r:
    720   case X86Local::MRM5r:
    721   case X86Local::MRM6r:
    722   case X86Local::MRM7r:
    723     // Operand 1 is a register operand in the R/M field.
    724     // Operand 2 (optional) is an immediate or relocation.
    725     // Operand 3 (optional) is an immediate.
    726     assert(numPhysicalOperands >= 0 + additionalOperands &&
    727            numPhysicalOperands <= 3 + additionalOperands &&
    728            "Unexpected number of operands for MRMnr");
    729 
    730     if (HasVEX_4V)
    731       HANDLE_OPERAND(vvvvRegister)
    732 
    733     if (HasEVEX_K)
    734       HANDLE_OPERAND(writemaskRegister)
    735     HANDLE_OPTIONAL(rmRegister)
    736     HANDLE_OPTIONAL(relocation)
    737     HANDLE_OPTIONAL(immediate)
    738     break;
    739   case X86Local::MRMXm:
    740   case X86Local::MRM0m:
    741   case X86Local::MRM1m:
    742   case X86Local::MRM2m:
    743   case X86Local::MRM3m:
    744   case X86Local::MRM4m:
    745   case X86Local::MRM5m:
    746   case X86Local::MRM6m:
    747   case X86Local::MRM7m:
    748     // Operand 1 is a memory operand (possibly SIB-extended)
    749     // Operand 2 (optional) is an immediate or relocation.
    750     assert(numPhysicalOperands >= 1 + additionalOperands &&
    751            numPhysicalOperands <= 2 + additionalOperands &&
    752            "Unexpected number of operands for MRMnm");
    753 
    754     if (HasVEX_4V)
    755       HANDLE_OPERAND(vvvvRegister)
    756     if (HasEVEX_K)
    757       HANDLE_OPERAND(writemaskRegister)
    758     HANDLE_OPERAND(memory)
    759     HANDLE_OPTIONAL(relocation)
    760     break;
    761   case X86Local::RawFrmImm8:
    762     // operand 1 is a 16-bit immediate
    763     // operand 2 is an 8-bit immediate
    764     assert(numPhysicalOperands == 2 &&
    765            "Unexpected number of operands for X86Local::RawFrmImm8");
    766     HANDLE_OPERAND(immediate)
    767     HANDLE_OPERAND(immediate)
    768     break;
    769   case X86Local::RawFrmImm16:
    770     // operand 1 is a 16-bit immediate
    771     // operand 2 is a 16-bit immediate
    772     HANDLE_OPERAND(immediate)
    773     HANDLE_OPERAND(immediate)
    774     break;
    775   case X86Local::MRM_F8:
    776     if (Opcode == 0xc6) {
    777       assert(numPhysicalOperands == 1 &&
    778              "Unexpected number of operands for X86Local::MRM_F8");
    779       HANDLE_OPERAND(immediate)
    780     } else if (Opcode == 0xc7) {
    781       assert(numPhysicalOperands == 1 &&
    782              "Unexpected number of operands for X86Local::MRM_F8");
    783       HANDLE_OPERAND(relocation)
    784     }
    785     break;
    786   case X86Local::MRM_C0: case X86Local::MRM_C1: case X86Local::MRM_C2:
    787   case X86Local::MRM_C3: case X86Local::MRM_C4: case X86Local::MRM_C8:
    788   case X86Local::MRM_C9: case X86Local::MRM_CA: case X86Local::MRM_CB:
    789   case X86Local::MRM_CF: case X86Local::MRM_D0: case X86Local::MRM_D1:
    790   case X86Local::MRM_D4: case X86Local::MRM_D5: case X86Local::MRM_D6:
    791   case X86Local::MRM_D7: case X86Local::MRM_D8: case X86Local::MRM_D9:
    792   case X86Local::MRM_DA: case X86Local::MRM_DB: case X86Local::MRM_DC:
    793   case X86Local::MRM_DD: case X86Local::MRM_DE: case X86Local::MRM_DF:
    794   case X86Local::MRM_E0: case X86Local::MRM_E1: case X86Local::MRM_E2:
    795   case X86Local::MRM_E3: case X86Local::MRM_E4: case X86Local::MRM_E5:
    796   case X86Local::MRM_E8: case X86Local::MRM_E9: case X86Local::MRM_EA:
    797   case X86Local::MRM_EB: case X86Local::MRM_EC: case X86Local::MRM_ED:
    798   case X86Local::MRM_EE: case X86Local::MRM_EF: case X86Local::MRM_F0:
    799   case X86Local::MRM_F1: case X86Local::MRM_F2: case X86Local::MRM_F3:
    800   case X86Local::MRM_F4: case X86Local::MRM_F5: case X86Local::MRM_F6:
    801   case X86Local::MRM_F7: case X86Local::MRM_F9: case X86Local::MRM_FA:
    802   case X86Local::MRM_FB: case X86Local::MRM_FC: case X86Local::MRM_FD:
    803   case X86Local::MRM_FE: case X86Local::MRM_FF:
    804     // Ignored.
    805     break;
    806   }
    807 
    808   #undef HANDLE_OPERAND
    809   #undef HANDLE_OPTIONAL
    810 }
    811 
    812 void RecognizableInstr::emitDecodePath(DisassemblerTables &tables) const {
    813   // Special cases where the LLVM tables are not complete
    814 
    815 #define MAP(from, to)                     \
    816   case X86Local::MRM_##from:
    817 
    818   OpcodeType    opcodeType  = (OpcodeType)-1;
    819 
    820   ModRMFilter*  filter      = nullptr;
    821   uint8_t       opcodeToSet = 0;
    822 
    823   switch (OpMap) {
    824   default: llvm_unreachable("Invalid map!");
    825   case X86Local::OB:
    826   case X86Local::TB:
    827   case X86Local::T8:
    828   case X86Local::TA:
    829   case X86Local::XOP8:
    830   case X86Local::XOP9:
    831   case X86Local::XOPA:
    832     switch (OpMap) {
    833     default: llvm_unreachable("Unexpected map!");
    834     case X86Local::OB:   opcodeType = ONEBYTE;      break;
    835     case X86Local::TB:   opcodeType = TWOBYTE;      break;
    836     case X86Local::T8:   opcodeType = THREEBYTE_38; break;
    837     case X86Local::TA:   opcodeType = THREEBYTE_3A; break;
    838     case X86Local::XOP8: opcodeType = XOP8_MAP;     break;
    839     case X86Local::XOP9: opcodeType = XOP9_MAP;     break;
    840     case X86Local::XOPA: opcodeType = XOPA_MAP;     break;
    841     }
    842 
    843     switch (Form) {
    844     default:
    845       filter = new DumbFilter();
    846       break;
    847     case X86Local::MRMDestReg: case X86Local::MRMDestMem:
    848     case X86Local::MRMSrcReg:  case X86Local::MRMSrcMem:
    849     case X86Local::MRMXr:      case X86Local::MRMXm:
    850       filter = new ModFilter(isRegFormat(Form));
    851       break;
    852     case X86Local::MRM0r:      case X86Local::MRM1r:
    853     case X86Local::MRM2r:      case X86Local::MRM3r:
    854     case X86Local::MRM4r:      case X86Local::MRM5r:
    855     case X86Local::MRM6r:      case X86Local::MRM7r:
    856       filter = new ExtendedFilter(true, Form - X86Local::MRM0r);
    857       break;
    858     case X86Local::MRM0m:      case X86Local::MRM1m:
    859     case X86Local::MRM2m:      case X86Local::MRM3m:
    860     case X86Local::MRM4m:      case X86Local::MRM5m:
    861     case X86Local::MRM6m:      case X86Local::MRM7m:
    862       filter = new ExtendedFilter(false, Form - X86Local::MRM0m);
    863       break;
    864     MRM_MAPPING
    865       filter = new ExactFilter(0xC0 + Form - X86Local::MRM_C0);   \
    866       break;
    867     } // switch (Form)
    868 
    869     opcodeToSet = Opcode;
    870     break;
    871   } // switch (OpMap)
    872 
    873   unsigned AddressSize = 0;
    874   switch (AdSize) {
    875   case X86Local::AdSize16: AddressSize = 16; break;
    876   case X86Local::AdSize32: AddressSize = 32; break;
    877   case X86Local::AdSize64: AddressSize = 64; break;
    878   }
    879 
    880   assert(opcodeType != (OpcodeType)-1 &&
    881          "Opcode type not set");
    882   assert(filter && "Filter not set");
    883 
    884   if (Form == X86Local::AddRegFrm) {
    885     assert(((opcodeToSet & 7) == 0) &&
    886            "ADDREG_FRM opcode not aligned");
    887 
    888     uint8_t currentOpcode;
    889 
    890     for (currentOpcode = opcodeToSet;
    891          currentOpcode < opcodeToSet + 8;
    892          ++currentOpcode)
    893       tables.setTableFields(opcodeType,
    894                             insnContext(),
    895                             currentOpcode,
    896                             *filter,
    897                             UID, Is32Bit, IgnoresVEX_L, AddressSize);
    898   } else {
    899     tables.setTableFields(opcodeType,
    900                           insnContext(),
    901                           opcodeToSet,
    902                           *filter,
    903                           UID, Is32Bit, IgnoresVEX_L, AddressSize);
    904   }
    905 
    906   delete filter;
    907 
    908 #undef MAP
    909 }
    910 
    911 #define TYPE(str, type) if (s == str) return type;
    912 OperandType RecognizableInstr::typeFromString(const std::string &s,
    913                                               bool hasREX_WPrefix,
    914                                               uint8_t OpSize) {
    915   if(hasREX_WPrefix) {
    916     // For instructions with a REX_W prefix, a declared 32-bit register encoding
    917     // is special.
    918     TYPE("GR32",              TYPE_R32)
    919   }
    920   if(OpSize == X86Local::OpSize16) {
    921     // For OpSize16 instructions, a declared 16-bit register or
    922     // immediate encoding is special.
    923     TYPE("GR16",              TYPE_Rv)
    924     TYPE("i16imm",            TYPE_IMMv)
    925   } else if(OpSize == X86Local::OpSize32) {
    926     // For OpSize32 instructions, a declared 32-bit register or
    927     // immediate encoding is special.
    928     TYPE("GR32",              TYPE_Rv)
    929   }
    930   TYPE("i16mem",              TYPE_Mv)
    931   TYPE("i16imm",              TYPE_IMM16)
    932   TYPE("i16i8imm",            TYPE_IMMv)
    933   TYPE("GR16",                TYPE_R16)
    934   TYPE("i32mem",              TYPE_Mv)
    935   TYPE("i32imm",              TYPE_IMMv)
    936   TYPE("i32i8imm",            TYPE_IMM32)
    937   TYPE("GR32",                TYPE_R32)
    938   TYPE("GR32orGR64",          TYPE_R32)
    939   TYPE("i64mem",              TYPE_Mv)
    940   TYPE("i64i32imm",           TYPE_IMM64)
    941   TYPE("i64i8imm",            TYPE_IMM64)
    942   TYPE("GR64",                TYPE_R64)
    943   TYPE("i8mem",               TYPE_M8)
    944   TYPE("i8imm",               TYPE_IMM8)
    945   TYPE("u8imm",               TYPE_UIMM8)
    946   TYPE("i32u8imm",            TYPE_UIMM8)
    947   TYPE("GR8",                 TYPE_R8)
    948   TYPE("VR128",               TYPE_XMM128)
    949   TYPE("VR128X",              TYPE_XMM128)
    950   TYPE("f128mem",             TYPE_M128)
    951   TYPE("f256mem",             TYPE_M256)
    952   TYPE("f512mem",             TYPE_M512)
    953   TYPE("FR128",               TYPE_XMM128)
    954   TYPE("FR64",                TYPE_XMM64)
    955   TYPE("FR64X",               TYPE_XMM64)
    956   TYPE("f64mem",              TYPE_M64FP)
    957   TYPE("sdmem",               TYPE_M64FP)
    958   TYPE("FR32",                TYPE_XMM32)
    959   TYPE("FR32X",               TYPE_XMM32)
    960   TYPE("f32mem",              TYPE_M32FP)
    961   TYPE("ssmem",               TYPE_M32FP)
    962   TYPE("RST",                 TYPE_ST)
    963   TYPE("i128mem",             TYPE_M128)
    964   TYPE("i256mem",             TYPE_M256)
    965   TYPE("i512mem",             TYPE_M512)
    966   TYPE("i64i32imm_pcrel",     TYPE_REL64)
    967   TYPE("i16imm_pcrel",        TYPE_REL16)
    968   TYPE("i32imm_pcrel",        TYPE_REL32)
    969   TYPE("SSECC",               TYPE_IMM3)
    970   TYPE("XOPCC",               TYPE_IMM3)
    971   TYPE("AVXCC",               TYPE_IMM5)
    972   TYPE("AVX512ICC",           TYPE_AVX512ICC)
    973   TYPE("AVX512RC",            TYPE_IMM32)
    974   TYPE("brtarget32",          TYPE_RELv)
    975   TYPE("brtarget16",          TYPE_RELv)
    976   TYPE("brtarget8",           TYPE_REL8)
    977   TYPE("f80mem",              TYPE_M80FP)
    978   TYPE("lea64_32mem",         TYPE_LEA)
    979   TYPE("lea64mem",            TYPE_LEA)
    980   TYPE("VR64",                TYPE_MM64)
    981   TYPE("i64imm",              TYPE_IMMv)
    982   TYPE("anymem",              TYPE_M)
    983   TYPE("opaque32mem",         TYPE_M1616)
    984   TYPE("opaque48mem",         TYPE_M1632)
    985   TYPE("opaque80mem",         TYPE_M1664)
    986   TYPE("opaque512mem",        TYPE_M512)
    987   TYPE("SEGMENT_REG",         TYPE_SEGMENTREG)
    988   TYPE("DEBUG_REG",           TYPE_DEBUGREG)
    989   TYPE("CONTROL_REG",         TYPE_CONTROLREG)
    990   TYPE("srcidx8",             TYPE_SRCIDX8)
    991   TYPE("srcidx16",            TYPE_SRCIDX16)
    992   TYPE("srcidx32",            TYPE_SRCIDX32)
    993   TYPE("srcidx64",            TYPE_SRCIDX64)
    994   TYPE("dstidx8",             TYPE_DSTIDX8)
    995   TYPE("dstidx16",            TYPE_DSTIDX16)
    996   TYPE("dstidx32",            TYPE_DSTIDX32)
    997   TYPE("dstidx64",            TYPE_DSTIDX64)
    998   TYPE("offset16_8",          TYPE_MOFFS8)
    999   TYPE("offset16_16",         TYPE_MOFFS16)
   1000   TYPE("offset16_32",         TYPE_MOFFS32)
   1001   TYPE("offset32_8",          TYPE_MOFFS8)
   1002   TYPE("offset32_16",         TYPE_MOFFS16)
   1003   TYPE("offset32_32",         TYPE_MOFFS32)
   1004   TYPE("offset32_64",         TYPE_MOFFS64)
   1005   TYPE("offset64_8",          TYPE_MOFFS8)
   1006   TYPE("offset64_16",         TYPE_MOFFS16)
   1007   TYPE("offset64_32",         TYPE_MOFFS32)
   1008   TYPE("offset64_64",         TYPE_MOFFS64)
   1009   TYPE("VR256",               TYPE_XMM256)
   1010   TYPE("VR256X",              TYPE_XMM256)
   1011   TYPE("VR512",               TYPE_XMM512)
   1012   TYPE("VK1",                 TYPE_VK1)
   1013   TYPE("VK1WM",               TYPE_VK1)
   1014   TYPE("VK2",                 TYPE_VK2)
   1015   TYPE("VK2WM",               TYPE_VK2)
   1016   TYPE("VK4",                 TYPE_VK4)
   1017   TYPE("VK4WM",               TYPE_VK4)
   1018   TYPE("VK8",                 TYPE_VK8)
   1019   TYPE("VK8WM",               TYPE_VK8)
   1020   TYPE("VK16",                TYPE_VK16)
   1021   TYPE("VK16WM",              TYPE_VK16)
   1022   TYPE("VK32",                TYPE_VK32)
   1023   TYPE("VK32WM",              TYPE_VK32)
   1024   TYPE("VK64",                TYPE_VK64)
   1025   TYPE("VK64WM",              TYPE_VK64)
   1026   TYPE("GR32_NOAX",           TYPE_Rv)
   1027   TYPE("vx64mem",             TYPE_M64)
   1028   TYPE("vx128mem",            TYPE_M128)
   1029   TYPE("vx256mem",            TYPE_M256)
   1030   TYPE("vy128mem",            TYPE_M128)
   1031   TYPE("vy256mem",            TYPE_M256)
   1032   TYPE("vx64xmem",            TYPE_M64)
   1033   TYPE("vx128xmem",           TYPE_M128)
   1034   TYPE("vx256xmem",           TYPE_M256)
   1035   TYPE("vy128xmem",           TYPE_M128)
   1036   TYPE("vy256xmem",           TYPE_M256)
   1037   TYPE("vy512mem",            TYPE_M512)
   1038   TYPE("vz512mem",            TYPE_M512)
   1039   TYPE("BNDR",                TYPE_BNDR)
   1040   errs() << "Unhandled type string " << s << "\n";
   1041   llvm_unreachable("Unhandled type string");
   1042 }
   1043 #undef TYPE
   1044 
   1045 #define ENCODING(str, encoding) if (s == str) return encoding;
   1046 OperandEncoding
   1047 RecognizableInstr::immediateEncodingFromString(const std::string &s,
   1048                                                uint8_t OpSize) {
   1049   if(OpSize != X86Local::OpSize16) {
   1050     // For instructions without an OpSize prefix, a declared 16-bit register or
   1051     // immediate encoding is special.
   1052     ENCODING("i16imm",        ENCODING_IW)
   1053   }
   1054   ENCODING("i32i8imm",        ENCODING_IB)
   1055   ENCODING("SSECC",           ENCODING_IB)
   1056   ENCODING("XOPCC",           ENCODING_IB)
   1057   ENCODING("AVXCC",           ENCODING_IB)
   1058   ENCODING("AVX512ICC",       ENCODING_IB)
   1059   ENCODING("AVX512RC",        ENCODING_IB)
   1060   ENCODING("i16imm",          ENCODING_Iv)
   1061   ENCODING("i16i8imm",        ENCODING_IB)
   1062   ENCODING("i32imm",          ENCODING_Iv)
   1063   ENCODING("i64i32imm",       ENCODING_ID)
   1064   ENCODING("i64i8imm",        ENCODING_IB)
   1065   ENCODING("i8imm",           ENCODING_IB)
   1066   ENCODING("u8imm",           ENCODING_IB)
   1067   ENCODING("i32u8imm",        ENCODING_IB)
   1068   // This is not a typo.  Instructions like BLENDVPD put
   1069   // register IDs in 8-bit immediates nowadays.
   1070   ENCODING("FR32",            ENCODING_IB)
   1071   ENCODING("FR64",            ENCODING_IB)
   1072   ENCODING("FR128",           ENCODING_IB)
   1073   ENCODING("VR128",           ENCODING_IB)
   1074   ENCODING("VR256",           ENCODING_IB)
   1075   ENCODING("FR32X",           ENCODING_IB)
   1076   ENCODING("FR64X",           ENCODING_IB)
   1077   ENCODING("VR128X",          ENCODING_IB)
   1078   ENCODING("VR256X",          ENCODING_IB)
   1079   ENCODING("VR512",           ENCODING_IB)
   1080   errs() << "Unhandled immediate encoding " << s << "\n";
   1081   llvm_unreachable("Unhandled immediate encoding");
   1082 }
   1083 
   1084 OperandEncoding
   1085 RecognizableInstr::rmRegisterEncodingFromString(const std::string &s,
   1086                                                 uint8_t OpSize) {
   1087   ENCODING("RST",             ENCODING_FP)
   1088   ENCODING("GR16",            ENCODING_RM)
   1089   ENCODING("GR32",            ENCODING_RM)
   1090   ENCODING("GR32orGR64",      ENCODING_RM)
   1091   ENCODING("GR64",            ENCODING_RM)
   1092   ENCODING("GR8",             ENCODING_RM)
   1093   ENCODING("VR128",           ENCODING_RM)
   1094   ENCODING("VR128X",          ENCODING_RM)
   1095   ENCODING("FR128",           ENCODING_RM)
   1096   ENCODING("FR64",            ENCODING_RM)
   1097   ENCODING("FR32",            ENCODING_RM)
   1098   ENCODING("FR64X",           ENCODING_RM)
   1099   ENCODING("FR32X",           ENCODING_RM)
   1100   ENCODING("VR64",            ENCODING_RM)
   1101   ENCODING("VR256",           ENCODING_RM)
   1102   ENCODING("VR256X",          ENCODING_RM)
   1103   ENCODING("VR512",           ENCODING_RM)
   1104   ENCODING("VK1",             ENCODING_RM)
   1105   ENCODING("VK2",             ENCODING_RM)
   1106   ENCODING("VK4",             ENCODING_RM)
   1107   ENCODING("VK8",             ENCODING_RM)
   1108   ENCODING("VK16",            ENCODING_RM)
   1109   ENCODING("VK32",            ENCODING_RM)
   1110   ENCODING("VK64",            ENCODING_RM)
   1111   ENCODING("BNDR",            ENCODING_RM)
   1112   errs() << "Unhandled R/M register encoding " << s << "\n";
   1113   llvm_unreachable("Unhandled R/M register encoding");
   1114 }
   1115 
   1116 OperandEncoding
   1117 RecognizableInstr::roRegisterEncodingFromString(const std::string &s,
   1118                                                 uint8_t OpSize) {
   1119   ENCODING("GR16",            ENCODING_REG)
   1120   ENCODING("GR32",            ENCODING_REG)
   1121   ENCODING("GR32orGR64",      ENCODING_REG)
   1122   ENCODING("GR64",            ENCODING_REG)
   1123   ENCODING("GR8",             ENCODING_REG)
   1124   ENCODING("VR128",           ENCODING_REG)
   1125   ENCODING("FR128",           ENCODING_REG)
   1126   ENCODING("FR64",            ENCODING_REG)
   1127   ENCODING("FR32",            ENCODING_REG)
   1128   ENCODING("VR64",            ENCODING_REG)
   1129   ENCODING("SEGMENT_REG",     ENCODING_REG)
   1130   ENCODING("DEBUG_REG",       ENCODING_REG)
   1131   ENCODING("CONTROL_REG",     ENCODING_REG)
   1132   ENCODING("VR256",           ENCODING_REG)
   1133   ENCODING("VR256X",          ENCODING_REG)
   1134   ENCODING("VR128X",          ENCODING_REG)
   1135   ENCODING("FR64X",           ENCODING_REG)
   1136   ENCODING("FR32X",           ENCODING_REG)
   1137   ENCODING("VR512",           ENCODING_REG)
   1138   ENCODING("VK1",             ENCODING_REG)
   1139   ENCODING("VK2",             ENCODING_REG)
   1140   ENCODING("VK4",             ENCODING_REG)
   1141   ENCODING("VK8",             ENCODING_REG)
   1142   ENCODING("VK16",            ENCODING_REG)
   1143   ENCODING("VK32",            ENCODING_REG)
   1144   ENCODING("VK64",            ENCODING_REG)
   1145   ENCODING("VK1WM",           ENCODING_REG)
   1146   ENCODING("VK2WM",           ENCODING_REG)
   1147   ENCODING("VK4WM",           ENCODING_REG)
   1148   ENCODING("VK8WM",           ENCODING_REG)
   1149   ENCODING("VK16WM",          ENCODING_REG)
   1150   ENCODING("VK32WM",          ENCODING_REG)
   1151   ENCODING("VK64WM",          ENCODING_REG)
   1152   ENCODING("BNDR",            ENCODING_REG)
   1153   errs() << "Unhandled reg/opcode register encoding " << s << "\n";
   1154   llvm_unreachable("Unhandled reg/opcode register encoding");
   1155 }
   1156 
   1157 OperandEncoding
   1158 RecognizableInstr::vvvvRegisterEncodingFromString(const std::string &s,
   1159                                                   uint8_t OpSize) {
   1160   ENCODING("GR32",            ENCODING_VVVV)
   1161   ENCODING("GR64",            ENCODING_VVVV)
   1162   ENCODING("FR32",            ENCODING_VVVV)
   1163   ENCODING("FR128",           ENCODING_VVVV)
   1164   ENCODING("FR64",            ENCODING_VVVV)
   1165   ENCODING("VR128",           ENCODING_VVVV)
   1166   ENCODING("VR256",           ENCODING_VVVV)
   1167   ENCODING("FR32X",           ENCODING_VVVV)
   1168   ENCODING("FR64X",           ENCODING_VVVV)
   1169   ENCODING("VR128X",          ENCODING_VVVV)
   1170   ENCODING("VR256X",          ENCODING_VVVV)
   1171   ENCODING("VR512",           ENCODING_VVVV)
   1172   ENCODING("VK1",             ENCODING_VVVV)
   1173   ENCODING("VK2",             ENCODING_VVVV)
   1174   ENCODING("VK4",             ENCODING_VVVV)
   1175   ENCODING("VK8",             ENCODING_VVVV)
   1176   ENCODING("VK16",            ENCODING_VVVV)
   1177   ENCODING("VK32",            ENCODING_VVVV)
   1178   ENCODING("VK64",            ENCODING_VVVV)
   1179   errs() << "Unhandled VEX.vvvv register encoding " << s << "\n";
   1180   llvm_unreachable("Unhandled VEX.vvvv register encoding");
   1181 }
   1182 
   1183 OperandEncoding
   1184 RecognizableInstr::writemaskRegisterEncodingFromString(const std::string &s,
   1185                                                        uint8_t OpSize) {
   1186   ENCODING("VK1WM",           ENCODING_WRITEMASK)
   1187   ENCODING("VK2WM",           ENCODING_WRITEMASK)
   1188   ENCODING("VK4WM",           ENCODING_WRITEMASK)
   1189   ENCODING("VK8WM",           ENCODING_WRITEMASK)
   1190   ENCODING("VK16WM",          ENCODING_WRITEMASK)
   1191   ENCODING("VK32WM",          ENCODING_WRITEMASK)
   1192   ENCODING("VK64WM",          ENCODING_WRITEMASK)
   1193   errs() << "Unhandled mask register encoding " << s << "\n";
   1194   llvm_unreachable("Unhandled mask register encoding");
   1195 }
   1196 
   1197 OperandEncoding
   1198 RecognizableInstr::memoryEncodingFromString(const std::string &s,
   1199                                             uint8_t OpSize) {
   1200   ENCODING("i16mem",          ENCODING_RM)
   1201   ENCODING("i32mem",          ENCODING_RM)
   1202   ENCODING("i64mem",          ENCODING_RM)
   1203   ENCODING("i8mem",           ENCODING_RM)
   1204   ENCODING("ssmem",           ENCODING_RM)
   1205   ENCODING("sdmem",           ENCODING_RM)
   1206   ENCODING("f128mem",         ENCODING_RM)
   1207   ENCODING("f256mem",         ENCODING_RM)
   1208   ENCODING("f512mem",         ENCODING_RM)
   1209   ENCODING("f64mem",          ENCODING_RM)
   1210   ENCODING("f32mem",          ENCODING_RM)
   1211   ENCODING("i128mem",         ENCODING_RM)
   1212   ENCODING("i256mem",         ENCODING_RM)
   1213   ENCODING("i512mem",         ENCODING_RM)
   1214   ENCODING("f80mem",          ENCODING_RM)
   1215   ENCODING("lea64_32mem",     ENCODING_RM)
   1216   ENCODING("lea64mem",        ENCODING_RM)
   1217   ENCODING("anymem",          ENCODING_RM)
   1218   ENCODING("opaque32mem",     ENCODING_RM)
   1219   ENCODING("opaque48mem",     ENCODING_RM)
   1220   ENCODING("opaque80mem",     ENCODING_RM)
   1221   ENCODING("opaque512mem",    ENCODING_RM)
   1222   ENCODING("vx64mem",         ENCODING_RM)
   1223   ENCODING("vx128mem",        ENCODING_RM)
   1224   ENCODING("vx256mem",        ENCODING_RM)
   1225   ENCODING("vy128mem",        ENCODING_RM)
   1226   ENCODING("vy256mem",        ENCODING_RM)
   1227   ENCODING("vx64xmem",        ENCODING_RM)
   1228   ENCODING("vx128xmem",       ENCODING_RM)
   1229   ENCODING("vx256xmem",       ENCODING_RM)
   1230   ENCODING("vy128xmem",       ENCODING_RM)
   1231   ENCODING("vy256xmem",       ENCODING_RM)
   1232   ENCODING("vy512mem",        ENCODING_RM)
   1233   ENCODING("vz512mem",        ENCODING_RM)
   1234   errs() << "Unhandled memory encoding " << s << "\n";
   1235   llvm_unreachable("Unhandled memory encoding");
   1236 }
   1237 
   1238 OperandEncoding
   1239 RecognizableInstr::relocationEncodingFromString(const std::string &s,
   1240                                                 uint8_t OpSize) {
   1241   if(OpSize != X86Local::OpSize16) {
   1242     // For instructions without an OpSize prefix, a declared 16-bit register or
   1243     // immediate encoding is special.
   1244     ENCODING("i16imm",        ENCODING_IW)
   1245   }
   1246   ENCODING("i16imm",          ENCODING_Iv)
   1247   ENCODING("i16i8imm",        ENCODING_IB)
   1248   ENCODING("i32imm",          ENCODING_Iv)
   1249   ENCODING("i32i8imm",        ENCODING_IB)
   1250   ENCODING("i64i32imm",       ENCODING_ID)
   1251   ENCODING("i64i8imm",        ENCODING_IB)
   1252   ENCODING("i8imm",           ENCODING_IB)
   1253   ENCODING("u8imm",           ENCODING_IB)
   1254   ENCODING("i32u8imm",        ENCODING_IB)
   1255   ENCODING("i64i32imm_pcrel", ENCODING_ID)
   1256   ENCODING("i16imm_pcrel",    ENCODING_IW)
   1257   ENCODING("i32imm_pcrel",    ENCODING_ID)
   1258   ENCODING("brtarget32",      ENCODING_Iv)
   1259   ENCODING("brtarget16",      ENCODING_Iv)
   1260   ENCODING("brtarget8",       ENCODING_IB)
   1261   ENCODING("i64imm",          ENCODING_IO)
   1262   ENCODING("offset16_8",      ENCODING_Ia)
   1263   ENCODING("offset16_16",     ENCODING_Ia)
   1264   ENCODING("offset16_32",     ENCODING_Ia)
   1265   ENCODING("offset32_8",      ENCODING_Ia)
   1266   ENCODING("offset32_16",     ENCODING_Ia)
   1267   ENCODING("offset32_32",     ENCODING_Ia)
   1268   ENCODING("offset32_64",     ENCODING_Ia)
   1269   ENCODING("offset64_8",      ENCODING_Ia)
   1270   ENCODING("offset64_16",     ENCODING_Ia)
   1271   ENCODING("offset64_32",     ENCODING_Ia)
   1272   ENCODING("offset64_64",     ENCODING_Ia)
   1273   ENCODING("srcidx8",         ENCODING_SI)
   1274   ENCODING("srcidx16",        ENCODING_SI)
   1275   ENCODING("srcidx32",        ENCODING_SI)
   1276   ENCODING("srcidx64",        ENCODING_SI)
   1277   ENCODING("dstidx8",         ENCODING_DI)
   1278   ENCODING("dstidx16",        ENCODING_DI)
   1279   ENCODING("dstidx32",        ENCODING_DI)
   1280   ENCODING("dstidx64",        ENCODING_DI)
   1281   errs() << "Unhandled relocation encoding " << s << "\n";
   1282   llvm_unreachable("Unhandled relocation encoding");
   1283 }
   1284 
   1285 OperandEncoding
   1286 RecognizableInstr::opcodeModifierEncodingFromString(const std::string &s,
   1287                                                     uint8_t OpSize) {
   1288   ENCODING("GR32",            ENCODING_Rv)
   1289   ENCODING("GR64",            ENCODING_RO)
   1290   ENCODING("GR16",            ENCODING_Rv)
   1291   ENCODING("GR8",             ENCODING_RB)
   1292   ENCODING("GR32_NOAX",       ENCODING_Rv)
   1293   errs() << "Unhandled opcode modifier encoding " << s << "\n";
   1294   llvm_unreachable("Unhandled opcode modifier encoding");
   1295 }
   1296 #undef ENCODING
   1297