1 // Copyright 2007, Google Inc. 2 // All rights reserved. 3 // 4 // Redistribution and use in source and binary forms, with or without 5 // modification, are permitted provided that the following conditions are 6 // met: 7 // 8 // * Redistributions of source code must retain the above copyright 9 // notice, this list of conditions and the following disclaimer. 10 // * Redistributions in binary form must reproduce the above 11 // copyright notice, this list of conditions and the following disclaimer 12 // in the documentation and/or other materials provided with the 13 // distribution. 14 // * Neither the name of Google Inc. nor the names of its 15 // contributors may be used to endorse or promote products derived from 16 // this software without specific prior written permission. 17 // 18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 // 30 // Author: wan (at) google.com (Zhanyong Wan) 31 32 // Google Test - The Google C++ Testing Framework 33 // 34 // This file implements a universal value printer that can print a 35 // value of any type T: 36 // 37 // void ::testing::internal::UniversalPrinter<T>::Print(value, ostream_ptr); 38 // 39 // A user can teach this function how to print a class type T by 40 // defining either operator<<() or PrintTo() in the namespace that 41 // defines T. More specifically, the FIRST defined function in the 42 // following list will be used (assuming T is defined in namespace 43 // foo): 44 // 45 // 1. foo::PrintTo(const T&, ostream*) 46 // 2. operator<<(ostream&, const T&) defined in either foo or the 47 // global namespace. 48 // 49 // If none of the above is defined, it will print the debug string of 50 // the value if it is a protocol buffer, or print the raw bytes in the 51 // value otherwise. 52 // 53 // To aid debugging: when T is a reference type, the address of the 54 // value is also printed; when T is a (const) char pointer, both the 55 // pointer value and the NUL-terminated string it points to are 56 // printed. 57 // 58 // We also provide some convenient wrappers: 59 // 60 // // Prints a value to a string. For a (const or not) char 61 // // pointer, the NUL-terminated string (but not the pointer) is 62 // // printed. 63 // std::string ::testing::PrintToString(const T& value); 64 // 65 // // Prints a value tersely: for a reference type, the referenced 66 // // value (but not the address) is printed; for a (const or not) char 67 // // pointer, the NUL-terminated string (but not the pointer) is 68 // // printed. 69 // void ::testing::internal::UniversalTersePrint(const T& value, ostream*); 70 // 71 // // Prints value using the type inferred by the compiler. The difference 72 // // from UniversalTersePrint() is that this function prints both the 73 // // pointer and the NUL-terminated string for a (const or not) char pointer. 74 // void ::testing::internal::UniversalPrint(const T& value, ostream*); 75 // 76 // // Prints the fields of a tuple tersely to a string vector, one 77 // // element for each field. Tuple support must be enabled in 78 // // gtest-port.h. 79 // std::vector<string> UniversalTersePrintTupleFieldsToStrings( 80 // const Tuple& value); 81 // 82 // Known limitation: 83 // 84 // The print primitives print the elements of an STL-style container 85 // using the compiler-inferred type of *iter where iter is a 86 // const_iterator of the container. When const_iterator is an input 87 // iterator but not a forward iterator, this inferred type may not 88 // match value_type, and the print output may be incorrect. In 89 // practice, this is rarely a problem as for most containers 90 // const_iterator is a forward iterator. We'll fix this if there's an 91 // actual need for it. Note that this fix cannot rely on value_type 92 // being defined as many user-defined container types don't have 93 // value_type. 94 95 #ifndef GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_ 96 #define GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_ 97 98 #include <ostream> // NOLINT 99 #include <sstream> 100 #include <string> 101 #include <utility> 102 #include <vector> 103 #include "gtest/internal/gtest-port.h" 104 #include "gtest/internal/gtest-internal.h" 105 106 namespace testing { 107 108 // Definitions in the 'internal' and 'internal2' name spaces are 109 // subject to change without notice. DO NOT USE THEM IN USER CODE! 110 namespace internal2 { 111 112 // Prints the given number of bytes in the given object to the given 113 // ostream. 114 GTEST_API_ void PrintBytesInObjectTo(const unsigned char* obj_bytes, 115 size_t count, 116 ::std::ostream* os); 117 118 // For selecting which printer to use when a given type has neither << 119 // nor PrintTo(). 120 enum TypeKind { 121 kProtobuf, // a protobuf type 122 kConvertibleToInteger, // a type implicitly convertible to BiggestInt 123 // (e.g. a named or unnamed enum type) 124 kOtherType // anything else 125 }; 126 127 // TypeWithoutFormatter<T, kTypeKind>::PrintValue(value, os) is called 128 // by the universal printer to print a value of type T when neither 129 // operator<< nor PrintTo() is defined for T, where kTypeKind is the 130 // "kind" of T as defined by enum TypeKind. 131 template <typename T, TypeKind kTypeKind> 132 class TypeWithoutFormatter { 133 public: 134 // This default version is called when kTypeKind is kOtherType. 135 static void PrintValue(const T& value, ::std::ostream* os) { 136 PrintBytesInObjectTo(reinterpret_cast<const unsigned char*>(&value), 137 sizeof(value), os); 138 } 139 }; 140 141 // We print a protobuf using its ShortDebugString() when the string 142 // doesn't exceed this many characters; otherwise we print it using 143 // DebugString() for better readability. 144 const size_t kProtobufOneLinerMaxLength = 50; 145 146 template <typename T> 147 class TypeWithoutFormatter<T, kProtobuf> { 148 public: 149 static void PrintValue(const T& value, ::std::ostream* os) { 150 const ::testing::internal::string short_str = value.ShortDebugString(); 151 const ::testing::internal::string pretty_str = 152 short_str.length() <= kProtobufOneLinerMaxLength ? 153 short_str : ("\n" + value.DebugString()); 154 *os << ("<" + pretty_str + ">"); 155 } 156 }; 157 158 template <typename T> 159 class TypeWithoutFormatter<T, kConvertibleToInteger> { 160 public: 161 // Since T has no << operator or PrintTo() but can be implicitly 162 // converted to BiggestInt, we print it as a BiggestInt. 163 // 164 // Most likely T is an enum type (either named or unnamed), in which 165 // case printing it as an integer is the desired behavior. In case 166 // T is not an enum, printing it as an integer is the best we can do 167 // given that it has no user-defined printer. 168 static void PrintValue(const T& value, ::std::ostream* os) { 169 const internal::BiggestInt kBigInt = value; 170 *os << kBigInt; 171 } 172 }; 173 174 // Prints the given value to the given ostream. If the value is a 175 // protocol message, its debug string is printed; if it's an enum or 176 // of a type implicitly convertible to BiggestInt, it's printed as an 177 // integer; otherwise the bytes in the value are printed. This is 178 // what UniversalPrinter<T>::Print() does when it knows nothing about 179 // type T and T has neither << operator nor PrintTo(). 180 // 181 // A user can override this behavior for a class type Foo by defining 182 // a << operator in the namespace where Foo is defined. 183 // 184 // We put this operator in namespace 'internal2' instead of 'internal' 185 // to simplify the implementation, as much code in 'internal' needs to 186 // use << in STL, which would conflict with our own << were it defined 187 // in 'internal'. 188 // 189 // Note that this operator<< takes a generic std::basic_ostream<Char, 190 // CharTraits> type instead of the more restricted std::ostream. If 191 // we define it to take an std::ostream instead, we'll get an 192 // "ambiguous overloads" compiler error when trying to print a type 193 // Foo that supports streaming to std::basic_ostream<Char, 194 // CharTraits>, as the compiler cannot tell whether 195 // operator<<(std::ostream&, const T&) or 196 // operator<<(std::basic_stream<Char, CharTraits>, const Foo&) is more 197 // specific. 198 template <typename Char, typename CharTraits, typename T> 199 ::std::basic_ostream<Char, CharTraits>& operator<<( 200 ::std::basic_ostream<Char, CharTraits>& os, const T& x) { 201 TypeWithoutFormatter<T, 202 (internal::IsAProtocolMessage<T>::value ? kProtobuf : 203 internal::ImplicitlyConvertible<const T&, internal::BiggestInt>::value ? 204 kConvertibleToInteger : kOtherType)>::PrintValue(x, &os); 205 return os; 206 } 207 208 } // namespace internal2 209 } // namespace testing 210 211 // This namespace MUST NOT BE NESTED IN ::testing, or the name look-up 212 // magic needed for implementing UniversalPrinter won't work. 213 namespace testing_internal { 214 215 // Used to print a value that is not an STL-style container when the 216 // user doesn't define PrintTo() for it. 217 template <typename T> 218 void DefaultPrintNonContainerTo(const T& value, ::std::ostream* os) { 219 // With the following statement, during unqualified name lookup, 220 // testing::internal2::operator<< appears as if it was declared in 221 // the nearest enclosing namespace that contains both 222 // ::testing_internal and ::testing::internal2, i.e. the global 223 // namespace. For more details, refer to the C++ Standard section 224 // 7.3.4-1 [namespace.udir]. This allows us to fall back onto 225 // testing::internal2::operator<< in case T doesn't come with a << 226 // operator. 227 // 228 // We cannot write 'using ::testing::internal2::operator<<;', which 229 // gcc 3.3 fails to compile due to a compiler bug. 230 using namespace ::testing::internal2; // NOLINT 231 232 // Assuming T is defined in namespace foo, in the next statement, 233 // the compiler will consider all of: 234 // 235 // 1. foo::operator<< (thanks to Koenig look-up), 236 // 2. ::operator<< (as the current namespace is enclosed in ::), 237 // 3. testing::internal2::operator<< (thanks to the using statement above). 238 // 239 // The operator<< whose type matches T best will be picked. 240 // 241 // We deliberately allow #2 to be a candidate, as sometimes it's 242 // impossible to define #1 (e.g. when foo is ::std, defining 243 // anything in it is undefined behavior unless you are a compiler 244 // vendor.). 245 *os << value; 246 } 247 248 } // namespace testing_internal 249 250 namespace testing { 251 namespace internal { 252 253 // UniversalPrinter<T>::Print(value, ostream_ptr) prints the given 254 // value to the given ostream. The caller must ensure that 255 // 'ostream_ptr' is not NULL, or the behavior is undefined. 256 // 257 // We define UniversalPrinter as a class template (as opposed to a 258 // function template), as we need to partially specialize it for 259 // reference types, which cannot be done with function templates. 260 template <typename T> 261 class UniversalPrinter; 262 263 template <typename T> 264 void UniversalPrint(const T& value, ::std::ostream* os); 265 266 // Used to print an STL-style container when the user doesn't define 267 // a PrintTo() for it. 268 template <typename C> 269 void DefaultPrintTo(IsContainer /* dummy */, 270 false_type /* is not a pointer */, 271 const C& container, ::std::ostream* os) { 272 const size_t kMaxCount = 32; // The maximum number of elements to print. 273 *os << '{'; 274 size_t count = 0; 275 for (typename C::const_iterator it = container.begin(); 276 it != container.end(); ++it, ++count) { 277 if (count > 0) { 278 *os << ','; 279 if (count == kMaxCount) { // Enough has been printed. 280 *os << " ..."; 281 break; 282 } 283 } 284 *os << ' '; 285 // We cannot call PrintTo(*it, os) here as PrintTo() doesn't 286 // handle *it being a native array. 287 internal::UniversalPrint(*it, os); 288 } 289 290 if (count > 0) { 291 *os << ' '; 292 } 293 *os << '}'; 294 } 295 296 // Used to print a pointer that is neither a char pointer nor a member 297 // pointer, when the user doesn't define PrintTo() for it. (A member 298 // variable pointer or member function pointer doesn't really point to 299 // a location in the address space. Their representation is 300 // implementation-defined. Therefore they will be printed as raw 301 // bytes.) 302 template <typename T> 303 void DefaultPrintTo(IsNotContainer /* dummy */, 304 true_type /* is a pointer */, 305 T* p, ::std::ostream* os) { 306 if (p == NULL) { 307 *os << "NULL"; 308 } else { 309 // C++ doesn't allow casting from a function pointer to any object 310 // pointer. 311 // 312 // IsTrue() silences warnings: "Condition is always true", 313 // "unreachable code". 314 if (IsTrue(ImplicitlyConvertible<T*, const void*>::value)) { 315 // T is not a function type. We just call << to print p, 316 // relying on ADL to pick up user-defined << for their pointer 317 // types, if any. 318 *os << p; 319 } else { 320 // T is a function type, so '*os << p' doesn't do what we want 321 // (it just prints p as bool). We want to print p as a const 322 // void*. However, we cannot cast it to const void* directly, 323 // even using reinterpret_cast, as earlier versions of gcc 324 // (e.g. 3.4.5) cannot compile the cast when p is a function 325 // pointer. Casting to UInt64 first solves the problem. 326 *os << reinterpret_cast<const void*>( 327 reinterpret_cast<internal::UInt64>(p)); 328 } 329 } 330 } 331 332 // Used to print a non-container, non-pointer value when the user 333 // doesn't define PrintTo() for it. 334 template <typename T> 335 void DefaultPrintTo(IsNotContainer /* dummy */, 336 false_type /* is not a pointer */, 337 const T& value, ::std::ostream* os) { 338 ::testing_internal::DefaultPrintNonContainerTo(value, os); 339 } 340 341 // Prints the given value using the << operator if it has one; 342 // otherwise prints the bytes in it. This is what 343 // UniversalPrinter<T>::Print() does when PrintTo() is not specialized 344 // or overloaded for type T. 345 // 346 // A user can override this behavior for a class type Foo by defining 347 // an overload of PrintTo() in the namespace where Foo is defined. We 348 // give the user this option as sometimes defining a << operator for 349 // Foo is not desirable (e.g. the coding style may prevent doing it, 350 // or there is already a << operator but it doesn't do what the user 351 // wants). 352 template <typename T> 353 void PrintTo(const T& value, ::std::ostream* os) { 354 // DefaultPrintTo() is overloaded. The type of its first two 355 // arguments determine which version will be picked. If T is an 356 // STL-style container, the version for container will be called; if 357 // T is a pointer, the pointer version will be called; otherwise the 358 // generic version will be called. 359 // 360 // Note that we check for container types here, prior to we check 361 // for protocol message types in our operator<<. The rationale is: 362 // 363 // For protocol messages, we want to give people a chance to 364 // override Google Mock's format by defining a PrintTo() or 365 // operator<<. For STL containers, other formats can be 366 // incompatible with Google Mock's format for the container 367 // elements; therefore we check for container types here to ensure 368 // that our format is used. 369 // 370 // The second argument of DefaultPrintTo() is needed to bypass a bug 371 // in Symbian's C++ compiler that prevents it from picking the right 372 // overload between: 373 // 374 // PrintTo(const T& x, ...); 375 // PrintTo(T* x, ...); 376 DefaultPrintTo(IsContainerTest<T>(0), is_pointer<T>(), value, os); 377 } 378 379 // The following list of PrintTo() overloads tells 380 // UniversalPrinter<T>::Print() how to print standard types (built-in 381 // types, strings, plain arrays, and pointers). 382 383 // Overloads for various char types. 384 GTEST_API_ void PrintTo(unsigned char c, ::std::ostream* os); 385 GTEST_API_ void PrintTo(signed char c, ::std::ostream* os); 386 inline void PrintTo(char c, ::std::ostream* os) { 387 // When printing a plain char, we always treat it as unsigned. This 388 // way, the output won't be affected by whether the compiler thinks 389 // char is signed or not. 390 PrintTo(static_cast<unsigned char>(c), os); 391 } 392 393 // Overloads for other simple built-in types. 394 inline void PrintTo(bool x, ::std::ostream* os) { 395 *os << (x ? "true" : "false"); 396 } 397 398 // Overload for wchar_t type. 399 // Prints a wchar_t as a symbol if it is printable or as its internal 400 // code otherwise and also as its decimal code (except for L'\0'). 401 // The L'\0' char is printed as "L'\\0'". The decimal code is printed 402 // as signed integer when wchar_t is implemented by the compiler 403 // as a signed type and is printed as an unsigned integer when wchar_t 404 // is implemented as an unsigned type. 405 GTEST_API_ void PrintTo(wchar_t wc, ::std::ostream* os); 406 407 // Overloads for C strings. 408 GTEST_API_ void PrintTo(const char* s, ::std::ostream* os); 409 inline void PrintTo(char* s, ::std::ostream* os) { 410 PrintTo(ImplicitCast_<const char*>(s), os); 411 } 412 413 // signed/unsigned char is often used for representing binary data, so 414 // we print pointers to it as void* to be safe. 415 inline void PrintTo(const signed char* s, ::std::ostream* os) { 416 PrintTo(ImplicitCast_<const void*>(s), os); 417 } 418 inline void PrintTo(signed char* s, ::std::ostream* os) { 419 PrintTo(ImplicitCast_<const void*>(s), os); 420 } 421 inline void PrintTo(const unsigned char* s, ::std::ostream* os) { 422 PrintTo(ImplicitCast_<const void*>(s), os); 423 } 424 inline void PrintTo(unsigned char* s, ::std::ostream* os) { 425 PrintTo(ImplicitCast_<const void*>(s), os); 426 } 427 428 // MSVC can be configured to define wchar_t as a typedef of unsigned 429 // short. It defines _NATIVE_WCHAR_T_DEFINED when wchar_t is a native 430 // type. When wchar_t is a typedef, defining an overload for const 431 // wchar_t* would cause unsigned short* be printed as a wide string, 432 // possibly causing invalid memory accesses. 433 #if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED) 434 // Overloads for wide C strings 435 GTEST_API_ void PrintTo(const wchar_t* s, ::std::ostream* os); 436 inline void PrintTo(wchar_t* s, ::std::ostream* os) { 437 PrintTo(ImplicitCast_<const wchar_t*>(s), os); 438 } 439 #endif 440 441 // Overload for C arrays. Multi-dimensional arrays are printed 442 // properly. 443 444 // Prints the given number of elements in an array, without printing 445 // the curly braces. 446 template <typename T> 447 void PrintRawArrayTo(const T a[], size_t count, ::std::ostream* os) { 448 UniversalPrint(a[0], os); 449 for (size_t i = 1; i != count; i++) { 450 *os << ", "; 451 UniversalPrint(a[i], os); 452 } 453 } 454 455 // Overloads for ::string and ::std::string. 456 #if GTEST_HAS_GLOBAL_STRING 457 GTEST_API_ void PrintStringTo(const ::string&s, ::std::ostream* os); 458 inline void PrintTo(const ::string& s, ::std::ostream* os) { 459 PrintStringTo(s, os); 460 } 461 #endif // GTEST_HAS_GLOBAL_STRING 462 463 GTEST_API_ void PrintStringTo(const ::std::string&s, ::std::ostream* os); 464 inline void PrintTo(const ::std::string& s, ::std::ostream* os) { 465 PrintStringTo(s, os); 466 } 467 468 // Overloads for ::wstring and ::std::wstring. 469 #if GTEST_HAS_GLOBAL_WSTRING 470 GTEST_API_ void PrintWideStringTo(const ::wstring&s, ::std::ostream* os); 471 inline void PrintTo(const ::wstring& s, ::std::ostream* os) { 472 PrintWideStringTo(s, os); 473 } 474 #endif // GTEST_HAS_GLOBAL_WSTRING 475 476 #if GTEST_HAS_STD_WSTRING 477 GTEST_API_ void PrintWideStringTo(const ::std::wstring&s, ::std::ostream* os); 478 inline void PrintTo(const ::std::wstring& s, ::std::ostream* os) { 479 PrintWideStringTo(s, os); 480 } 481 #endif // GTEST_HAS_STD_WSTRING 482 483 #if GTEST_HAS_TR1_TUPLE 484 // Overload for ::std::tr1::tuple. Needed for printing function arguments, 485 // which are packed as tuples. 486 487 // Helper function for printing a tuple. T must be instantiated with 488 // a tuple type. 489 template <typename T> 490 void PrintTupleTo(const T& t, ::std::ostream* os); 491 492 // Overloaded PrintTo() for tuples of various arities. We support 493 // tuples of up-to 10 fields. The following implementation works 494 // regardless of whether tr1::tuple is implemented using the 495 // non-standard variadic template feature or not. 496 497 inline void PrintTo(const ::std::tr1::tuple<>& t, ::std::ostream* os) { 498 PrintTupleTo(t, os); 499 } 500 501 template <typename T1> 502 void PrintTo(const ::std::tr1::tuple<T1>& t, ::std::ostream* os) { 503 PrintTupleTo(t, os); 504 } 505 506 template <typename T1, typename T2> 507 void PrintTo(const ::std::tr1::tuple<T1, T2>& t, ::std::ostream* os) { 508 PrintTupleTo(t, os); 509 } 510 511 template <typename T1, typename T2, typename T3> 512 void PrintTo(const ::std::tr1::tuple<T1, T2, T3>& t, ::std::ostream* os) { 513 PrintTupleTo(t, os); 514 } 515 516 template <typename T1, typename T2, typename T3, typename T4> 517 void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4>& t, ::std::ostream* os) { 518 PrintTupleTo(t, os); 519 } 520 521 template <typename T1, typename T2, typename T3, typename T4, typename T5> 522 void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5>& t, 523 ::std::ostream* os) { 524 PrintTupleTo(t, os); 525 } 526 527 template <typename T1, typename T2, typename T3, typename T4, typename T5, 528 typename T6> 529 void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6>& t, 530 ::std::ostream* os) { 531 PrintTupleTo(t, os); 532 } 533 534 template <typename T1, typename T2, typename T3, typename T4, typename T5, 535 typename T6, typename T7> 536 void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7>& t, 537 ::std::ostream* os) { 538 PrintTupleTo(t, os); 539 } 540 541 template <typename T1, typename T2, typename T3, typename T4, typename T5, 542 typename T6, typename T7, typename T8> 543 void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8>& t, 544 ::std::ostream* os) { 545 PrintTupleTo(t, os); 546 } 547 548 template <typename T1, typename T2, typename T3, typename T4, typename T5, 549 typename T6, typename T7, typename T8, typename T9> 550 void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8, T9>& t, 551 ::std::ostream* os) { 552 PrintTupleTo(t, os); 553 } 554 555 template <typename T1, typename T2, typename T3, typename T4, typename T5, 556 typename T6, typename T7, typename T8, typename T9, typename T10> 557 void PrintTo( 558 const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10>& t, 559 ::std::ostream* os) { 560 PrintTupleTo(t, os); 561 } 562 #endif // GTEST_HAS_TR1_TUPLE 563 564 // Overload for std::pair. 565 template <typename T1, typename T2> 566 void PrintTo(const ::std::pair<T1, T2>& value, ::std::ostream* os) { 567 *os << '('; 568 // We cannot use UniversalPrint(value.first, os) here, as T1 may be 569 // a reference type. The same for printing value.second. 570 UniversalPrinter<T1>::Print(value.first, os); 571 *os << ", "; 572 UniversalPrinter<T2>::Print(value.second, os); 573 *os << ')'; 574 } 575 576 // Implements printing a non-reference type T by letting the compiler 577 // pick the right overload of PrintTo() for T. 578 template <typename T> 579 class UniversalPrinter { 580 public: 581 // MSVC warns about adding const to a function type, so we want to 582 // disable the warning. 583 #ifdef _MSC_VER 584 # pragma warning(push) // Saves the current warning state. 585 # pragma warning(disable:4180) // Temporarily disables warning 4180. 586 #endif // _MSC_VER 587 588 // Note: we deliberately don't call this PrintTo(), as that name 589 // conflicts with ::testing::internal::PrintTo in the body of the 590 // function. 591 static void Print(const T& value, ::std::ostream* os) { 592 // By default, ::testing::internal::PrintTo() is used for printing 593 // the value. 594 // 595 // Thanks to Koenig look-up, if T is a class and has its own 596 // PrintTo() function defined in its namespace, that function will 597 // be visible here. Since it is more specific than the generic ones 598 // in ::testing::internal, it will be picked by the compiler in the 599 // following statement - exactly what we want. 600 PrintTo(value, os); 601 } 602 603 #ifdef _MSC_VER 604 # pragma warning(pop) // Restores the warning state. 605 #endif // _MSC_VER 606 }; 607 608 // UniversalPrintArray(begin, len, os) prints an array of 'len' 609 // elements, starting at address 'begin'. 610 template <typename T> 611 void UniversalPrintArray(const T* begin, size_t len, ::std::ostream* os) { 612 if (len == 0) { 613 *os << "{}"; 614 } else { 615 *os << "{ "; 616 const size_t kThreshold = 18; 617 const size_t kChunkSize = 8; 618 // If the array has more than kThreshold elements, we'll have to 619 // omit some details by printing only the first and the last 620 // kChunkSize elements. 621 // TODO(wan (at) google.com): let the user control the threshold using a flag. 622 if (len <= kThreshold) { 623 PrintRawArrayTo(begin, len, os); 624 } else { 625 PrintRawArrayTo(begin, kChunkSize, os); 626 *os << ", ..., "; 627 PrintRawArrayTo(begin + len - kChunkSize, kChunkSize, os); 628 } 629 *os << " }"; 630 } 631 } 632 // This overload prints a (const) char array compactly. 633 GTEST_API_ void UniversalPrintArray(const char* begin, 634 size_t len, 635 ::std::ostream* os); 636 637 // Implements printing an array type T[N]. 638 template <typename T, size_t N> 639 class UniversalPrinter<T[N]> { 640 public: 641 // Prints the given array, omitting some elements when there are too 642 // many. 643 static void Print(const T (&a)[N], ::std::ostream* os) { 644 UniversalPrintArray(a, N, os); 645 } 646 }; 647 648 // Implements printing a reference type T&. 649 template <typename T> 650 class UniversalPrinter<T&> { 651 public: 652 // MSVC warns about adding const to a function type, so we want to 653 // disable the warning. 654 #ifdef _MSC_VER 655 # pragma warning(push) // Saves the current warning state. 656 # pragma warning(disable:4180) // Temporarily disables warning 4180. 657 #endif // _MSC_VER 658 659 static void Print(const T& value, ::std::ostream* os) { 660 // Prints the address of the value. We use reinterpret_cast here 661 // as static_cast doesn't compile when T is a function type. 662 *os << "@" << reinterpret_cast<const void*>(&value) << " "; 663 664 // Then prints the value itself. 665 UniversalPrint(value, os); 666 } 667 668 #ifdef _MSC_VER 669 # pragma warning(pop) // Restores the warning state. 670 #endif // _MSC_VER 671 }; 672 673 // Prints a value tersely: for a reference type, the referenced value 674 // (but not the address) is printed; for a (const) char pointer, the 675 // NUL-terminated string (but not the pointer) is printed. 676 template <typename T> 677 void UniversalTersePrint(const T& value, ::std::ostream* os) { 678 UniversalPrint(value, os); 679 } 680 inline void UniversalTersePrint(const char* str, ::std::ostream* os) { 681 if (str == NULL) { 682 *os << "NULL"; 683 } else { 684 UniversalPrint(string(str), os); 685 } 686 } 687 inline void UniversalTersePrint(char* str, ::std::ostream* os) { 688 UniversalTersePrint(static_cast<const char*>(str), os); 689 } 690 691 // Prints a value using the type inferred by the compiler. The 692 // difference between this and UniversalTersePrint() is that for a 693 // (const) char pointer, this prints both the pointer and the 694 // NUL-terminated string. 695 template <typename T> 696 void UniversalPrint(const T& value, ::std::ostream* os) { 697 UniversalPrinter<T>::Print(value, os); 698 } 699 700 #if GTEST_HAS_TR1_TUPLE 701 typedef ::std::vector<string> Strings; 702 703 // This helper template allows PrintTo() for tuples and 704 // UniversalTersePrintTupleFieldsToStrings() to be defined by 705 // induction on the number of tuple fields. The idea is that 706 // TuplePrefixPrinter<N>::PrintPrefixTo(t, os) prints the first N 707 // fields in tuple t, and can be defined in terms of 708 // TuplePrefixPrinter<N - 1>. 709 710 // The inductive case. 711 template <size_t N> 712 struct TuplePrefixPrinter { 713 // Prints the first N fields of a tuple. 714 template <typename Tuple> 715 static void PrintPrefixTo(const Tuple& t, ::std::ostream* os) { 716 TuplePrefixPrinter<N - 1>::PrintPrefixTo(t, os); 717 *os << ", "; 718 UniversalPrinter<typename ::std::tr1::tuple_element<N - 1, Tuple>::type> 719 ::Print(::std::tr1::get<N - 1>(t), os); 720 } 721 722 // Tersely prints the first N fields of a tuple to a string vector, 723 // one element for each field. 724 template <typename Tuple> 725 static void TersePrintPrefixToStrings(const Tuple& t, Strings* strings) { 726 TuplePrefixPrinter<N - 1>::TersePrintPrefixToStrings(t, strings); 727 ::std::stringstream ss; 728 UniversalTersePrint(::std::tr1::get<N - 1>(t), &ss); 729 strings->push_back(ss.str()); 730 } 731 }; 732 733 // Base cases. 734 template <> 735 struct TuplePrefixPrinter<0> { 736 template <typename Tuple> 737 static void PrintPrefixTo(const Tuple&, ::std::ostream*) {} 738 739 template <typename Tuple> 740 static void TersePrintPrefixToStrings(const Tuple&, Strings*) {} 741 }; 742 // We have to specialize the entire TuplePrefixPrinter<> class 743 // template here, even though the definition of 744 // TersePrintPrefixToStrings() is the same as the generic version, as 745 // Embarcadero (formerly CodeGear, formerly Borland) C++ doesn't 746 // support specializing a method template of a class template. 747 template <> 748 struct TuplePrefixPrinter<1> { 749 template <typename Tuple> 750 static void PrintPrefixTo(const Tuple& t, ::std::ostream* os) { 751 UniversalPrinter<typename ::std::tr1::tuple_element<0, Tuple>::type>:: 752 Print(::std::tr1::get<0>(t), os); 753 } 754 755 template <typename Tuple> 756 static void TersePrintPrefixToStrings(const Tuple& t, Strings* strings) { 757 ::std::stringstream ss; 758 UniversalTersePrint(::std::tr1::get<0>(t), &ss); 759 strings->push_back(ss.str()); 760 } 761 }; 762 763 // Helper function for printing a tuple. T must be instantiated with 764 // a tuple type. 765 template <typename T> 766 void PrintTupleTo(const T& t, ::std::ostream* os) { 767 *os << "("; 768 TuplePrefixPrinter< ::std::tr1::tuple_size<T>::value>:: 769 PrintPrefixTo(t, os); 770 *os << ")"; 771 } 772 773 // Prints the fields of a tuple tersely to a string vector, one 774 // element for each field. See the comment before 775 // UniversalTersePrint() for how we define "tersely". 776 template <typename Tuple> 777 Strings UniversalTersePrintTupleFieldsToStrings(const Tuple& value) { 778 Strings result; 779 TuplePrefixPrinter< ::std::tr1::tuple_size<Tuple>::value>:: 780 TersePrintPrefixToStrings(value, &result); 781 return result; 782 } 783 #endif // GTEST_HAS_TR1_TUPLE 784 785 } // namespace internal 786 787 template <typename T> 788 ::std::string PrintToString(const T& value) { 789 ::std::stringstream ss; 790 internal::UniversalTersePrint(value, &ss); 791 return ss.str(); 792 } 793 794 } // namespace testing 795 796 #endif // GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_ 797