Home | History | Annotate | Download | only in gtest
      1 // Copyright 2007, Google Inc.
      2 // All rights reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are
      6 // met:
      7 //
      8 //     * Redistributions of source code must retain the above copyright
      9 // notice, this list of conditions and the following disclaimer.
     10 //     * Redistributions in binary form must reproduce the above
     11 // copyright notice, this list of conditions and the following disclaimer
     12 // in the documentation and/or other materials provided with the
     13 // distribution.
     14 //     * Neither the name of Google Inc. nor the names of its
     15 // contributors may be used to endorse or promote products derived from
     16 // this software without specific prior written permission.
     17 //
     18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     29 //
     30 // Author: wan (at) google.com (Zhanyong Wan)
     31 
     32 // Google Test - The Google C++ Testing Framework
     33 //
     34 // This file implements a universal value printer that can print a
     35 // value of any type T:
     36 //
     37 //   void ::testing::internal::UniversalPrinter<T>::Print(value, ostream_ptr);
     38 //
     39 // A user can teach this function how to print a class type T by
     40 // defining either operator<<() or PrintTo() in the namespace that
     41 // defines T.  More specifically, the FIRST defined function in the
     42 // following list will be used (assuming T is defined in namespace
     43 // foo):
     44 //
     45 //   1. foo::PrintTo(const T&, ostream*)
     46 //   2. operator<<(ostream&, const T&) defined in either foo or the
     47 //      global namespace.
     48 //
     49 // If none of the above is defined, it will print the debug string of
     50 // the value if it is a protocol buffer, or print the raw bytes in the
     51 // value otherwise.
     52 //
     53 // To aid debugging: when T is a reference type, the address of the
     54 // value is also printed; when T is a (const) char pointer, both the
     55 // pointer value and the NUL-terminated string it points to are
     56 // printed.
     57 //
     58 // We also provide some convenient wrappers:
     59 //
     60 //   // Prints a value to a string.  For a (const or not) char
     61 //   // pointer, the NUL-terminated string (but not the pointer) is
     62 //   // printed.
     63 //   std::string ::testing::PrintToString(const T& value);
     64 //
     65 //   // Prints a value tersely: for a reference type, the referenced
     66 //   // value (but not the address) is printed; for a (const or not) char
     67 //   // pointer, the NUL-terminated string (but not the pointer) is
     68 //   // printed.
     69 //   void ::testing::internal::UniversalTersePrint(const T& value, ostream*);
     70 //
     71 //   // Prints value using the type inferred by the compiler.  The difference
     72 //   // from UniversalTersePrint() is that this function prints both the
     73 //   // pointer and the NUL-terminated string for a (const or not) char pointer.
     74 //   void ::testing::internal::UniversalPrint(const T& value, ostream*);
     75 //
     76 //   // Prints the fields of a tuple tersely to a string vector, one
     77 //   // element for each field. Tuple support must be enabled in
     78 //   // gtest-port.h.
     79 //   std::vector<string> UniversalTersePrintTupleFieldsToStrings(
     80 //       const Tuple& value);
     81 //
     82 // Known limitation:
     83 //
     84 // The print primitives print the elements of an STL-style container
     85 // using the compiler-inferred type of *iter where iter is a
     86 // const_iterator of the container.  When const_iterator is an input
     87 // iterator but not a forward iterator, this inferred type may not
     88 // match value_type, and the print output may be incorrect.  In
     89 // practice, this is rarely a problem as for most containers
     90 // const_iterator is a forward iterator.  We'll fix this if there's an
     91 // actual need for it.  Note that this fix cannot rely on value_type
     92 // being defined as many user-defined container types don't have
     93 // value_type.
     94 
     95 #ifndef GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_
     96 #define GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_
     97 
     98 #include <ostream>  // NOLINT
     99 #include <sstream>
    100 #include <string>
    101 #include <utility>
    102 #include <vector>
    103 #include "gtest/internal/gtest-port.h"
    104 #include "gtest/internal/gtest-internal.h"
    105 
    106 namespace testing {
    107 
    108 // Definitions in the 'internal' and 'internal2' name spaces are
    109 // subject to change without notice.  DO NOT USE THEM IN USER CODE!
    110 namespace internal2 {
    111 
    112 // Prints the given number of bytes in the given object to the given
    113 // ostream.
    114 GTEST_API_ void PrintBytesInObjectTo(const unsigned char* obj_bytes,
    115                                      size_t count,
    116                                      ::std::ostream* os);
    117 
    118 // For selecting which printer to use when a given type has neither <<
    119 // nor PrintTo().
    120 enum TypeKind {
    121   kProtobuf,              // a protobuf type
    122   kConvertibleToInteger,  // a type implicitly convertible to BiggestInt
    123                           // (e.g. a named or unnamed enum type)
    124   kOtherType              // anything else
    125 };
    126 
    127 // TypeWithoutFormatter<T, kTypeKind>::PrintValue(value, os) is called
    128 // by the universal printer to print a value of type T when neither
    129 // operator<< nor PrintTo() is defined for T, where kTypeKind is the
    130 // "kind" of T as defined by enum TypeKind.
    131 template <typename T, TypeKind kTypeKind>
    132 class TypeWithoutFormatter {
    133  public:
    134   // This default version is called when kTypeKind is kOtherType.
    135   static void PrintValue(const T& value, ::std::ostream* os) {
    136     PrintBytesInObjectTo(reinterpret_cast<const unsigned char*>(&value),
    137                          sizeof(value), os);
    138   }
    139 };
    140 
    141 // We print a protobuf using its ShortDebugString() when the string
    142 // doesn't exceed this many characters; otherwise we print it using
    143 // DebugString() for better readability.
    144 const size_t kProtobufOneLinerMaxLength = 50;
    145 
    146 template <typename T>
    147 class TypeWithoutFormatter<T, kProtobuf> {
    148  public:
    149   static void PrintValue(const T& value, ::std::ostream* os) {
    150     const ::testing::internal::string short_str = value.ShortDebugString();
    151     const ::testing::internal::string pretty_str =
    152         short_str.length() <= kProtobufOneLinerMaxLength ?
    153         short_str : ("\n" + value.DebugString());
    154     *os << ("<" + pretty_str + ">");
    155   }
    156 };
    157 
    158 template <typename T>
    159 class TypeWithoutFormatter<T, kConvertibleToInteger> {
    160  public:
    161   // Since T has no << operator or PrintTo() but can be implicitly
    162   // converted to BiggestInt, we print it as a BiggestInt.
    163   //
    164   // Most likely T is an enum type (either named or unnamed), in which
    165   // case printing it as an integer is the desired behavior.  In case
    166   // T is not an enum, printing it as an integer is the best we can do
    167   // given that it has no user-defined printer.
    168   static void PrintValue(const T& value, ::std::ostream* os) {
    169     const internal::BiggestInt kBigInt = value;
    170     *os << kBigInt;
    171   }
    172 };
    173 
    174 // Prints the given value to the given ostream.  If the value is a
    175 // protocol message, its debug string is printed; if it's an enum or
    176 // of a type implicitly convertible to BiggestInt, it's printed as an
    177 // integer; otherwise the bytes in the value are printed.  This is
    178 // what UniversalPrinter<T>::Print() does when it knows nothing about
    179 // type T and T has neither << operator nor PrintTo().
    180 //
    181 // A user can override this behavior for a class type Foo by defining
    182 // a << operator in the namespace where Foo is defined.
    183 //
    184 // We put this operator in namespace 'internal2' instead of 'internal'
    185 // to simplify the implementation, as much code in 'internal' needs to
    186 // use << in STL, which would conflict with our own << were it defined
    187 // in 'internal'.
    188 //
    189 // Note that this operator<< takes a generic std::basic_ostream<Char,
    190 // CharTraits> type instead of the more restricted std::ostream.  If
    191 // we define it to take an std::ostream instead, we'll get an
    192 // "ambiguous overloads" compiler error when trying to print a type
    193 // Foo that supports streaming to std::basic_ostream<Char,
    194 // CharTraits>, as the compiler cannot tell whether
    195 // operator<<(std::ostream&, const T&) or
    196 // operator<<(std::basic_stream<Char, CharTraits>, const Foo&) is more
    197 // specific.
    198 template <typename Char, typename CharTraits, typename T>
    199 ::std::basic_ostream<Char, CharTraits>& operator<<(
    200     ::std::basic_ostream<Char, CharTraits>& os, const T& x) {
    201   TypeWithoutFormatter<T,
    202       (internal::IsAProtocolMessage<T>::value ? kProtobuf :
    203        internal::ImplicitlyConvertible<const T&, internal::BiggestInt>::value ?
    204        kConvertibleToInteger : kOtherType)>::PrintValue(x, &os);
    205   return os;
    206 }
    207 
    208 }  // namespace internal2
    209 }  // namespace testing
    210 
    211 // This namespace MUST NOT BE NESTED IN ::testing, or the name look-up
    212 // magic needed for implementing UniversalPrinter won't work.
    213 namespace testing_internal {
    214 
    215 // Used to print a value that is not an STL-style container when the
    216 // user doesn't define PrintTo() for it.
    217 template <typename T>
    218 void DefaultPrintNonContainerTo(const T& value, ::std::ostream* os) {
    219   // With the following statement, during unqualified name lookup,
    220   // testing::internal2::operator<< appears as if it was declared in
    221   // the nearest enclosing namespace that contains both
    222   // ::testing_internal and ::testing::internal2, i.e. the global
    223   // namespace.  For more details, refer to the C++ Standard section
    224   // 7.3.4-1 [namespace.udir].  This allows us to fall back onto
    225   // testing::internal2::operator<< in case T doesn't come with a <<
    226   // operator.
    227   //
    228   // We cannot write 'using ::testing::internal2::operator<<;', which
    229   // gcc 3.3 fails to compile due to a compiler bug.
    230   using namespace ::testing::internal2;  // NOLINT
    231 
    232   // Assuming T is defined in namespace foo, in the next statement,
    233   // the compiler will consider all of:
    234   //
    235   //   1. foo::operator<< (thanks to Koenig look-up),
    236   //   2. ::operator<< (as the current namespace is enclosed in ::),
    237   //   3. testing::internal2::operator<< (thanks to the using statement above).
    238   //
    239   // The operator<< whose type matches T best will be picked.
    240   //
    241   // We deliberately allow #2 to be a candidate, as sometimes it's
    242   // impossible to define #1 (e.g. when foo is ::std, defining
    243   // anything in it is undefined behavior unless you are a compiler
    244   // vendor.).
    245   *os << value;
    246 }
    247 
    248 }  // namespace testing_internal
    249 
    250 namespace testing {
    251 namespace internal {
    252 
    253 // UniversalPrinter<T>::Print(value, ostream_ptr) prints the given
    254 // value to the given ostream.  The caller must ensure that
    255 // 'ostream_ptr' is not NULL, or the behavior is undefined.
    256 //
    257 // We define UniversalPrinter as a class template (as opposed to a
    258 // function template), as we need to partially specialize it for
    259 // reference types, which cannot be done with function templates.
    260 template <typename T>
    261 class UniversalPrinter;
    262 
    263 template <typename T>
    264 void UniversalPrint(const T& value, ::std::ostream* os);
    265 
    266 // Used to print an STL-style container when the user doesn't define
    267 // a PrintTo() for it.
    268 template <typename C>
    269 void DefaultPrintTo(IsContainer /* dummy */,
    270                     false_type /* is not a pointer */,
    271                     const C& container, ::std::ostream* os) {
    272   const size_t kMaxCount = 32;  // The maximum number of elements to print.
    273   *os << '{';
    274   size_t count = 0;
    275   for (typename C::const_iterator it = container.begin();
    276        it != container.end(); ++it, ++count) {
    277     if (count > 0) {
    278       *os << ',';
    279       if (count == kMaxCount) {  // Enough has been printed.
    280         *os << " ...";
    281         break;
    282       }
    283     }
    284     *os << ' ';
    285     // We cannot call PrintTo(*it, os) here as PrintTo() doesn't
    286     // handle *it being a native array.
    287     internal::UniversalPrint(*it, os);
    288   }
    289 
    290   if (count > 0) {
    291     *os << ' ';
    292   }
    293   *os << '}';
    294 }
    295 
    296 // Used to print a pointer that is neither a char pointer nor a member
    297 // pointer, when the user doesn't define PrintTo() for it.  (A member
    298 // variable pointer or member function pointer doesn't really point to
    299 // a location in the address space.  Their representation is
    300 // implementation-defined.  Therefore they will be printed as raw
    301 // bytes.)
    302 template <typename T>
    303 void DefaultPrintTo(IsNotContainer /* dummy */,
    304                     true_type /* is a pointer */,
    305                     T* p, ::std::ostream* os) {
    306   if (p == NULL) {
    307     *os << "NULL";
    308   } else {
    309     // C++ doesn't allow casting from a function pointer to any object
    310     // pointer.
    311     //
    312     // IsTrue() silences warnings: "Condition is always true",
    313     // "unreachable code".
    314     if (IsTrue(ImplicitlyConvertible<T*, const void*>::value)) {
    315       // T is not a function type.  We just call << to print p,
    316       // relying on ADL to pick up user-defined << for their pointer
    317       // types, if any.
    318       *os << p;
    319     } else {
    320       // T is a function type, so '*os << p' doesn't do what we want
    321       // (it just prints p as bool).  We want to print p as a const
    322       // void*.  However, we cannot cast it to const void* directly,
    323       // even using reinterpret_cast, as earlier versions of gcc
    324       // (e.g. 3.4.5) cannot compile the cast when p is a function
    325       // pointer.  Casting to UInt64 first solves the problem.
    326       *os << reinterpret_cast<const void*>(
    327           reinterpret_cast<internal::UInt64>(p));
    328     }
    329   }
    330 }
    331 
    332 // Used to print a non-container, non-pointer value when the user
    333 // doesn't define PrintTo() for it.
    334 template <typename T>
    335 void DefaultPrintTo(IsNotContainer /* dummy */,
    336                     false_type /* is not a pointer */,
    337                     const T& value, ::std::ostream* os) {
    338   ::testing_internal::DefaultPrintNonContainerTo(value, os);
    339 }
    340 
    341 // Prints the given value using the << operator if it has one;
    342 // otherwise prints the bytes in it.  This is what
    343 // UniversalPrinter<T>::Print() does when PrintTo() is not specialized
    344 // or overloaded for type T.
    345 //
    346 // A user can override this behavior for a class type Foo by defining
    347 // an overload of PrintTo() in the namespace where Foo is defined.  We
    348 // give the user this option as sometimes defining a << operator for
    349 // Foo is not desirable (e.g. the coding style may prevent doing it,
    350 // or there is already a << operator but it doesn't do what the user
    351 // wants).
    352 template <typename T>
    353 void PrintTo(const T& value, ::std::ostream* os) {
    354   // DefaultPrintTo() is overloaded.  The type of its first two
    355   // arguments determine which version will be picked.  If T is an
    356   // STL-style container, the version for container will be called; if
    357   // T is a pointer, the pointer version will be called; otherwise the
    358   // generic version will be called.
    359   //
    360   // Note that we check for container types here, prior to we check
    361   // for protocol message types in our operator<<.  The rationale is:
    362   //
    363   // For protocol messages, we want to give people a chance to
    364   // override Google Mock's format by defining a PrintTo() or
    365   // operator<<.  For STL containers, other formats can be
    366   // incompatible with Google Mock's format for the container
    367   // elements; therefore we check for container types here to ensure
    368   // that our format is used.
    369   //
    370   // The second argument of DefaultPrintTo() is needed to bypass a bug
    371   // in Symbian's C++ compiler that prevents it from picking the right
    372   // overload between:
    373   //
    374   //   PrintTo(const T& x, ...);
    375   //   PrintTo(T* x, ...);
    376   DefaultPrintTo(IsContainerTest<T>(0), is_pointer<T>(), value, os);
    377 }
    378 
    379 // The following list of PrintTo() overloads tells
    380 // UniversalPrinter<T>::Print() how to print standard types (built-in
    381 // types, strings, plain arrays, and pointers).
    382 
    383 // Overloads for various char types.
    384 GTEST_API_ void PrintTo(unsigned char c, ::std::ostream* os);
    385 GTEST_API_ void PrintTo(signed char c, ::std::ostream* os);
    386 inline void PrintTo(char c, ::std::ostream* os) {
    387   // When printing a plain char, we always treat it as unsigned.  This
    388   // way, the output won't be affected by whether the compiler thinks
    389   // char is signed or not.
    390   PrintTo(static_cast<unsigned char>(c), os);
    391 }
    392 
    393 // Overloads for other simple built-in types.
    394 inline void PrintTo(bool x, ::std::ostream* os) {
    395   *os << (x ? "true" : "false");
    396 }
    397 
    398 // Overload for wchar_t type.
    399 // Prints a wchar_t as a symbol if it is printable or as its internal
    400 // code otherwise and also as its decimal code (except for L'\0').
    401 // The L'\0' char is printed as "L'\\0'". The decimal code is printed
    402 // as signed integer when wchar_t is implemented by the compiler
    403 // as a signed type and is printed as an unsigned integer when wchar_t
    404 // is implemented as an unsigned type.
    405 GTEST_API_ void PrintTo(wchar_t wc, ::std::ostream* os);
    406 
    407 // Overloads for C strings.
    408 GTEST_API_ void PrintTo(const char* s, ::std::ostream* os);
    409 inline void PrintTo(char* s, ::std::ostream* os) {
    410   PrintTo(ImplicitCast_<const char*>(s), os);
    411 }
    412 
    413 // signed/unsigned char is often used for representing binary data, so
    414 // we print pointers to it as void* to be safe.
    415 inline void PrintTo(const signed char* s, ::std::ostream* os) {
    416   PrintTo(ImplicitCast_<const void*>(s), os);
    417 }
    418 inline void PrintTo(signed char* s, ::std::ostream* os) {
    419   PrintTo(ImplicitCast_<const void*>(s), os);
    420 }
    421 inline void PrintTo(const unsigned char* s, ::std::ostream* os) {
    422   PrintTo(ImplicitCast_<const void*>(s), os);
    423 }
    424 inline void PrintTo(unsigned char* s, ::std::ostream* os) {
    425   PrintTo(ImplicitCast_<const void*>(s), os);
    426 }
    427 
    428 // MSVC can be configured to define wchar_t as a typedef of unsigned
    429 // short.  It defines _NATIVE_WCHAR_T_DEFINED when wchar_t is a native
    430 // type.  When wchar_t is a typedef, defining an overload for const
    431 // wchar_t* would cause unsigned short* be printed as a wide string,
    432 // possibly causing invalid memory accesses.
    433 #if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED)
    434 // Overloads for wide C strings
    435 GTEST_API_ void PrintTo(const wchar_t* s, ::std::ostream* os);
    436 inline void PrintTo(wchar_t* s, ::std::ostream* os) {
    437   PrintTo(ImplicitCast_<const wchar_t*>(s), os);
    438 }
    439 #endif
    440 
    441 // Overload for C arrays.  Multi-dimensional arrays are printed
    442 // properly.
    443 
    444 // Prints the given number of elements in an array, without printing
    445 // the curly braces.
    446 template <typename T>
    447 void PrintRawArrayTo(const T a[], size_t count, ::std::ostream* os) {
    448   UniversalPrint(a[0], os);
    449   for (size_t i = 1; i != count; i++) {
    450     *os << ", ";
    451     UniversalPrint(a[i], os);
    452   }
    453 }
    454 
    455 // Overloads for ::string and ::std::string.
    456 #if GTEST_HAS_GLOBAL_STRING
    457 GTEST_API_ void PrintStringTo(const ::string&s, ::std::ostream* os);
    458 inline void PrintTo(const ::string& s, ::std::ostream* os) {
    459   PrintStringTo(s, os);
    460 }
    461 #endif  // GTEST_HAS_GLOBAL_STRING
    462 
    463 GTEST_API_ void PrintStringTo(const ::std::string&s, ::std::ostream* os);
    464 inline void PrintTo(const ::std::string& s, ::std::ostream* os) {
    465   PrintStringTo(s, os);
    466 }
    467 
    468 // Overloads for ::wstring and ::std::wstring.
    469 #if GTEST_HAS_GLOBAL_WSTRING
    470 GTEST_API_ void PrintWideStringTo(const ::wstring&s, ::std::ostream* os);
    471 inline void PrintTo(const ::wstring& s, ::std::ostream* os) {
    472   PrintWideStringTo(s, os);
    473 }
    474 #endif  // GTEST_HAS_GLOBAL_WSTRING
    475 
    476 #if GTEST_HAS_STD_WSTRING
    477 GTEST_API_ void PrintWideStringTo(const ::std::wstring&s, ::std::ostream* os);
    478 inline void PrintTo(const ::std::wstring& s, ::std::ostream* os) {
    479   PrintWideStringTo(s, os);
    480 }
    481 #endif  // GTEST_HAS_STD_WSTRING
    482 
    483 #if GTEST_HAS_TR1_TUPLE
    484 // Overload for ::std::tr1::tuple.  Needed for printing function arguments,
    485 // which are packed as tuples.
    486 
    487 // Helper function for printing a tuple.  T must be instantiated with
    488 // a tuple type.
    489 template <typename T>
    490 void PrintTupleTo(const T& t, ::std::ostream* os);
    491 
    492 // Overloaded PrintTo() for tuples of various arities.  We support
    493 // tuples of up-to 10 fields.  The following implementation works
    494 // regardless of whether tr1::tuple is implemented using the
    495 // non-standard variadic template feature or not.
    496 
    497 inline void PrintTo(const ::std::tr1::tuple<>& t, ::std::ostream* os) {
    498   PrintTupleTo(t, os);
    499 }
    500 
    501 template <typename T1>
    502 void PrintTo(const ::std::tr1::tuple<T1>& t, ::std::ostream* os) {
    503   PrintTupleTo(t, os);
    504 }
    505 
    506 template <typename T1, typename T2>
    507 void PrintTo(const ::std::tr1::tuple<T1, T2>& t, ::std::ostream* os) {
    508   PrintTupleTo(t, os);
    509 }
    510 
    511 template <typename T1, typename T2, typename T3>
    512 void PrintTo(const ::std::tr1::tuple<T1, T2, T3>& t, ::std::ostream* os) {
    513   PrintTupleTo(t, os);
    514 }
    515 
    516 template <typename T1, typename T2, typename T3, typename T4>
    517 void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4>& t, ::std::ostream* os) {
    518   PrintTupleTo(t, os);
    519 }
    520 
    521 template <typename T1, typename T2, typename T3, typename T4, typename T5>
    522 void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5>& t,
    523              ::std::ostream* os) {
    524   PrintTupleTo(t, os);
    525 }
    526 
    527 template <typename T1, typename T2, typename T3, typename T4, typename T5,
    528           typename T6>
    529 void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6>& t,
    530              ::std::ostream* os) {
    531   PrintTupleTo(t, os);
    532 }
    533 
    534 template <typename T1, typename T2, typename T3, typename T4, typename T5,
    535           typename T6, typename T7>
    536 void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7>& t,
    537              ::std::ostream* os) {
    538   PrintTupleTo(t, os);
    539 }
    540 
    541 template <typename T1, typename T2, typename T3, typename T4, typename T5,
    542           typename T6, typename T7, typename T8>
    543 void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8>& t,
    544              ::std::ostream* os) {
    545   PrintTupleTo(t, os);
    546 }
    547 
    548 template <typename T1, typename T2, typename T3, typename T4, typename T5,
    549           typename T6, typename T7, typename T8, typename T9>
    550 void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8, T9>& t,
    551              ::std::ostream* os) {
    552   PrintTupleTo(t, os);
    553 }
    554 
    555 template <typename T1, typename T2, typename T3, typename T4, typename T5,
    556           typename T6, typename T7, typename T8, typename T9, typename T10>
    557 void PrintTo(
    558     const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10>& t,
    559     ::std::ostream* os) {
    560   PrintTupleTo(t, os);
    561 }
    562 #endif  // GTEST_HAS_TR1_TUPLE
    563 
    564 // Overload for std::pair.
    565 template <typename T1, typename T2>
    566 void PrintTo(const ::std::pair<T1, T2>& value, ::std::ostream* os) {
    567   *os << '(';
    568   // We cannot use UniversalPrint(value.first, os) here, as T1 may be
    569   // a reference type.  The same for printing value.second.
    570   UniversalPrinter<T1>::Print(value.first, os);
    571   *os << ", ";
    572   UniversalPrinter<T2>::Print(value.second, os);
    573   *os << ')';
    574 }
    575 
    576 // Implements printing a non-reference type T by letting the compiler
    577 // pick the right overload of PrintTo() for T.
    578 template <typename T>
    579 class UniversalPrinter {
    580  public:
    581   // MSVC warns about adding const to a function type, so we want to
    582   // disable the warning.
    583 #ifdef _MSC_VER
    584 # pragma warning(push)          // Saves the current warning state.
    585 # pragma warning(disable:4180)  // Temporarily disables warning 4180.
    586 #endif  // _MSC_VER
    587 
    588   // Note: we deliberately don't call this PrintTo(), as that name
    589   // conflicts with ::testing::internal::PrintTo in the body of the
    590   // function.
    591   static void Print(const T& value, ::std::ostream* os) {
    592     // By default, ::testing::internal::PrintTo() is used for printing
    593     // the value.
    594     //
    595     // Thanks to Koenig look-up, if T is a class and has its own
    596     // PrintTo() function defined in its namespace, that function will
    597     // be visible here.  Since it is more specific than the generic ones
    598     // in ::testing::internal, it will be picked by the compiler in the
    599     // following statement - exactly what we want.
    600     PrintTo(value, os);
    601   }
    602 
    603 #ifdef _MSC_VER
    604 # pragma warning(pop)           // Restores the warning state.
    605 #endif  // _MSC_VER
    606 };
    607 
    608 // UniversalPrintArray(begin, len, os) prints an array of 'len'
    609 // elements, starting at address 'begin'.
    610 template <typename T>
    611 void UniversalPrintArray(const T* begin, size_t len, ::std::ostream* os) {
    612   if (len == 0) {
    613     *os << "{}";
    614   } else {
    615     *os << "{ ";
    616     const size_t kThreshold = 18;
    617     const size_t kChunkSize = 8;
    618     // If the array has more than kThreshold elements, we'll have to
    619     // omit some details by printing only the first and the last
    620     // kChunkSize elements.
    621     // TODO(wan (at) google.com): let the user control the threshold using a flag.
    622     if (len <= kThreshold) {
    623       PrintRawArrayTo(begin, len, os);
    624     } else {
    625       PrintRawArrayTo(begin, kChunkSize, os);
    626       *os << ", ..., ";
    627       PrintRawArrayTo(begin + len - kChunkSize, kChunkSize, os);
    628     }
    629     *os << " }";
    630   }
    631 }
    632 // This overload prints a (const) char array compactly.
    633 GTEST_API_ void UniversalPrintArray(const char* begin,
    634                                     size_t len,
    635                                     ::std::ostream* os);
    636 
    637 // Implements printing an array type T[N].
    638 template <typename T, size_t N>
    639 class UniversalPrinter<T[N]> {
    640  public:
    641   // Prints the given array, omitting some elements when there are too
    642   // many.
    643   static void Print(const T (&a)[N], ::std::ostream* os) {
    644     UniversalPrintArray(a, N, os);
    645   }
    646 };
    647 
    648 // Implements printing a reference type T&.
    649 template <typename T>
    650 class UniversalPrinter<T&> {
    651  public:
    652   // MSVC warns about adding const to a function type, so we want to
    653   // disable the warning.
    654 #ifdef _MSC_VER
    655 # pragma warning(push)          // Saves the current warning state.
    656 # pragma warning(disable:4180)  // Temporarily disables warning 4180.
    657 #endif  // _MSC_VER
    658 
    659   static void Print(const T& value, ::std::ostream* os) {
    660     // Prints the address of the value.  We use reinterpret_cast here
    661     // as static_cast doesn't compile when T is a function type.
    662     *os << "@" << reinterpret_cast<const void*>(&value) << " ";
    663 
    664     // Then prints the value itself.
    665     UniversalPrint(value, os);
    666   }
    667 
    668 #ifdef _MSC_VER
    669 # pragma warning(pop)           // Restores the warning state.
    670 #endif  // _MSC_VER
    671 };
    672 
    673 // Prints a value tersely: for a reference type, the referenced value
    674 // (but not the address) is printed; for a (const) char pointer, the
    675 // NUL-terminated string (but not the pointer) is printed.
    676 template <typename T>
    677 void UniversalTersePrint(const T& value, ::std::ostream* os) {
    678   UniversalPrint(value, os);
    679 }
    680 inline void UniversalTersePrint(const char* str, ::std::ostream* os) {
    681   if (str == NULL) {
    682     *os << "NULL";
    683   } else {
    684     UniversalPrint(string(str), os);
    685   }
    686 }
    687 inline void UniversalTersePrint(char* str, ::std::ostream* os) {
    688   UniversalTersePrint(static_cast<const char*>(str), os);
    689 }
    690 
    691 // Prints a value using the type inferred by the compiler.  The
    692 // difference between this and UniversalTersePrint() is that for a
    693 // (const) char pointer, this prints both the pointer and the
    694 // NUL-terminated string.
    695 template <typename T>
    696 void UniversalPrint(const T& value, ::std::ostream* os) {
    697   UniversalPrinter<T>::Print(value, os);
    698 }
    699 
    700 #if GTEST_HAS_TR1_TUPLE
    701 typedef ::std::vector<string> Strings;
    702 
    703 // This helper template allows PrintTo() for tuples and
    704 // UniversalTersePrintTupleFieldsToStrings() to be defined by
    705 // induction on the number of tuple fields.  The idea is that
    706 // TuplePrefixPrinter<N>::PrintPrefixTo(t, os) prints the first N
    707 // fields in tuple t, and can be defined in terms of
    708 // TuplePrefixPrinter<N - 1>.
    709 
    710 // The inductive case.
    711 template <size_t N>
    712 struct TuplePrefixPrinter {
    713   // Prints the first N fields of a tuple.
    714   template <typename Tuple>
    715   static void PrintPrefixTo(const Tuple& t, ::std::ostream* os) {
    716     TuplePrefixPrinter<N - 1>::PrintPrefixTo(t, os);
    717     *os << ", ";
    718     UniversalPrinter<typename ::std::tr1::tuple_element<N - 1, Tuple>::type>
    719         ::Print(::std::tr1::get<N - 1>(t), os);
    720   }
    721 
    722   // Tersely prints the first N fields of a tuple to a string vector,
    723   // one element for each field.
    724   template <typename Tuple>
    725   static void TersePrintPrefixToStrings(const Tuple& t, Strings* strings) {
    726     TuplePrefixPrinter<N - 1>::TersePrintPrefixToStrings(t, strings);
    727     ::std::stringstream ss;
    728     UniversalTersePrint(::std::tr1::get<N - 1>(t), &ss);
    729     strings->push_back(ss.str());
    730   }
    731 };
    732 
    733 // Base cases.
    734 template <>
    735 struct TuplePrefixPrinter<0> {
    736   template <typename Tuple>
    737   static void PrintPrefixTo(const Tuple&, ::std::ostream*) {}
    738 
    739   template <typename Tuple>
    740   static void TersePrintPrefixToStrings(const Tuple&, Strings*) {}
    741 };
    742 // We have to specialize the entire TuplePrefixPrinter<> class
    743 // template here, even though the definition of
    744 // TersePrintPrefixToStrings() is the same as the generic version, as
    745 // Embarcadero (formerly CodeGear, formerly Borland) C++ doesn't
    746 // support specializing a method template of a class template.
    747 template <>
    748 struct TuplePrefixPrinter<1> {
    749   template <typename Tuple>
    750   static void PrintPrefixTo(const Tuple& t, ::std::ostream* os) {
    751     UniversalPrinter<typename ::std::tr1::tuple_element<0, Tuple>::type>::
    752         Print(::std::tr1::get<0>(t), os);
    753   }
    754 
    755   template <typename Tuple>
    756   static void TersePrintPrefixToStrings(const Tuple& t, Strings* strings) {
    757     ::std::stringstream ss;
    758     UniversalTersePrint(::std::tr1::get<0>(t), &ss);
    759     strings->push_back(ss.str());
    760   }
    761 };
    762 
    763 // Helper function for printing a tuple.  T must be instantiated with
    764 // a tuple type.
    765 template <typename T>
    766 void PrintTupleTo(const T& t, ::std::ostream* os) {
    767   *os << "(";
    768   TuplePrefixPrinter< ::std::tr1::tuple_size<T>::value>::
    769       PrintPrefixTo(t, os);
    770   *os << ")";
    771 }
    772 
    773 // Prints the fields of a tuple tersely to a string vector, one
    774 // element for each field.  See the comment before
    775 // UniversalTersePrint() for how we define "tersely".
    776 template <typename Tuple>
    777 Strings UniversalTersePrintTupleFieldsToStrings(const Tuple& value) {
    778   Strings result;
    779   TuplePrefixPrinter< ::std::tr1::tuple_size<Tuple>::value>::
    780       TersePrintPrefixToStrings(value, &result);
    781   return result;
    782 }
    783 #endif  // GTEST_HAS_TR1_TUPLE
    784 
    785 }  // namespace internal
    786 
    787 template <typename T>
    788 ::std::string PrintToString(const T& value) {
    789   ::std::stringstream ss;
    790   internal::UniversalTersePrint(value, &ss);
    791   return ss.str();
    792 }
    793 
    794 }  // namespace testing
    795 
    796 #endif  // GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_
    797