Home | History | Annotate | Download | only in lib
      1 /*
      2 *  xxHash - Fast Hash algorithm
      3 *  Copyright (C) 2012-2016, Yann Collet
      4 *
      5 *  BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
      6 *
      7 *  Redistribution and use in source and binary forms, with or without
      8 *  modification, are permitted provided that the following conditions are
      9 *  met:
     10 *
     11 *  * Redistributions of source code must retain the above copyright
     12 *  notice, this list of conditions and the following disclaimer.
     13 *  * Redistributions in binary form must reproduce the above
     14 *  copyright notice, this list of conditions and the following disclaimer
     15 *  in the documentation and/or other materials provided with the
     16 *  distribution.
     17 *
     18 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19 *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20 *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     21 *  A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     22 *  OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     23 *  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     24 *  LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     25 *  DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     26 *  THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     27 *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     28 *  OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     29 *
     30 *  You can contact the author at :
     31 *  - xxHash homepage: http://www.xxhash.com
     32 *  - xxHash source repository : https://github.com/Cyan4973/xxHash
     33 */
     34 
     35 
     36 /* *************************************
     37 *  Tuning parameters
     38 ***************************************/
     39 /*!XXH_FORCE_MEMORY_ACCESS :
     40  * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
     41  * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
     42  * The below switch allow to select different access method for improved performance.
     43  * Method 0 (default) : use `memcpy()`. Safe and portable.
     44  * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
     45  *            This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
     46  * Method 2 : direct access. This method doesn't depend on compiler but violate C standard.
     47  *            It can generate buggy code on targets which do not support unaligned memory accesses.
     48  *            But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
     49  * See http://stackoverflow.com/a/32095106/646947 for details.
     50  * Prefer these methods in priority order (0 > 1 > 2)
     51  */
     52 #ifndef XXH_FORCE_MEMORY_ACCESS   /* can be defined externally, on command line for example */
     53 #  if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
     54 #    define XXH_FORCE_MEMORY_ACCESS 2
     55 #  elif defined(__INTEL_COMPILER) || \
     56   (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) ))
     57 #    define XXH_FORCE_MEMORY_ACCESS 1
     58 #  endif
     59 #endif
     60 
     61 /*!XXH_ACCEPT_NULL_INPUT_POINTER :
     62  * If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer.
     63  * When this option is enabled, xxHash output for null input pointers will be the same as a null-length input.
     64  * By default, this option is disabled. To enable it, uncomment below define :
     65  */
     66 /* #define XXH_ACCEPT_NULL_INPUT_POINTER 1 */
     67 
     68 /*!XXH_FORCE_NATIVE_FORMAT :
     69  * By default, xxHash library provides endian-independent Hash values, based on little-endian convention.
     70  * Results are therefore identical for little-endian and big-endian CPU.
     71  * This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format.
     72  * Should endian-independence be of no importance for your application, you may set the #define below to 1,
     73  * to improve speed for Big-endian CPU.
     74  * This option has no impact on Little_Endian CPU.
     75  */
     76 #ifndef XXH_FORCE_NATIVE_FORMAT   /* can be defined externally */
     77 #  define XXH_FORCE_NATIVE_FORMAT 0
     78 #endif
     79 
     80 /*!XXH_FORCE_ALIGN_CHECK :
     81  * This is a minor performance trick, only useful with lots of very small keys.
     82  * It means : check for aligned/unaligned input.
     83  * The check costs one initial branch per hash; set to 0 when the input data
     84  * is guaranteed to be aligned.
     85  */
     86 #ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */
     87 #  if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
     88 #    define XXH_FORCE_ALIGN_CHECK 0
     89 #  else
     90 #    define XXH_FORCE_ALIGN_CHECK 1
     91 #  endif
     92 #endif
     93 
     94 
     95 /* *************************************
     96 *  Includes & Memory related functions
     97 ***************************************/
     98 /*! Modify the local functions below should you wish to use some other memory routines
     99 *   for malloc(), free() */
    100 #include <stdlib.h>
    101 static void* XXH_malloc(size_t s) { return malloc(s); }
    102 static void  XXH_free  (void* p)  { free(p); }
    103 /*! and for memcpy() */
    104 #include <string.h>
    105 static void* XXH_memcpy(void* dest, const void* src, size_t size) { return memcpy(dest,src,size); }
    106 
    107 #define XXH_STATIC_LINKING_ONLY
    108 #include "xxhash.h"
    109 
    110 
    111 /* *************************************
    112 *  Compiler Specific Options
    113 ***************************************/
    114 #ifdef _MSC_VER    /* Visual Studio */
    115 #  pragma warning(disable : 4127)      /* disable: C4127: conditional expression is constant */
    116 #  define FORCE_INLINE static __forceinline
    117 #else
    118 #  if defined (__cplusplus) || defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L   /* C99 */
    119 #    ifdef __GNUC__
    120 #      define FORCE_INLINE static inline __attribute__((always_inline))
    121 #    else
    122 #      define FORCE_INLINE static inline
    123 #    endif
    124 #  else
    125 #    define FORCE_INLINE static
    126 #  endif /* __STDC_VERSION__ */
    127 #endif
    128 
    129 
    130 /* *************************************
    131 *  Basic Types
    132 ***************************************/
    133 #ifndef MEM_MODULE
    134 # if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
    135 #   include <stdint.h>
    136     typedef uint8_t  BYTE;
    137     typedef uint16_t U16;
    138     typedef uint32_t U32;
    139     typedef  int32_t S32;
    140 # else
    141     typedef unsigned char      BYTE;
    142     typedef unsigned short     U16;
    143     typedef unsigned int       U32;
    144     typedef   signed int       S32;
    145 # endif
    146 #endif
    147 
    148 #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
    149 
    150 /* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
    151 static U32 XXH_read32(const void* memPtr) { return *(const U32*) memPtr; }
    152 
    153 #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
    154 
    155 /* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
    156 /* currently only defined for gcc and icc */
    157 typedef union { U32 u32; } __attribute__((packed)) unalign;
    158 static U32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
    159 
    160 #else
    161 
    162 /* portable and safe solution. Generally efficient.
    163  * see : http://stackoverflow.com/a/32095106/646947
    164  */
    165 static U32 XXH_read32(const void* memPtr)
    166 {
    167     U32 val;
    168     memcpy(&val, memPtr, sizeof(val));
    169     return val;
    170 }
    171 
    172 #endif   /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
    173 
    174 
    175 /* ****************************************
    176 *  Compiler-specific Functions and Macros
    177 ******************************************/
    178 #define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
    179 
    180 /* Note : although _rotl exists for minGW (GCC under windows), performance seems poor */
    181 #if defined(_MSC_VER)
    182 #  define XXH_rotl32(x,r) _rotl(x,r)
    183 #  define XXH_rotl64(x,r) _rotl64(x,r)
    184 #else
    185 #  define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r)))
    186 #  define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r)))
    187 #endif
    188 
    189 #if defined(_MSC_VER)     /* Visual Studio */
    190 #  define XXH_swap32 _byteswap_ulong
    191 #elif XXH_GCC_VERSION >= 403
    192 #  define XXH_swap32 __builtin_bswap32
    193 #else
    194 static U32 XXH_swap32 (U32 x)
    195 {
    196     return  ((x << 24) & 0xff000000 ) |
    197             ((x <<  8) & 0x00ff0000 ) |
    198             ((x >>  8) & 0x0000ff00 ) |
    199             ((x >> 24) & 0x000000ff );
    200 }
    201 #endif
    202 
    203 
    204 /* *************************************
    205 *  Architecture Macros
    206 ***************************************/
    207 typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess;
    208 
    209 /* XXH_CPU_LITTLE_ENDIAN can be defined externally, for example on the compiler command line */
    210 #ifndef XXH_CPU_LITTLE_ENDIAN
    211     static const int g_one = 1;
    212 #   define XXH_CPU_LITTLE_ENDIAN   (*(const char*)(&g_one))
    213 #endif
    214 
    215 
    216 /* ***************************
    217 *  Memory reads
    218 *****************************/
    219 typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment;
    220 
    221 FORCE_INLINE U32 XXH_readLE32_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
    222 {
    223     if (align==XXH_unaligned)
    224         return endian==XXH_littleEndian ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
    225     else
    226         return endian==XXH_littleEndian ? *(const U32*)ptr : XXH_swap32(*(const U32*)ptr);
    227 }
    228 
    229 FORCE_INLINE U32 XXH_readLE32(const void* ptr, XXH_endianess endian)
    230 {
    231     return XXH_readLE32_align(ptr, endian, XXH_unaligned);
    232 }
    233 
    234 static U32 XXH_readBE32(const void* ptr)
    235 {
    236     return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr);
    237 }
    238 
    239 
    240 /* *************************************
    241 *  Macros
    242 ***************************************/
    243 #define XXH_STATIC_ASSERT(c)   { enum { XXH_static_assert = 1/(int)(!!(c)) }; }    /* use only *after* variable declarations */
    244 XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }
    245 
    246 
    247 /* *******************************************************************
    248 *  32-bits hash functions
    249 *********************************************************************/
    250 static const U32 PRIME32_1 = 2654435761U;
    251 static const U32 PRIME32_2 = 2246822519U;
    252 static const U32 PRIME32_3 = 3266489917U;
    253 static const U32 PRIME32_4 =  668265263U;
    254 static const U32 PRIME32_5 =  374761393U;
    255 
    256 static U32 XXH32_round(U32 seed, U32 input)
    257 {
    258     seed += input * PRIME32_2;
    259     seed  = XXH_rotl32(seed, 13);
    260     seed *= PRIME32_1;
    261     return seed;
    262 }
    263 
    264 FORCE_INLINE U32 XXH32_endian_align(const void* input, size_t len, U32 seed, XXH_endianess endian, XXH_alignment align)
    265 {
    266     const BYTE* p = (const BYTE*)input;
    267     const BYTE* bEnd = p + len;
    268     U32 h32;
    269 #define XXH_get32bits(p) XXH_readLE32_align(p, endian, align)
    270 
    271 #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
    272     if (p==NULL) {
    273         len=0;
    274         bEnd=p=(const BYTE*)(size_t)16;
    275     }
    276 #endif
    277 
    278     if (len>=16) {
    279         const BYTE* const limit = bEnd - 16;
    280         U32 v1 = seed + PRIME32_1 + PRIME32_2;
    281         U32 v2 = seed + PRIME32_2;
    282         U32 v3 = seed + 0;
    283         U32 v4 = seed - PRIME32_1;
    284 
    285         do {
    286             v1 = XXH32_round(v1, XXH_get32bits(p)); p+=4;
    287             v2 = XXH32_round(v2, XXH_get32bits(p)); p+=4;
    288             v3 = XXH32_round(v3, XXH_get32bits(p)); p+=4;
    289             v4 = XXH32_round(v4, XXH_get32bits(p)); p+=4;
    290         } while (p<=limit);
    291 
    292         h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
    293     } else {
    294         h32  = seed + PRIME32_5;
    295     }
    296 
    297     h32 += (U32) len;
    298 
    299     while (p+4<=bEnd) {
    300         h32 += XXH_get32bits(p) * PRIME32_3;
    301         h32  = XXH_rotl32(h32, 17) * PRIME32_4 ;
    302         p+=4;
    303     }
    304 
    305     while (p<bEnd) {
    306         h32 += (*p) * PRIME32_5;
    307         h32 = XXH_rotl32(h32, 11) * PRIME32_1 ;
    308         p++;
    309     }
    310 
    311     h32 ^= h32 >> 15;
    312     h32 *= PRIME32_2;
    313     h32 ^= h32 >> 13;
    314     h32 *= PRIME32_3;
    315     h32 ^= h32 >> 16;
    316 
    317     return h32;
    318 }
    319 
    320 
    321 XXH_PUBLIC_API unsigned int XXH32 (const void* input, size_t len, unsigned int seed)
    322 {
    323 #if 0
    324     /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
    325     XXH32_state_t state;
    326     XXH32_reset(&state, seed);
    327     XXH32_update(&state, input, len);
    328     return XXH32_digest(&state);
    329 #else
    330     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
    331 
    332     if (XXH_FORCE_ALIGN_CHECK) {
    333         if ((((size_t)input) & 3) == 0) {   /* Input is 4-bytes aligned, leverage the speed benefit */
    334             if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
    335                 return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
    336             else
    337                 return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
    338     }   }
    339 
    340     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
    341         return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
    342     else
    343         return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
    344 #endif
    345 }
    346 
    347 
    348 
    349 /*======   Hash streaming   ======*/
    350 
    351 XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
    352 {
    353     return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
    354 }
    355 XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
    356 {
    357     XXH_free(statePtr);
    358     return XXH_OK;
    359 }
    360 
    361 XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dstState, const XXH32_state_t* srcState)
    362 {
    363     memcpy(dstState, srcState, sizeof(*dstState));
    364 }
    365 
    366 XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, unsigned int seed)
    367 {
    368     XXH32_state_t state;   /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
    369     memset(&state, 0, sizeof(state)-4);   /* do not write into reserved, for future removal */
    370     state.v1 = seed + PRIME32_1 + PRIME32_2;
    371     state.v2 = seed + PRIME32_2;
    372     state.v3 = seed + 0;
    373     state.v4 = seed - PRIME32_1;
    374     memcpy(statePtr, &state, sizeof(state));
    375     return XXH_OK;
    376 }
    377 
    378 
    379 FORCE_INLINE XXH_errorcode XXH32_update_endian (XXH32_state_t* state, const void* input, size_t len, XXH_endianess endian)
    380 {
    381     const BYTE* p = (const BYTE*)input;
    382     const BYTE* const bEnd = p + len;
    383 
    384 #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
    385     if (input==NULL) return XXH_ERROR;
    386 #endif
    387 
    388     state->total_len_32 += (unsigned)len;
    389     state->large_len |= (len>=16) | (state->total_len_32>=16);
    390 
    391     if (state->memsize + len < 16)  {   /* fill in tmp buffer */
    392         XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len);
    393         state->memsize += (unsigned)len;
    394         return XXH_OK;
    395     }
    396 
    397     if (state->memsize) {   /* some data left from previous update */
    398         XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize);
    399         {   const U32* p32 = state->mem32;
    400             state->v1 = XXH32_round(state->v1, XXH_readLE32(p32, endian)); p32++;
    401             state->v2 = XXH32_round(state->v2, XXH_readLE32(p32, endian)); p32++;
    402             state->v3 = XXH32_round(state->v3, XXH_readLE32(p32, endian)); p32++;
    403             state->v4 = XXH32_round(state->v4, XXH_readLE32(p32, endian)); p32++;
    404         }
    405         p += 16-state->memsize;
    406         state->memsize = 0;
    407     }
    408 
    409     if (p <= bEnd-16) {
    410         const BYTE* const limit = bEnd - 16;
    411         U32 v1 = state->v1;
    412         U32 v2 = state->v2;
    413         U32 v3 = state->v3;
    414         U32 v4 = state->v4;
    415 
    416         do {
    417             v1 = XXH32_round(v1, XXH_readLE32(p, endian)); p+=4;
    418             v2 = XXH32_round(v2, XXH_readLE32(p, endian)); p+=4;
    419             v3 = XXH32_round(v3, XXH_readLE32(p, endian)); p+=4;
    420             v4 = XXH32_round(v4, XXH_readLE32(p, endian)); p+=4;
    421         } while (p<=limit);
    422 
    423         state->v1 = v1;
    424         state->v2 = v2;
    425         state->v3 = v3;
    426         state->v4 = v4;
    427     }
    428 
    429     if (p < bEnd) {
    430         XXH_memcpy(state->mem32, p, (size_t)(bEnd-p));
    431         state->memsize = (unsigned)(bEnd-p);
    432     }
    433 
    434     return XXH_OK;
    435 }
    436 
    437 XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* state_in, const void* input, size_t len)
    438 {
    439     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
    440 
    441     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
    442         return XXH32_update_endian(state_in, input, len, XXH_littleEndian);
    443     else
    444         return XXH32_update_endian(state_in, input, len, XXH_bigEndian);
    445 }
    446 
    447 
    448 
    449 FORCE_INLINE U32 XXH32_digest_endian (const XXH32_state_t* state, XXH_endianess endian)
    450 {
    451     const BYTE * p = (const BYTE*)state->mem32;
    452     const BYTE* const bEnd = (const BYTE*)(state->mem32) + state->memsize;
    453     U32 h32;
    454 
    455     if (state->large_len) {
    456         h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18);
    457     } else {
    458         h32 = state->v3 /* == seed */ + PRIME32_5;
    459     }
    460 
    461     h32 += state->total_len_32;
    462 
    463     while (p+4<=bEnd) {
    464         h32 += XXH_readLE32(p, endian) * PRIME32_3;
    465         h32  = XXH_rotl32(h32, 17) * PRIME32_4;
    466         p+=4;
    467     }
    468 
    469     while (p<bEnd) {
    470         h32 += (*p) * PRIME32_5;
    471         h32  = XXH_rotl32(h32, 11) * PRIME32_1;
    472         p++;
    473     }
    474 
    475     h32 ^= h32 >> 15;
    476     h32 *= PRIME32_2;
    477     h32 ^= h32 >> 13;
    478     h32 *= PRIME32_3;
    479     h32 ^= h32 >> 16;
    480 
    481     return h32;
    482 }
    483 
    484 
    485 XXH_PUBLIC_API unsigned int XXH32_digest (const XXH32_state_t* state_in)
    486 {
    487     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
    488 
    489     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
    490         return XXH32_digest_endian(state_in, XXH_littleEndian);
    491     else
    492         return XXH32_digest_endian(state_in, XXH_bigEndian);
    493 }
    494 
    495 
    496 /*======   Canonical representation   ======*/
    497 
    498 /*! Default XXH result types are basic unsigned 32 and 64 bits.
    499 *   The canonical representation follows human-readable write convention, aka big-endian (large digits first).
    500 *   These functions allow transformation of hash result into and from its canonical format.
    501 *   This way, hash values can be written into a file or buffer, and remain comparable across different systems and programs.
    502 */
    503 
    504 XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
    505 {
    506     XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
    507     if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
    508     memcpy(dst, &hash, sizeof(*dst));
    509 }
    510 
    511 XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
    512 {
    513     return XXH_readBE32(src);
    514 }
    515 
    516 
    517 #ifndef XXH_NO_LONG_LONG
    518 
    519 /* *******************************************************************
    520 *  64-bits hash functions
    521 *********************************************************************/
    522 
    523 /*======   Memory access   ======*/
    524 
    525 #ifndef MEM_MODULE
    526 # define MEM_MODULE
    527 # if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
    528 #   include <stdint.h>
    529     typedef uint64_t U64;
    530 # else
    531     typedef unsigned long long U64;   /* if your compiler doesn't support unsigned long long, replace by another 64-bit type here. Note that xxhash.h will also need to be updated. */
    532 # endif
    533 #endif
    534 
    535 
    536 #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
    537 
    538 /* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
    539 static U64 XXH_read64(const void* memPtr) { return *(const U64*) memPtr; }
    540 
    541 #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
    542 
    543 /* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
    544 /* currently only defined for gcc and icc */
    545 typedef union { U32 u32; U64 u64; } __attribute__((packed)) unalign64;
    546 static U64 XXH_read64(const void* ptr) { return ((const unalign64*)ptr)->u64; }
    547 
    548 #else
    549 
    550 /* portable and safe solution. Generally efficient.
    551  * see : http://stackoverflow.com/a/32095106/646947
    552  */
    553 
    554 static U64 XXH_read64(const void* memPtr)
    555 {
    556     U64 val;
    557     memcpy(&val, memPtr, sizeof(val));
    558     return val;
    559 }
    560 
    561 #endif   /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
    562 
    563 #if defined(_MSC_VER)     /* Visual Studio */
    564 #  define XXH_swap64 _byteswap_uint64
    565 #elif XXH_GCC_VERSION >= 403
    566 #  define XXH_swap64 __builtin_bswap64
    567 #else
    568 static U64 XXH_swap64 (U64 x)
    569 {
    570     return  ((x << 56) & 0xff00000000000000ULL) |
    571             ((x << 40) & 0x00ff000000000000ULL) |
    572             ((x << 24) & 0x0000ff0000000000ULL) |
    573             ((x << 8)  & 0x000000ff00000000ULL) |
    574             ((x >> 8)  & 0x00000000ff000000ULL) |
    575             ((x >> 24) & 0x0000000000ff0000ULL) |
    576             ((x >> 40) & 0x000000000000ff00ULL) |
    577             ((x >> 56) & 0x00000000000000ffULL);
    578 }
    579 #endif
    580 
    581 FORCE_INLINE U64 XXH_readLE64_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
    582 {
    583     if (align==XXH_unaligned)
    584         return endian==XXH_littleEndian ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
    585     else
    586         return endian==XXH_littleEndian ? *(const U64*)ptr : XXH_swap64(*(const U64*)ptr);
    587 }
    588 
    589 FORCE_INLINE U64 XXH_readLE64(const void* ptr, XXH_endianess endian)
    590 {
    591     return XXH_readLE64_align(ptr, endian, XXH_unaligned);
    592 }
    593 
    594 static U64 XXH_readBE64(const void* ptr)
    595 {
    596     return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);
    597 }
    598 
    599 
    600 /*======   xxh64   ======*/
    601 
    602 static const U64 PRIME64_1 = 11400714785074694791ULL;
    603 static const U64 PRIME64_2 = 14029467366897019727ULL;
    604 static const U64 PRIME64_3 =  1609587929392839161ULL;
    605 static const U64 PRIME64_4 =  9650029242287828579ULL;
    606 static const U64 PRIME64_5 =  2870177450012600261ULL;
    607 
    608 static U64 XXH64_round(U64 acc, U64 input)
    609 {
    610     acc += input * PRIME64_2;
    611     acc  = XXH_rotl64(acc, 31);
    612     acc *= PRIME64_1;
    613     return acc;
    614 }
    615 
    616 static U64 XXH64_mergeRound(U64 acc, U64 val)
    617 {
    618     val  = XXH64_round(0, val);
    619     acc ^= val;
    620     acc  = acc * PRIME64_1 + PRIME64_4;
    621     return acc;
    622 }
    623 
    624 FORCE_INLINE U64 XXH64_endian_align(const void* input, size_t len, U64 seed, XXH_endianess endian, XXH_alignment align)
    625 {
    626     const BYTE* p = (const BYTE*)input;
    627     const BYTE* const bEnd = p + len;
    628     U64 h64;
    629 #define XXH_get64bits(p) XXH_readLE64_align(p, endian, align)
    630 
    631 #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
    632     if (p==NULL) {
    633         len=0;
    634         bEnd=p=(const BYTE*)(size_t)32;
    635     }
    636 #endif
    637 
    638     if (len>=32) {
    639         const BYTE* const limit = bEnd - 32;
    640         U64 v1 = seed + PRIME64_1 + PRIME64_2;
    641         U64 v2 = seed + PRIME64_2;
    642         U64 v3 = seed + 0;
    643         U64 v4 = seed - PRIME64_1;
    644 
    645         do {
    646             v1 = XXH64_round(v1, XXH_get64bits(p)); p+=8;
    647             v2 = XXH64_round(v2, XXH_get64bits(p)); p+=8;
    648             v3 = XXH64_round(v3, XXH_get64bits(p)); p+=8;
    649             v4 = XXH64_round(v4, XXH_get64bits(p)); p+=8;
    650         } while (p<=limit);
    651 
    652         h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
    653         h64 = XXH64_mergeRound(h64, v1);
    654         h64 = XXH64_mergeRound(h64, v2);
    655         h64 = XXH64_mergeRound(h64, v3);
    656         h64 = XXH64_mergeRound(h64, v4);
    657 
    658     } else {
    659         h64  = seed + PRIME64_5;
    660     }
    661 
    662     h64 += (U64) len;
    663 
    664     while (p+8<=bEnd) {
    665         U64 const k1 = XXH64_round(0, XXH_get64bits(p));
    666         h64 ^= k1;
    667         h64  = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
    668         p+=8;
    669     }
    670 
    671     if (p+4<=bEnd) {
    672         h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1;
    673         h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
    674         p+=4;
    675     }
    676 
    677     while (p<bEnd) {
    678         h64 ^= (*p) * PRIME64_5;
    679         h64 = XXH_rotl64(h64, 11) * PRIME64_1;
    680         p++;
    681     }
    682 
    683     h64 ^= h64 >> 33;
    684     h64 *= PRIME64_2;
    685     h64 ^= h64 >> 29;
    686     h64 *= PRIME64_3;
    687     h64 ^= h64 >> 32;
    688 
    689     return h64;
    690 }
    691 
    692 
    693 XXH_PUBLIC_API unsigned long long XXH64 (const void* input, size_t len, unsigned long long seed)
    694 {
    695 #if 0
    696     /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
    697     XXH64_state_t state;
    698     XXH64_reset(&state, seed);
    699     XXH64_update(&state, input, len);
    700     return XXH64_digest(&state);
    701 #else
    702     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
    703 
    704     if (XXH_FORCE_ALIGN_CHECK) {
    705         if ((((size_t)input) & 7)==0) {  /* Input is aligned, let's leverage the speed advantage */
    706             if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
    707                 return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
    708             else
    709                 return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
    710     }   }
    711 
    712     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
    713         return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
    714     else
    715         return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
    716 #endif
    717 }
    718 
    719 /*======   Hash Streaming   ======*/
    720 
    721 XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
    722 {
    723     return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
    724 }
    725 XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
    726 {
    727     XXH_free(statePtr);
    728     return XXH_OK;
    729 }
    730 
    731 XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dstState, const XXH64_state_t* srcState)
    732 {
    733     memcpy(dstState, srcState, sizeof(*dstState));
    734 }
    735 
    736 XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, unsigned long long seed)
    737 {
    738     XXH64_state_t state;   /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
    739     memset(&state, 0, sizeof(state)-8);   /* do not write into reserved, for future removal */
    740     state.v1 = seed + PRIME64_1 + PRIME64_2;
    741     state.v2 = seed + PRIME64_2;
    742     state.v3 = seed + 0;
    743     state.v4 = seed - PRIME64_1;
    744     memcpy(statePtr, &state, sizeof(state));
    745     return XXH_OK;
    746 }
    747 
    748 FORCE_INLINE XXH_errorcode XXH64_update_endian (XXH64_state_t* state, const void* input, size_t len, XXH_endianess endian)
    749 {
    750     const BYTE* p = (const BYTE*)input;
    751     const BYTE* const bEnd = p + len;
    752 
    753 #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
    754     if (input==NULL) return XXH_ERROR;
    755 #endif
    756 
    757     state->total_len += len;
    758 
    759     if (state->memsize + len < 32) {  /* fill in tmp buffer */
    760         XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len);
    761         state->memsize += (U32)len;
    762         return XXH_OK;
    763     }
    764 
    765     if (state->memsize) {   /* tmp buffer is full */
    766         XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize);
    767         state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0, endian));
    768         state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1, endian));
    769         state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2, endian));
    770         state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3, endian));
    771         p += 32-state->memsize;
    772         state->memsize = 0;
    773     }
    774 
    775     if (p+32 <= bEnd) {
    776         const BYTE* const limit = bEnd - 32;
    777         U64 v1 = state->v1;
    778         U64 v2 = state->v2;
    779         U64 v3 = state->v3;
    780         U64 v4 = state->v4;
    781 
    782         do {
    783             v1 = XXH64_round(v1, XXH_readLE64(p, endian)); p+=8;
    784             v2 = XXH64_round(v2, XXH_readLE64(p, endian)); p+=8;
    785             v3 = XXH64_round(v3, XXH_readLE64(p, endian)); p+=8;
    786             v4 = XXH64_round(v4, XXH_readLE64(p, endian)); p+=8;
    787         } while (p<=limit);
    788 
    789         state->v1 = v1;
    790         state->v2 = v2;
    791         state->v3 = v3;
    792         state->v4 = v4;
    793     }
    794 
    795     if (p < bEnd) {
    796         XXH_memcpy(state->mem64, p, (size_t)(bEnd-p));
    797         state->memsize = (unsigned)(bEnd-p);
    798     }
    799 
    800     return XXH_OK;
    801 }
    802 
    803 XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* state_in, const void* input, size_t len)
    804 {
    805     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
    806 
    807     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
    808         return XXH64_update_endian(state_in, input, len, XXH_littleEndian);
    809     else
    810         return XXH64_update_endian(state_in, input, len, XXH_bigEndian);
    811 }
    812 
    813 FORCE_INLINE U64 XXH64_digest_endian (const XXH64_state_t* state, XXH_endianess endian)
    814 {
    815     const BYTE * p = (const BYTE*)state->mem64;
    816     const BYTE* const bEnd = (const BYTE*)state->mem64 + state->memsize;
    817     U64 h64;
    818 
    819     if (state->total_len >= 32) {
    820         U64 const v1 = state->v1;
    821         U64 const v2 = state->v2;
    822         U64 const v3 = state->v3;
    823         U64 const v4 = state->v4;
    824 
    825         h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
    826         h64 = XXH64_mergeRound(h64, v1);
    827         h64 = XXH64_mergeRound(h64, v2);
    828         h64 = XXH64_mergeRound(h64, v3);
    829         h64 = XXH64_mergeRound(h64, v4);
    830     } else {
    831         h64  = state->v3 + PRIME64_5;
    832     }
    833 
    834     h64 += (U64) state->total_len;
    835 
    836     while (p+8<=bEnd) {
    837         U64 const k1 = XXH64_round(0, XXH_readLE64(p, endian));
    838         h64 ^= k1;
    839         h64  = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
    840         p+=8;
    841     }
    842 
    843     if (p+4<=bEnd) {
    844         h64 ^= (U64)(XXH_readLE32(p, endian)) * PRIME64_1;
    845         h64  = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
    846         p+=4;
    847     }
    848 
    849     while (p<bEnd) {
    850         h64 ^= (*p) * PRIME64_5;
    851         h64  = XXH_rotl64(h64, 11) * PRIME64_1;
    852         p++;
    853     }
    854 
    855     h64 ^= h64 >> 33;
    856     h64 *= PRIME64_2;
    857     h64 ^= h64 >> 29;
    858     h64 *= PRIME64_3;
    859     h64 ^= h64 >> 32;
    860 
    861     return h64;
    862 }
    863 
    864 XXH_PUBLIC_API unsigned long long XXH64_digest (const XXH64_state_t* state_in)
    865 {
    866     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
    867 
    868     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
    869         return XXH64_digest_endian(state_in, XXH_littleEndian);
    870     else
    871         return XXH64_digest_endian(state_in, XXH_bigEndian);
    872 }
    873 
    874 
    875 /*====== Canonical representation   ======*/
    876 
    877 XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash)
    878 {
    879     XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
    880     if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
    881     memcpy(dst, &hash, sizeof(*dst));
    882 }
    883 
    884 XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src)
    885 {
    886     return XXH_readBE64(src);
    887 }
    888 
    889 #endif  /* XXH_NO_LONG_LONG */
    890