1 //--------------------------------------------------------------------------------- 2 // 3 // Little Color Management System 4 // Copyright (c) 1998-2011 Marti Maria Saguer 5 // 6 // Permission is hereby granted, free of charge, to any person obtaining 7 // a copy of this software and associated documentation files (the "Software"), 8 // to deal in the Software without restriction, including without limitation 9 // the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 // and/or sell copies of the Software, and to permit persons to whom the Software 11 // is furnished to do so, subject to the following conditions: 12 // 13 // The above copyright notice and this permission notice shall be included in 14 // all copies or substantial portions of the Software. 15 // 16 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 17 // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO 18 // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 19 // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE 20 // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION 21 // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION 22 // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 23 // 24 //--------------------------------------------------------------------------------- 25 // 26 27 #include "lcms2_internal.h" 28 29 30 //---------------------------------------------------------------------------------- 31 32 // Optimization for 8 bits, Shaper-CLUT (3 inputs only) 33 typedef struct { 34 35 cmsContext ContextID; 36 37 const cmsInterpParams* p; // Tetrahedrical interpolation parameters. This is a not-owned pointer. 38 39 cmsUInt16Number rx[256], ry[256], rz[256]; 40 cmsUInt32Number X0[256], Y0[256], Z0[256]; // Precomputed nodes and offsets for 8-bit input data 41 42 43 } Prelin8Data; 44 45 46 // Generic optimization for 16 bits Shaper-CLUT-Shaper (any inputs) 47 typedef struct { 48 49 cmsContext ContextID; 50 51 // Number of channels 52 int nInputs; 53 int nOutputs; 54 55 _cmsInterpFn16 EvalCurveIn16[MAX_INPUT_DIMENSIONS]; // The maximum number of input channels is known in advance 56 cmsInterpParams* ParamsCurveIn16[MAX_INPUT_DIMENSIONS]; 57 58 _cmsInterpFn16 EvalCLUT; // The evaluator for 3D grid 59 const cmsInterpParams* CLUTparams; // (not-owned pointer) 60 61 62 _cmsInterpFn16* EvalCurveOut16; // Points to an array of curve evaluators in 16 bits (not-owned pointer) 63 cmsInterpParams** ParamsCurveOut16; // Points to an array of references to interpolation params (not-owned pointer) 64 65 66 } Prelin16Data; 67 68 69 // Optimization for matrix-shaper in 8 bits. Numbers are operated in n.14 signed, tables are stored in 1.14 fixed 70 71 typedef cmsInt32Number cmsS1Fixed14Number; // Note that this may hold more than 16 bits! 72 73 #define DOUBLE_TO_1FIXED14(x) ((cmsS1Fixed14Number) floor((x) * 16384.0 + 0.5)) 74 75 typedef struct { 76 77 cmsContext ContextID; 78 79 cmsS1Fixed14Number Shaper1R[256]; // from 0..255 to 1.14 (0.0...1.0) 80 cmsS1Fixed14Number Shaper1G[256]; 81 cmsS1Fixed14Number Shaper1B[256]; 82 83 cmsS1Fixed14Number Mat[3][3]; // n.14 to n.14 (needs a saturation after that) 84 cmsS1Fixed14Number Off[3]; 85 86 cmsUInt16Number Shaper2R[16385]; // 1.14 to 0..255 87 cmsUInt16Number Shaper2G[16385]; 88 cmsUInt16Number Shaper2B[16385]; 89 90 } MatShaper8Data; 91 92 // Curves, optimization is shared between 8 and 16 bits 93 typedef struct { 94 95 cmsContext ContextID; 96 97 int nCurves; // Number of curves 98 int nElements; // Elements in curves 99 cmsUInt16Number** Curves; // Points to a dynamically allocated array 100 101 } Curves16Data; 102 103 104 // Simple optimizations ---------------------------------------------------------------------------------------------------------- 105 106 107 // Remove an element in linked chain 108 static 109 void _RemoveElement(cmsStage** head) 110 { 111 cmsStage* mpe = *head; 112 cmsStage* next = mpe ->Next; 113 *head = next; 114 cmsStageFree(mpe); 115 } 116 117 // Remove all identities in chain. Note that pt actually is a double pointer to the element that holds the pointer. 118 static 119 cmsBool _Remove1Op(cmsPipeline* Lut, cmsStageSignature UnaryOp) 120 { 121 cmsStage** pt = &Lut ->Elements; 122 cmsBool AnyOpt = FALSE; 123 124 while (*pt != NULL) { 125 126 if ((*pt) ->Implements == UnaryOp) { 127 _RemoveElement(pt); 128 AnyOpt = TRUE; 129 } 130 else 131 pt = &((*pt) -> Next); 132 } 133 134 return AnyOpt; 135 } 136 137 // Same, but only if two adjacent elements are found 138 static 139 cmsBool _Remove2Op(cmsPipeline* Lut, cmsStageSignature Op1, cmsStageSignature Op2) 140 { 141 cmsStage** pt1; 142 cmsStage** pt2; 143 cmsBool AnyOpt = FALSE; 144 145 pt1 = &Lut ->Elements; 146 if (*pt1 == NULL) return AnyOpt; 147 148 while (*pt1 != NULL) { 149 150 pt2 = &((*pt1) -> Next); 151 if (*pt2 == NULL) return AnyOpt; 152 153 if ((*pt1) ->Implements == Op1 && (*pt2) ->Implements == Op2) { 154 _RemoveElement(pt2); 155 _RemoveElement(pt1); 156 AnyOpt = TRUE; 157 } 158 else 159 pt1 = &((*pt1) -> Next); 160 } 161 162 return AnyOpt; 163 } 164 165 // Preoptimize just gets rif of no-ops coming paired. Conversion from v2 to v4 followed 166 // by a v4 to v2 and vice-versa. The elements are then discarded. 167 static 168 cmsBool PreOptimize(cmsPipeline* Lut) 169 { 170 cmsBool AnyOpt = FALSE, Opt; 171 172 do { 173 174 Opt = FALSE; 175 176 // Remove all identities 177 Opt |= _Remove1Op(Lut, cmsSigIdentityElemType); 178 179 // Remove XYZ2Lab followed by Lab2XYZ 180 Opt |= _Remove2Op(Lut, cmsSigXYZ2LabElemType, cmsSigLab2XYZElemType); 181 182 // Remove Lab2XYZ followed by XYZ2Lab 183 Opt |= _Remove2Op(Lut, cmsSigLab2XYZElemType, cmsSigXYZ2LabElemType); 184 185 // Remove V4 to V2 followed by V2 to V4 186 Opt |= _Remove2Op(Lut, cmsSigLabV4toV2, cmsSigLabV2toV4); 187 188 // Remove V2 to V4 followed by V4 to V2 189 Opt |= _Remove2Op(Lut, cmsSigLabV2toV4, cmsSigLabV4toV2); 190 191 // Remove float pcs Lab conversions 192 Opt |= _Remove2Op(Lut, cmsSigLab2FloatPCS, cmsSigFloatPCS2Lab); 193 194 // Remove float pcs Lab conversions 195 Opt |= _Remove2Op(Lut, cmsSigXYZ2FloatPCS, cmsSigFloatPCS2XYZ); 196 197 if (Opt) AnyOpt = TRUE; 198 199 } while (Opt); 200 201 return AnyOpt; 202 } 203 204 static 205 void Eval16nop1D(register const cmsUInt16Number Input[], 206 register cmsUInt16Number Output[], 207 register const struct _cms_interp_struc* p) 208 { 209 Output[0] = Input[0]; 210 211 cmsUNUSED_PARAMETER(p); 212 } 213 214 static 215 void PrelinEval16(register const cmsUInt16Number Input[], 216 register cmsUInt16Number Output[], 217 register const void* D) 218 { 219 Prelin16Data* p16 = (Prelin16Data*) D; 220 cmsUInt16Number StageABC[MAX_INPUT_DIMENSIONS]; 221 cmsUInt16Number StageDEF[cmsMAXCHANNELS]; 222 int i; 223 224 for (i=0; i < p16 ->nInputs; i++) { 225 226 p16 ->EvalCurveIn16[i](&Input[i], &StageABC[i], p16 ->ParamsCurveIn16[i]); 227 } 228 229 p16 ->EvalCLUT(StageABC, StageDEF, p16 ->CLUTparams); 230 231 for (i=0; i < p16 ->nOutputs; i++) { 232 233 p16 ->EvalCurveOut16[i](&StageDEF[i], &Output[i], p16 ->ParamsCurveOut16[i]); 234 } 235 } 236 237 238 static 239 void PrelinOpt16free(cmsContext ContextID, void* ptr) 240 { 241 Prelin16Data* p16 = (Prelin16Data*) ptr; 242 243 _cmsFree(ContextID, p16 ->EvalCurveOut16); 244 _cmsFree(ContextID, p16 ->ParamsCurveOut16); 245 246 _cmsFree(ContextID, p16); 247 } 248 249 static 250 void* Prelin16dup(cmsContext ContextID, const void* ptr) 251 { 252 Prelin16Data* p16 = (Prelin16Data*) ptr; 253 Prelin16Data* Duped = _cmsDupMem(ContextID, p16, sizeof(Prelin16Data)); 254 255 if (Duped == NULL) return NULL; 256 257 Duped ->EvalCurveOut16 = (_cmsInterpFn16*)_cmsDupMem(ContextID, p16 ->EvalCurveOut16, p16 ->nOutputs * sizeof(_cmsInterpFn16)); 258 Duped ->ParamsCurveOut16 = (cmsInterpParams**)_cmsDupMem(ContextID, p16 ->ParamsCurveOut16, p16 ->nOutputs * sizeof(cmsInterpParams* )); 259 260 return Duped; 261 } 262 263 264 static 265 Prelin16Data* PrelinOpt16alloc(cmsContext ContextID, 266 const cmsInterpParams* ColorMap, 267 int nInputs, cmsToneCurve** In, 268 int nOutputs, cmsToneCurve** Out ) 269 { 270 int i; 271 Prelin16Data* p16 = _cmsMallocZero(ContextID, sizeof(Prelin16Data)); 272 if (p16 == NULL) return NULL; 273 274 p16 ->nInputs = nInputs; 275 p16 -> nOutputs = nOutputs; 276 277 278 for (i=0; i < nInputs; i++) { 279 280 if (In == NULL) { 281 p16 -> ParamsCurveIn16[i] = NULL; 282 p16 -> EvalCurveIn16[i] = Eval16nop1D; 283 284 } 285 else { 286 p16 -> ParamsCurveIn16[i] = In[i] ->InterpParams; 287 p16 -> EvalCurveIn16[i] = p16 ->ParamsCurveIn16[i]->Interpolation.Lerp16; 288 } 289 } 290 291 p16 ->CLUTparams = ColorMap; 292 p16 ->EvalCLUT = ColorMap ->Interpolation.Lerp16; 293 294 295 p16 -> EvalCurveOut16 = (_cmsInterpFn16*) _cmsCalloc(ContextID, nOutputs, sizeof(_cmsInterpFn16)); 296 p16 -> ParamsCurveOut16 = (cmsInterpParams**) _cmsCalloc(ContextID, nOutputs, sizeof(cmsInterpParams* )); 297 298 for (i=0; i < nOutputs; i++) { 299 300 if (Out == NULL) { 301 p16 ->ParamsCurveOut16[i] = NULL; 302 p16 -> EvalCurveOut16[i] = Eval16nop1D; 303 } 304 else { 305 306 p16 ->ParamsCurveOut16[i] = Out[i] ->InterpParams; 307 p16 -> EvalCurveOut16[i] = p16 ->ParamsCurveOut16[i]->Interpolation.Lerp16; 308 } 309 } 310 311 return p16; 312 } 313 314 315 316 // Resampling --------------------------------------------------------------------------------- 317 318 #define PRELINEARIZATION_POINTS 4096 319 320 // Sampler implemented by another LUT. This is a clean way to precalculate the devicelink 3D CLUT for 321 // almost any transform. We use floating point precision and then convert from floating point to 16 bits. 322 static 323 int XFormSampler16(register const cmsUInt16Number In[], register cmsUInt16Number Out[], register void* Cargo) 324 { 325 cmsPipeline* Lut = (cmsPipeline*) Cargo; 326 cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS]; 327 cmsUInt32Number i; 328 329 _cmsAssert(Lut -> InputChannels < cmsMAXCHANNELS); 330 _cmsAssert(Lut -> OutputChannels < cmsMAXCHANNELS); 331 332 // From 16 bit to floating point 333 for (i=0; i < Lut ->InputChannels; i++) 334 InFloat[i] = (cmsFloat32Number) (In[i] / 65535.0); 335 336 // Evaluate in floating point 337 cmsPipelineEvalFloat(InFloat, OutFloat, Lut); 338 339 // Back to 16 bits representation 340 for (i=0; i < Lut ->OutputChannels; i++) 341 Out[i] = _cmsQuickSaturateWord(OutFloat[i] * 65535.0); 342 343 // Always succeed 344 return TRUE; 345 } 346 347 // Try to see if the curves of a given MPE are linear 348 static 349 cmsBool AllCurvesAreLinear(cmsStage* mpe) 350 { 351 cmsToneCurve** Curves; 352 cmsUInt32Number i, n; 353 354 Curves = _cmsStageGetPtrToCurveSet(mpe); 355 if (Curves == NULL) return FALSE; 356 357 n = cmsStageOutputChannels(mpe); 358 359 for (i=0; i < n; i++) { 360 if (!cmsIsToneCurveLinear(Curves[i])) return FALSE; 361 } 362 363 return TRUE; 364 } 365 366 // This function replaces a specific node placed in "At" by the "Value" numbers. Its purpose 367 // is to fix scum dot on broken profiles/transforms. Works on 1, 3 and 4 channels 368 static 369 cmsBool PatchLUT(cmsStage* CLUT, cmsUInt16Number At[], cmsUInt16Number Value[], 370 int nChannelsOut, int nChannelsIn) 371 { 372 _cmsStageCLutData* Grid = (_cmsStageCLutData*) CLUT ->Data; 373 cmsInterpParams* p16 = Grid ->Params; 374 cmsFloat64Number px, py, pz, pw; 375 int x0, y0, z0, w0; 376 int i, index; 377 378 if (CLUT -> Type != cmsSigCLutElemType) { 379 cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) Attempt to PatchLUT on non-lut stage"); 380 return FALSE; 381 } 382 383 if (nChannelsIn != 1 && nChannelsIn != 3 && nChannelsIn != 4) { 384 cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) %d Channels are not supported on PatchLUT", nChannelsIn); 385 return FALSE; 386 } 387 if (nChannelsIn == 4) { 388 389 px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0; 390 py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0; 391 pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0; 392 pw = ((cmsFloat64Number) At[3] * (p16->Domain[3])) / 65535.0; 393 394 x0 = (int) floor(px); 395 y0 = (int) floor(py); 396 z0 = (int) floor(pz); 397 w0 = (int) floor(pw); 398 399 if (((px - x0) != 0) || 400 ((py - y0) != 0) || 401 ((pz - z0) != 0) || 402 ((pw - w0) != 0)) return FALSE; // Not on exact node 403 404 index = p16 -> opta[3] * x0 + 405 p16 -> opta[2] * y0 + 406 p16 -> opta[1] * z0 + 407 p16 -> opta[0] * w0; 408 } 409 else 410 if (nChannelsIn == 3) { 411 412 px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0; 413 py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0; 414 pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0; 415 416 x0 = (int) floor(px); 417 y0 = (int) floor(py); 418 z0 = (int) floor(pz); 419 420 if (((px - x0) != 0) || 421 ((py - y0) != 0) || 422 ((pz - z0) != 0)) return FALSE; // Not on exact node 423 424 index = p16 -> opta[2] * x0 + 425 p16 -> opta[1] * y0 + 426 p16 -> opta[0] * z0; 427 } 428 else 429 if (nChannelsIn == 1) { 430 431 px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0; 432 433 x0 = (int) floor(px); 434 435 if (((px - x0) != 0)) return FALSE; // Not on exact node 436 437 index = p16 -> opta[0] * x0; 438 } 439 else { 440 cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) %d Channels are not supported on PatchLUT", nChannelsIn); 441 return FALSE; 442 } 443 444 for (i=0; i < nChannelsOut; i++) 445 Grid -> Tab.T[index + i] = Value[i]; 446 447 return TRUE; 448 } 449 450 // Auxiliar, to see if two values are equal or very different 451 static 452 cmsBool WhitesAreEqual(int n, cmsUInt16Number White1[], cmsUInt16Number White2[] ) 453 { 454 int i; 455 456 for (i=0; i < n; i++) { 457 458 if (abs(White1[i] - White2[i]) > 0xf000) return TRUE; // Values are so extremly different that the fixup should be avoided 459 if (White1[i] != White2[i]) return FALSE; 460 } 461 return TRUE; 462 } 463 464 465 // Locate the node for the white point and fix it to pure white in order to avoid scum dot. 466 static 467 cmsBool FixWhiteMisalignment(cmsPipeline* Lut, cmsColorSpaceSignature EntryColorSpace, cmsColorSpaceSignature ExitColorSpace) 468 { 469 cmsUInt16Number *WhitePointIn, *WhitePointOut; 470 cmsUInt16Number WhiteIn[cmsMAXCHANNELS], WhiteOut[cmsMAXCHANNELS], ObtainedOut[cmsMAXCHANNELS]; 471 cmsUInt32Number i, nOuts, nIns; 472 cmsStage *PreLin = NULL, *CLUT = NULL, *PostLin = NULL; 473 474 if (!_cmsEndPointsBySpace(EntryColorSpace, 475 &WhitePointIn, NULL, &nIns)) return FALSE; 476 477 if (!_cmsEndPointsBySpace(ExitColorSpace, 478 &WhitePointOut, NULL, &nOuts)) return FALSE; 479 480 // It needs to be fixed? 481 if (Lut ->InputChannels != nIns) return FALSE; 482 if (Lut ->OutputChannels != nOuts) return FALSE; 483 484 cmsPipelineEval16(WhitePointIn, ObtainedOut, Lut); 485 486 if (WhitesAreEqual(nOuts, WhitePointOut, ObtainedOut)) return TRUE; // whites already match 487 488 // Check if the LUT comes as Prelin, CLUT or Postlin. We allow all combinations 489 if (!cmsPipelineCheckAndRetreiveStages(Lut, 3, cmsSigCurveSetElemType, cmsSigCLutElemType, cmsSigCurveSetElemType, &PreLin, &CLUT, &PostLin)) 490 if (!cmsPipelineCheckAndRetreiveStages(Lut, 2, cmsSigCurveSetElemType, cmsSigCLutElemType, &PreLin, &CLUT)) 491 if (!cmsPipelineCheckAndRetreiveStages(Lut, 2, cmsSigCLutElemType, cmsSigCurveSetElemType, &CLUT, &PostLin)) 492 if (!cmsPipelineCheckAndRetreiveStages(Lut, 1, cmsSigCLutElemType, &CLUT)) 493 return FALSE; 494 495 // We need to interpolate white points of both, pre and post curves 496 if (PreLin) { 497 498 cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PreLin); 499 500 for (i=0; i < nIns; i++) { 501 WhiteIn[i] = cmsEvalToneCurve16(Curves[i], WhitePointIn[i]); 502 } 503 } 504 else { 505 for (i=0; i < nIns; i++) 506 WhiteIn[i] = WhitePointIn[i]; 507 } 508 509 // If any post-linearization, we need to find how is represented white before the curve, do 510 // a reverse interpolation in this case. 511 if (PostLin) { 512 513 cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PostLin); 514 515 for (i=0; i < nOuts; i++) { 516 517 cmsToneCurve* InversePostLin = cmsReverseToneCurve(Curves[i]); 518 if (InversePostLin == NULL) { 519 WhiteOut[i] = WhitePointOut[i]; 520 521 } else { 522 523 WhiteOut[i] = cmsEvalToneCurve16(InversePostLin, WhitePointOut[i]); 524 cmsFreeToneCurve(InversePostLin); 525 } 526 } 527 } 528 else { 529 for (i=0; i < nOuts; i++) 530 WhiteOut[i] = WhitePointOut[i]; 531 } 532 533 // Ok, proceed with patching. May fail and we don't care if it fails 534 PatchLUT(CLUT, WhiteIn, WhiteOut, nOuts, nIns); 535 536 return TRUE; 537 } 538 539 // ----------------------------------------------------------------------------------------------------------------------------------------------- 540 // This function creates simple LUT from complex ones. The generated LUT has an optional set of 541 // prelinearization curves, a CLUT of nGridPoints and optional postlinearization tables. 542 // These curves have to exist in the original LUT in order to be used in the simplified output. 543 // Caller may also use the flags to allow this feature. 544 // LUTS with all curves will be simplified to a single curve. Parametric curves are lost. 545 // This function should be used on 16-bits LUTS only, as floating point losses precision when simplified 546 // ----------------------------------------------------------------------------------------------------------------------------------------------- 547 548 static 549 cmsBool OptimizeByResampling(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags) 550 { 551 cmsPipeline* Src = NULL; 552 cmsPipeline* Dest = NULL; 553 cmsStage* mpe; 554 cmsStage* CLUT; 555 cmsStage *KeepPreLin = NULL, *KeepPostLin = NULL; 556 int nGridPoints; 557 cmsColorSpaceSignature ColorSpace, OutputColorSpace; 558 cmsStage *NewPreLin = NULL; 559 cmsStage *NewPostLin = NULL; 560 _cmsStageCLutData* DataCLUT; 561 cmsToneCurve** DataSetIn; 562 cmsToneCurve** DataSetOut; 563 Prelin16Data* p16; 564 565 // This is a loosy optimization! does not apply in floating-point cases 566 if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE; 567 568 ColorSpace = _cmsICCcolorSpace(T_COLORSPACE(*InputFormat)); 569 OutputColorSpace = _cmsICCcolorSpace(T_COLORSPACE(*OutputFormat)); 570 nGridPoints = _cmsReasonableGridpointsByColorspace(ColorSpace, *dwFlags); 571 572 // For empty LUTs, 2 points are enough 573 if (cmsPipelineStageCount(*Lut) == 0) 574 nGridPoints = 2; 575 576 Src = *Lut; 577 578 // Named color pipelines cannot be optimized either 579 for (mpe = cmsPipelineGetPtrToFirstStage(Src); 580 mpe != NULL; 581 mpe = cmsStageNext(mpe)) { 582 if (cmsStageType(mpe) == cmsSigNamedColorElemType) return FALSE; 583 } 584 585 // Allocate an empty LUT 586 Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels); 587 if (!Dest) return FALSE; 588 589 // Prelinearization tables are kept unless indicated by flags 590 if (*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION) { 591 592 // Get a pointer to the prelinearization element 593 cmsStage* PreLin = cmsPipelineGetPtrToFirstStage(Src); 594 595 // Check if suitable 596 if (PreLin ->Type == cmsSigCurveSetElemType) { 597 598 // Maybe this is a linear tram, so we can avoid the whole stuff 599 if (!AllCurvesAreLinear(PreLin)) { 600 601 // All seems ok, proceed. 602 NewPreLin = cmsStageDup(PreLin); 603 if(!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, NewPreLin)) 604 goto Error; 605 606 // Remove prelinearization. Since we have duplicated the curve 607 // in destination LUT, the sampling shoud be applied after this stage. 608 cmsPipelineUnlinkStage(Src, cmsAT_BEGIN, &KeepPreLin); 609 } 610 } 611 } 612 613 // Allocate the CLUT 614 CLUT = cmsStageAllocCLut16bit(Src ->ContextID, nGridPoints, Src ->InputChannels, Src->OutputChannels, NULL); 615 if (CLUT == NULL) goto Error; 616 617 // Add the CLUT to the destination LUT 618 if (!cmsPipelineInsertStage(Dest, cmsAT_END, CLUT)) { 619 goto Error; 620 } 621 622 // Postlinearization tables are kept unless indicated by flags 623 if (*dwFlags & cmsFLAGS_CLUT_POST_LINEARIZATION) { 624 625 // Get a pointer to the postlinearization if present 626 cmsStage* PostLin = cmsPipelineGetPtrToLastStage(Src); 627 628 // Check if suitable 629 if (cmsStageType(PostLin) == cmsSigCurveSetElemType) { 630 631 // Maybe this is a linear tram, so we can avoid the whole stuff 632 if (!AllCurvesAreLinear(PostLin)) { 633 634 // All seems ok, proceed. 635 NewPostLin = cmsStageDup(PostLin); 636 if (!cmsPipelineInsertStage(Dest, cmsAT_END, NewPostLin)) 637 goto Error; 638 639 // In destination LUT, the sampling shoud be applied after this stage. 640 cmsPipelineUnlinkStage(Src, cmsAT_END, &KeepPostLin); 641 } 642 } 643 } 644 645 // Now its time to do the sampling. We have to ignore pre/post linearization 646 // The source LUT whithout pre/post curves is passed as parameter. 647 if (!cmsStageSampleCLut16bit(CLUT, XFormSampler16, (void*) Src, 0)) { 648 Error: 649 // Ops, something went wrong, Restore stages 650 if (KeepPreLin != NULL) { 651 if (!cmsPipelineInsertStage(Src, cmsAT_BEGIN, KeepPreLin)) { 652 _cmsAssert(0); // This never happens 653 } 654 } 655 if (KeepPostLin != NULL) { 656 if (!cmsPipelineInsertStage(Src, cmsAT_END, KeepPostLin)) { 657 _cmsAssert(0); // This never happens 658 } 659 } 660 cmsPipelineFree(Dest); 661 return FALSE; 662 } 663 664 // Done. 665 666 if (KeepPreLin != NULL) cmsStageFree(KeepPreLin); 667 if (KeepPostLin != NULL) cmsStageFree(KeepPostLin); 668 cmsPipelineFree(Src); 669 670 DataCLUT = (_cmsStageCLutData*) CLUT ->Data; 671 672 if (NewPreLin == NULL) DataSetIn = NULL; 673 else DataSetIn = ((_cmsStageToneCurvesData*) NewPreLin ->Data) ->TheCurves; 674 675 if (NewPostLin == NULL) DataSetOut = NULL; 676 else DataSetOut = ((_cmsStageToneCurvesData*) NewPostLin ->Data) ->TheCurves; 677 678 679 if (DataSetIn == NULL && DataSetOut == NULL) { 680 681 _cmsPipelineSetOptimizationParameters(Dest, (_cmsOPTeval16Fn) DataCLUT->Params->Interpolation.Lerp16, DataCLUT->Params, NULL, NULL); 682 } 683 else { 684 685 p16 = PrelinOpt16alloc(Dest ->ContextID, 686 DataCLUT ->Params, 687 Dest ->InputChannels, 688 DataSetIn, 689 Dest ->OutputChannels, 690 DataSetOut); 691 692 _cmsPipelineSetOptimizationParameters(Dest, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup); 693 } 694 695 696 // Don't fix white on absolute colorimetric 697 if (Intent == INTENT_ABSOLUTE_COLORIMETRIC) 698 *dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP; 699 700 if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) { 701 702 FixWhiteMisalignment(Dest, ColorSpace, OutputColorSpace); 703 } 704 705 *Lut = Dest; 706 return TRUE; 707 708 cmsUNUSED_PARAMETER(Intent); 709 } 710 711 712 // ----------------------------------------------------------------------------------------------------------------------------------------------- 713 // Fixes the gamma balancing of transform. This is described in my paper "Prelinearization Stages on 714 // Color-Management Application-Specific Integrated Circuits (ASICs)" presented at NIP24. It only works 715 // for RGB transforms. See the paper for more details 716 // ----------------------------------------------------------------------------------------------------------------------------------------------- 717 718 719 // Normalize endpoints by slope limiting max and min. This assures endpoints as well. 720 // Descending curves are handled as well. 721 static 722 void SlopeLimiting(cmsToneCurve* g) 723 { 724 int BeginVal, EndVal; 725 int AtBegin = (int) floor((cmsFloat64Number) g ->nEntries * 0.02 + 0.5); // Cutoff at 2% 726 int AtEnd = g ->nEntries - AtBegin - 1; // And 98% 727 cmsFloat64Number Val, Slope, beta; 728 int i; 729 730 if (cmsIsToneCurveDescending(g)) { 731 BeginVal = 0xffff; EndVal = 0; 732 } 733 else { 734 BeginVal = 0; EndVal = 0xffff; 735 } 736 737 // Compute slope and offset for begin of curve 738 Val = g ->Table16[AtBegin]; 739 Slope = (Val - BeginVal) / AtBegin; 740 beta = Val - Slope * AtBegin; 741 742 for (i=0; i < AtBegin; i++) 743 g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta); 744 745 // Compute slope and offset for the end 746 Val = g ->Table16[AtEnd]; 747 Slope = (EndVal - Val) / AtBegin; // AtBegin holds the X interval, which is same in both cases 748 beta = Val - Slope * AtEnd; 749 750 for (i = AtEnd; i < (int) g ->nEntries; i++) 751 g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta); 752 } 753 754 755 // Precomputes tables for 8-bit on input devicelink. 756 static 757 Prelin8Data* PrelinOpt8alloc(cmsContext ContextID, const cmsInterpParams* p, cmsToneCurve* G[3]) 758 { 759 int i; 760 cmsUInt16Number Input[3]; 761 cmsS15Fixed16Number v1, v2, v3; 762 Prelin8Data* p8; 763 764 p8 = (Prelin8Data*)_cmsMallocZero(ContextID, sizeof(Prelin8Data)); 765 if (p8 == NULL) return NULL; 766 767 // Since this only works for 8 bit input, values comes always as x * 257, 768 // we can safely take msb byte (x << 8 + x) 769 770 for (i=0; i < 256; i++) { 771 772 if (G != NULL) { 773 774 // Get 16-bit representation 775 Input[0] = cmsEvalToneCurve16(G[0], FROM_8_TO_16(i)); 776 Input[1] = cmsEvalToneCurve16(G[1], FROM_8_TO_16(i)); 777 Input[2] = cmsEvalToneCurve16(G[2], FROM_8_TO_16(i)); 778 } 779 else { 780 Input[0] = FROM_8_TO_16(i); 781 Input[1] = FROM_8_TO_16(i); 782 Input[2] = FROM_8_TO_16(i); 783 } 784 785 786 // Move to 0..1.0 in fixed domain 787 v1 = _cmsToFixedDomain(Input[0] * p -> Domain[0]); 788 v2 = _cmsToFixedDomain(Input[1] * p -> Domain[1]); 789 v3 = _cmsToFixedDomain(Input[2] * p -> Domain[2]); 790 791 // Store the precalculated table of nodes 792 p8 ->X0[i] = (p->opta[2] * FIXED_TO_INT(v1)); 793 p8 ->Y0[i] = (p->opta[1] * FIXED_TO_INT(v2)); 794 p8 ->Z0[i] = (p->opta[0] * FIXED_TO_INT(v3)); 795 796 // Store the precalculated table of offsets 797 p8 ->rx[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v1); 798 p8 ->ry[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v2); 799 p8 ->rz[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v3); 800 } 801 802 p8 ->ContextID = ContextID; 803 p8 ->p = p; 804 805 return p8; 806 } 807 808 static 809 void Prelin8free(cmsContext ContextID, void* ptr) 810 { 811 _cmsFree(ContextID, ptr); 812 } 813 814 static 815 void* Prelin8dup(cmsContext ContextID, const void* ptr) 816 { 817 return _cmsDupMem(ContextID, ptr, sizeof(Prelin8Data)); 818 } 819 820 821 822 // A optimized interpolation for 8-bit input. 823 #define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan]) 824 static 825 void PrelinEval8(register const cmsUInt16Number Input[], 826 register cmsUInt16Number Output[], 827 register const void* D) 828 { 829 830 cmsUInt8Number r, g, b; 831 cmsS15Fixed16Number rx, ry, rz; 832 cmsS15Fixed16Number c0, c1, c2, c3, Rest; 833 int OutChan; 834 register cmsS15Fixed16Number X0, X1, Y0, Y1, Z0, Z1; 835 Prelin8Data* p8 = (Prelin8Data*) D; 836 register const cmsInterpParams* p = p8 ->p; 837 int TotalOut = p -> nOutputs; 838 const cmsUInt16Number* LutTable = (const cmsUInt16Number*)p -> Table; 839 840 r = Input[0] >> 8; 841 g = Input[1] >> 8; 842 b = Input[2] >> 8; 843 844 X0 = X1 = p8->X0[r]; 845 Y0 = Y1 = p8->Y0[g]; 846 Z0 = Z1 = p8->Z0[b]; 847 848 rx = p8 ->rx[r]; 849 ry = p8 ->ry[g]; 850 rz = p8 ->rz[b]; 851 852 X1 = X0 + ((rx == 0) ? 0 : p ->opta[2]); 853 Y1 = Y0 + ((ry == 0) ? 0 : p ->opta[1]); 854 Z1 = Z0 + ((rz == 0) ? 0 : p ->opta[0]); 855 856 857 // These are the 6 Tetrahedral 858 for (OutChan=0; OutChan < TotalOut; OutChan++) { 859 860 c0 = DENS(X0, Y0, Z0); 861 862 if (rx >= ry && ry >= rz) 863 { 864 c1 = DENS(X1, Y0, Z0) - c0; 865 c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0); 866 c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0); 867 } 868 else 869 if (rx >= rz && rz >= ry) 870 { 871 c1 = DENS(X1, Y0, Z0) - c0; 872 c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1); 873 c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0); 874 } 875 else 876 if (rz >= rx && rx >= ry) 877 { 878 c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1); 879 c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1); 880 c3 = DENS(X0, Y0, Z1) - c0; 881 } 882 else 883 if (ry >= rx && rx >= rz) 884 { 885 c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0); 886 c2 = DENS(X0, Y1, Z0) - c0; 887 c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0); 888 } 889 else 890 if (ry >= rz && rz >= rx) 891 { 892 c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1); 893 c2 = DENS(X0, Y1, Z0) - c0; 894 c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0); 895 } 896 else 897 if (rz >= ry && ry >= rx) 898 { 899 c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1); 900 c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1); 901 c3 = DENS(X0, Y0, Z1) - c0; 902 } 903 else { 904 c1 = c2 = c3 = 0; 905 } 906 907 908 Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001; 909 Output[OutChan] = (cmsUInt16Number)c0 + ((Rest + (Rest>>16))>>16); 910 911 } 912 } 913 914 #undef DENS 915 916 917 // Curves that contain wide empty areas are not optimizeable 918 static 919 cmsBool IsDegenerated(const cmsToneCurve* g) 920 { 921 int i, Zeros = 0, Poles = 0; 922 int nEntries = g ->nEntries; 923 924 for (i=0; i < nEntries; i++) { 925 926 if (g ->Table16[i] == 0x0000) Zeros++; 927 if (g ->Table16[i] == 0xffff) Poles++; 928 } 929 930 if (Zeros == 1 && Poles == 1) return FALSE; // For linear tables 931 if (Zeros > (nEntries / 4)) return TRUE; // Degenerated, mostly zeros 932 if (Poles > (nEntries / 4)) return TRUE; // Degenerated, mostly poles 933 934 return FALSE; 935 } 936 937 // -------------------------------------------------------------------------------------------------------------- 938 // We need xput over here 939 940 static 941 cmsBool OptimizeByComputingLinearization(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags) 942 { 943 cmsPipeline* OriginalLut; 944 int nGridPoints; 945 cmsToneCurve *Trans[cmsMAXCHANNELS], *TransReverse[cmsMAXCHANNELS]; 946 cmsUInt32Number t, i; 947 cmsFloat32Number v, In[cmsMAXCHANNELS], Out[cmsMAXCHANNELS]; 948 cmsBool lIsSuitable, lIsLinear; 949 cmsPipeline* OptimizedLUT = NULL, *LutPlusCurves = NULL; 950 cmsStage* OptimizedCLUTmpe; 951 cmsColorSpaceSignature ColorSpace, OutputColorSpace; 952 cmsStage* OptimizedPrelinMpe; 953 cmsStage* mpe; 954 cmsToneCurve** OptimizedPrelinCurves; 955 _cmsStageCLutData* OptimizedPrelinCLUT; 956 957 958 // This is a loosy optimization! does not apply in floating-point cases 959 if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE; 960 961 // Only on RGB 962 if (T_COLORSPACE(*InputFormat) != PT_RGB) return FALSE; 963 if (T_COLORSPACE(*OutputFormat) != PT_RGB) return FALSE; 964 965 966 // On 16 bits, user has to specify the feature 967 if (!_cmsFormatterIs8bit(*InputFormat)) { 968 if (!(*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION)) return FALSE; 969 } 970 971 OriginalLut = *Lut; 972 973 // Named color pipelines cannot be optimized either 974 for (mpe = cmsPipelineGetPtrToFirstStage(OriginalLut); 975 mpe != NULL; 976 mpe = cmsStageNext(mpe)) { 977 if (cmsStageType(mpe) == cmsSigNamedColorElemType) return FALSE; 978 } 979 980 ColorSpace = _cmsICCcolorSpace(T_COLORSPACE(*InputFormat)); 981 OutputColorSpace = _cmsICCcolorSpace(T_COLORSPACE(*OutputFormat)); 982 nGridPoints = _cmsReasonableGridpointsByColorspace(ColorSpace, *dwFlags); 983 984 // Empty gamma containers 985 memset(Trans, 0, sizeof(Trans)); 986 memset(TransReverse, 0, sizeof(TransReverse)); 987 988 for (t = 0; t < OriginalLut ->InputChannels; t++) { 989 Trans[t] = cmsBuildTabulatedToneCurve16(OriginalLut ->ContextID, PRELINEARIZATION_POINTS, NULL); 990 if (Trans[t] == NULL) goto Error; 991 } 992 993 // Populate the curves 994 for (i=0; i < PRELINEARIZATION_POINTS; i++) { 995 996 v = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1)); 997 998 // Feed input with a gray ramp 999 for (t=0; t < OriginalLut ->InputChannels; t++) 1000 In[t] = v; 1001 1002 // Evaluate the gray value 1003 cmsPipelineEvalFloat(In, Out, OriginalLut); 1004 1005 // Store result in curve 1006 for (t=0; t < OriginalLut ->InputChannels; t++) 1007 Trans[t] ->Table16[i] = _cmsQuickSaturateWord(Out[t] * 65535.0); 1008 } 1009 1010 // Slope-limit the obtained curves 1011 for (t = 0; t < OriginalLut ->InputChannels; t++) 1012 SlopeLimiting(Trans[t]); 1013 1014 // Check for validity 1015 lIsSuitable = TRUE; 1016 lIsLinear = TRUE; 1017 for (t=0; (lIsSuitable && (t < OriginalLut ->InputChannels)); t++) { 1018 1019 // Exclude if already linear 1020 if (!cmsIsToneCurveLinear(Trans[t])) 1021 lIsLinear = FALSE; 1022 1023 // Exclude if non-monotonic 1024 if (!cmsIsToneCurveMonotonic(Trans[t])) 1025 lIsSuitable = FALSE; 1026 1027 if (IsDegenerated(Trans[t])) 1028 lIsSuitable = FALSE; 1029 } 1030 1031 // If it is not suitable, just quit 1032 if (!lIsSuitable) goto Error; 1033 1034 // Invert curves if possible 1035 for (t = 0; t < OriginalLut ->InputChannels; t++) { 1036 TransReverse[t] = cmsReverseToneCurveEx(PRELINEARIZATION_POINTS, Trans[t]); 1037 if (TransReverse[t] == NULL) goto Error; 1038 } 1039 1040 // Now inset the reversed curves at the begin of transform 1041 LutPlusCurves = cmsPipelineDup(OriginalLut); 1042 if (LutPlusCurves == NULL) goto Error; 1043 1044 if (!cmsPipelineInsertStage(LutPlusCurves, cmsAT_BEGIN, cmsStageAllocToneCurves(OriginalLut ->ContextID, OriginalLut ->InputChannels, TransReverse))) 1045 goto Error; 1046 1047 // Create the result LUT 1048 OptimizedLUT = cmsPipelineAlloc(OriginalLut ->ContextID, OriginalLut ->InputChannels, OriginalLut ->OutputChannels); 1049 if (OptimizedLUT == NULL) goto Error; 1050 1051 OptimizedPrelinMpe = cmsStageAllocToneCurves(OriginalLut ->ContextID, OriginalLut ->InputChannels, Trans); 1052 1053 // Create and insert the curves at the beginning 1054 if (!cmsPipelineInsertStage(OptimizedLUT, cmsAT_BEGIN, OptimizedPrelinMpe)) 1055 goto Error; 1056 1057 // Allocate the CLUT for result 1058 OptimizedCLUTmpe = cmsStageAllocCLut16bit(OriginalLut ->ContextID, nGridPoints, OriginalLut ->InputChannels, OriginalLut ->OutputChannels, NULL); 1059 1060 // Add the CLUT to the destination LUT 1061 if (!cmsPipelineInsertStage(OptimizedLUT, cmsAT_END, OptimizedCLUTmpe)) 1062 goto Error; 1063 1064 // Resample the LUT 1065 if (!cmsStageSampleCLut16bit(OptimizedCLUTmpe, XFormSampler16, (void*) LutPlusCurves, 0)) goto Error; 1066 1067 // Free resources 1068 for (t = 0; t < OriginalLut ->InputChannels; t++) { 1069 1070 if (Trans[t]) cmsFreeToneCurve(Trans[t]); 1071 if (TransReverse[t]) cmsFreeToneCurve(TransReverse[t]); 1072 } 1073 1074 cmsPipelineFree(LutPlusCurves); 1075 1076 1077 OptimizedPrelinCurves = _cmsStageGetPtrToCurveSet(OptimizedPrelinMpe); 1078 OptimizedPrelinCLUT = (_cmsStageCLutData*) OptimizedCLUTmpe ->Data; 1079 1080 // Set the evaluator if 8-bit 1081 if (_cmsFormatterIs8bit(*InputFormat)) { 1082 1083 Prelin8Data* p8 = PrelinOpt8alloc(OptimizedLUT ->ContextID, 1084 OptimizedPrelinCLUT ->Params, 1085 OptimizedPrelinCurves); 1086 if (p8 == NULL) return FALSE; 1087 1088 _cmsPipelineSetOptimizationParameters(OptimizedLUT, PrelinEval8, (void*) p8, Prelin8free, Prelin8dup); 1089 1090 } 1091 else 1092 { 1093 Prelin16Data* p16 = PrelinOpt16alloc(OptimizedLUT ->ContextID, 1094 OptimizedPrelinCLUT ->Params, 1095 3, OptimizedPrelinCurves, 3, NULL); 1096 if (p16 == NULL) return FALSE; 1097 1098 _cmsPipelineSetOptimizationParameters(OptimizedLUT, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup); 1099 1100 } 1101 1102 // Don't fix white on absolute colorimetric 1103 if (Intent == INTENT_ABSOLUTE_COLORIMETRIC) 1104 *dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP; 1105 1106 if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) { 1107 1108 if (!FixWhiteMisalignment(OptimizedLUT, ColorSpace, OutputColorSpace)) { 1109 1110 return FALSE; 1111 } 1112 } 1113 1114 // And return the obtained LUT 1115 1116 cmsPipelineFree(OriginalLut); 1117 *Lut = OptimizedLUT; 1118 return TRUE; 1119 1120 Error: 1121 1122 for (t = 0; t < OriginalLut ->InputChannels; t++) { 1123 1124 if (Trans[t]) cmsFreeToneCurve(Trans[t]); 1125 if (TransReverse[t]) cmsFreeToneCurve(TransReverse[t]); 1126 } 1127 1128 if (LutPlusCurves != NULL) cmsPipelineFree(LutPlusCurves); 1129 if (OptimizedLUT != NULL) cmsPipelineFree(OptimizedLUT); 1130 1131 return FALSE; 1132 1133 cmsUNUSED_PARAMETER(Intent); 1134 } 1135 1136 1137 // Curves optimizer ------------------------------------------------------------------------------------------------------------------ 1138 1139 static 1140 void CurvesFree(cmsContext ContextID, void* ptr) 1141 { 1142 Curves16Data* Data = (Curves16Data*) ptr; 1143 int i; 1144 1145 for (i=0; i < Data -> nCurves; i++) { 1146 1147 _cmsFree(ContextID, Data ->Curves[i]); 1148 } 1149 1150 _cmsFree(ContextID, Data ->Curves); 1151 _cmsFree(ContextID, ptr); 1152 } 1153 1154 static 1155 void* CurvesDup(cmsContext ContextID, const void* ptr) 1156 { 1157 Curves16Data* Data = (Curves16Data*)_cmsDupMem(ContextID, ptr, sizeof(Curves16Data)); 1158 int i; 1159 1160 if (Data == NULL) return NULL; 1161 1162 Data ->Curves = (cmsUInt16Number**)_cmsDupMem(ContextID, Data ->Curves, Data ->nCurves * sizeof(cmsUInt16Number*)); 1163 1164 for (i=0; i < Data -> nCurves; i++) { 1165 Data ->Curves[i] = (cmsUInt16Number*)_cmsDupMem(ContextID, Data ->Curves[i], Data -> nElements * sizeof(cmsUInt16Number)); 1166 } 1167 1168 return (void*) Data; 1169 } 1170 1171 // Precomputes tables for 8-bit on input devicelink. 1172 static 1173 Curves16Data* CurvesAlloc(cmsContext ContextID, int nCurves, int nElements, cmsToneCurve** G) 1174 { 1175 int i, j; 1176 Curves16Data* c16; 1177 1178 c16 = (Curves16Data*)_cmsMallocZero(ContextID, sizeof(Curves16Data)); 1179 if (c16 == NULL) return NULL; 1180 1181 c16 ->nCurves = nCurves; 1182 c16 ->nElements = nElements; 1183 1184 c16 ->Curves = (cmsUInt16Number**)_cmsCalloc(ContextID, nCurves, sizeof(cmsUInt16Number*)); 1185 if (c16 ->Curves == NULL) return NULL; 1186 1187 for (i=0; i < nCurves; i++) { 1188 1189 c16->Curves[i] = (cmsUInt16Number*)_cmsCalloc(ContextID, nElements, sizeof(cmsUInt16Number)); 1190 1191 if (c16->Curves[i] == NULL) { 1192 1193 for (j=0; j < i; j++) { 1194 _cmsFree(ContextID, c16->Curves[j]); 1195 } 1196 _cmsFree(ContextID, c16->Curves); 1197 _cmsFree(ContextID, c16); 1198 return NULL; 1199 } 1200 1201 if (nElements == 256) { 1202 1203 for (j=0; j < nElements; j++) { 1204 1205 c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], FROM_8_TO_16(j)); 1206 } 1207 } 1208 else { 1209 1210 for (j=0; j < nElements; j++) { 1211 c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], (cmsUInt16Number) j); 1212 } 1213 } 1214 } 1215 1216 return c16; 1217 } 1218 1219 static 1220 void FastEvaluateCurves8(register const cmsUInt16Number In[], 1221 register cmsUInt16Number Out[], 1222 register const void* D) 1223 { 1224 Curves16Data* Data = (Curves16Data*) D; 1225 cmsUInt8Number x; 1226 int i; 1227 1228 for (i=0; i < Data ->nCurves; i++) { 1229 1230 x = (In[i] >> 8); 1231 Out[i] = Data -> Curves[i][x]; 1232 } 1233 } 1234 1235 1236 static 1237 void FastEvaluateCurves16(register const cmsUInt16Number In[], 1238 register cmsUInt16Number Out[], 1239 register const void* D) 1240 { 1241 Curves16Data* Data = (Curves16Data*) D; 1242 int i; 1243 1244 for (i=0; i < Data ->nCurves; i++) { 1245 Out[i] = Data -> Curves[i][In[i]]; 1246 } 1247 } 1248 1249 1250 static 1251 void FastIdentity16(register const cmsUInt16Number In[], 1252 register cmsUInt16Number Out[], 1253 register const void* D) 1254 { 1255 cmsPipeline* Lut = (cmsPipeline*) D; 1256 cmsUInt32Number i; 1257 1258 for (i=0; i < Lut ->InputChannels; i++) { 1259 Out[i] = In[i]; 1260 } 1261 } 1262 1263 1264 // If the target LUT holds only curves, the optimization procedure is to join all those 1265 // curves together. That only works on curves and does not work on matrices. 1266 static 1267 cmsBool OptimizeByJoiningCurves(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags) 1268 { 1269 cmsToneCurve** GammaTables = NULL; 1270 cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS]; 1271 cmsUInt32Number i, j; 1272 cmsPipeline* Src = *Lut; 1273 cmsPipeline* Dest = NULL; 1274 cmsStage* mpe; 1275 cmsStage* ObtainedCurves = NULL; 1276 1277 1278 // This is a loosy optimization! does not apply in floating-point cases 1279 if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE; 1280 1281 // Only curves in this LUT? 1282 for (mpe = cmsPipelineGetPtrToFirstStage(Src); 1283 mpe != NULL; 1284 mpe = cmsStageNext(mpe)) { 1285 if (cmsStageType(mpe) != cmsSigCurveSetElemType) return FALSE; 1286 } 1287 1288 // Allocate an empty LUT 1289 Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels); 1290 if (Dest == NULL) return FALSE; 1291 1292 // Create target curves 1293 GammaTables = (cmsToneCurve**) _cmsCalloc(Src ->ContextID, Src ->InputChannels, sizeof(cmsToneCurve*)); 1294 if (GammaTables == NULL) goto Error; 1295 1296 for (i=0; i < Src ->InputChannels; i++) { 1297 GammaTables[i] = cmsBuildTabulatedToneCurve16(Src ->ContextID, PRELINEARIZATION_POINTS, NULL); 1298 if (GammaTables[i] == NULL) goto Error; 1299 } 1300 1301 // Compute 16 bit result by using floating point 1302 for (i=0; i < PRELINEARIZATION_POINTS; i++) { 1303 1304 for (j=0; j < Src ->InputChannels; j++) 1305 InFloat[j] = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1)); 1306 1307 cmsPipelineEvalFloat(InFloat, OutFloat, Src); 1308 1309 for (j=0; j < Src ->InputChannels; j++) 1310 GammaTables[j] -> Table16[i] = _cmsQuickSaturateWord(OutFloat[j] * 65535.0); 1311 } 1312 1313 ObtainedCurves = cmsStageAllocToneCurves(Src ->ContextID, Src ->InputChannels, GammaTables); 1314 if (ObtainedCurves == NULL) goto Error; 1315 1316 for (i=0; i < Src ->InputChannels; i++) { 1317 cmsFreeToneCurve(GammaTables[i]); 1318 GammaTables[i] = NULL; 1319 } 1320 1321 if (GammaTables != NULL) _cmsFree(Src ->ContextID, GammaTables); 1322 1323 // Maybe the curves are linear at the end 1324 if (!AllCurvesAreLinear(ObtainedCurves)) { 1325 1326 if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, ObtainedCurves)) 1327 goto Error; 1328 1329 // If the curves are to be applied in 8 bits, we can save memory 1330 if (_cmsFormatterIs8bit(*InputFormat)) { 1331 1332 _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) ObtainedCurves ->Data; 1333 Curves16Data* c16 = CurvesAlloc(Dest ->ContextID, Data ->nCurves, 256, Data ->TheCurves); 1334 1335 if (c16 == NULL) goto Error; 1336 *dwFlags |= cmsFLAGS_NOCACHE; 1337 _cmsPipelineSetOptimizationParameters(Dest, FastEvaluateCurves8, c16, CurvesFree, CurvesDup); 1338 1339 } 1340 else { 1341 1342 _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) cmsStageData(ObtainedCurves); 1343 Curves16Data* c16 = CurvesAlloc(Dest ->ContextID, Data ->nCurves, 65536, Data ->TheCurves); 1344 1345 if (c16 == NULL) goto Error; 1346 *dwFlags |= cmsFLAGS_NOCACHE; 1347 _cmsPipelineSetOptimizationParameters(Dest, FastEvaluateCurves16, c16, CurvesFree, CurvesDup); 1348 } 1349 } 1350 else { 1351 1352 // LUT optimizes to nothing. Set the identity LUT 1353 cmsStageFree(ObtainedCurves); 1354 1355 if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, cmsStageAllocIdentity(Dest ->ContextID, Src ->InputChannels))) 1356 goto Error; 1357 1358 *dwFlags |= cmsFLAGS_NOCACHE; 1359 _cmsPipelineSetOptimizationParameters(Dest, FastIdentity16, (void*) Dest, NULL, NULL); 1360 } 1361 1362 // We are done. 1363 cmsPipelineFree(Src); 1364 *Lut = Dest; 1365 return TRUE; 1366 1367 Error: 1368 1369 if (ObtainedCurves != NULL) cmsStageFree(ObtainedCurves); 1370 if (GammaTables != NULL) { 1371 for (i=0; i < Src ->InputChannels; i++) { 1372 if (GammaTables[i] != NULL) cmsFreeToneCurve(GammaTables[i]); 1373 } 1374 1375 _cmsFree(Src ->ContextID, GammaTables); 1376 } 1377 1378 if (Dest != NULL) cmsPipelineFree(Dest); 1379 return FALSE; 1380 1381 cmsUNUSED_PARAMETER(Intent); 1382 cmsUNUSED_PARAMETER(InputFormat); 1383 cmsUNUSED_PARAMETER(OutputFormat); 1384 cmsUNUSED_PARAMETER(dwFlags); 1385 } 1386 1387 // ------------------------------------------------------------------------------------------------------------------------------------- 1388 // LUT is Shaper - Matrix - Matrix - Shaper, which is very frequent when combining two matrix-shaper profiles 1389 1390 1391 static 1392 void FreeMatShaper(cmsContext ContextID, void* Data) 1393 { 1394 if (Data != NULL) _cmsFree(ContextID, Data); 1395 } 1396 1397 static 1398 void* DupMatShaper(cmsContext ContextID, const void* Data) 1399 { 1400 return _cmsDupMem(ContextID, Data, sizeof(MatShaper8Data)); 1401 } 1402 1403 1404 // A fast matrix-shaper evaluator for 8 bits. This is a bit ticky since I'm using 1.14 signed fixed point 1405 // to accomplish some performance. Actually it takes 256x3 16 bits tables and 16385 x 3 tables of 8 bits, 1406 // in total about 50K, and the performance boost is huge! 1407 static 1408 void MatShaperEval16(register const cmsUInt16Number In[], 1409 register cmsUInt16Number Out[], 1410 register const void* D) 1411 { 1412 MatShaper8Data* p = (MatShaper8Data*) D; 1413 cmsS1Fixed14Number l1, l2, l3, r, g, b; 1414 cmsUInt32Number ri, gi, bi; 1415 1416 // In this case (and only in this case!) we can use this simplification since 1417 // In[] is assured to come from a 8 bit number. (a << 8 | a) 1418 ri = In[0] & 0xFF; 1419 gi = In[1] & 0xFF; 1420 bi = In[2] & 0xFF; 1421 1422 // Across first shaper, which also converts to 1.14 fixed point 1423 r = p->Shaper1R[ri]; 1424 g = p->Shaper1G[gi]; 1425 b = p->Shaper1B[bi]; 1426 1427 // Evaluate the matrix in 1.14 fixed point 1428 l1 = (p->Mat[0][0] * r + p->Mat[0][1] * g + p->Mat[0][2] * b + p->Off[0] + 0x2000) >> 14; 1429 l2 = (p->Mat[1][0] * r + p->Mat[1][1] * g + p->Mat[1][2] * b + p->Off[1] + 0x2000) >> 14; 1430 l3 = (p->Mat[2][0] * r + p->Mat[2][1] * g + p->Mat[2][2] * b + p->Off[2] + 0x2000) >> 14; 1431 1432 // Now we have to clip to 0..1.0 range 1433 ri = (l1 < 0) ? 0 : ((l1 > 16384) ? 16384 : l1); 1434 gi = (l2 < 0) ? 0 : ((l2 > 16384) ? 16384 : l2); 1435 bi = (l3 < 0) ? 0 : ((l3 > 16384) ? 16384 : l3); 1436 1437 // And across second shaper, 1438 Out[0] = p->Shaper2R[ri]; 1439 Out[1] = p->Shaper2G[gi]; 1440 Out[2] = p->Shaper2B[bi]; 1441 1442 } 1443 1444 // This table converts from 8 bits to 1.14 after applying the curve 1445 static 1446 cmsBool FillFirstShaper(cmsS1Fixed14Number* Table, cmsToneCurve* Curve) 1447 { 1448 int i; 1449 cmsFloat32Number R, y; 1450 1451 for (i=0; i < 256; i++) { 1452 1453 R = (cmsFloat32Number) (i / 255.0); 1454 y = cmsEvalToneCurveFloat(Curve, R); 1455 if (isinf(y)) 1456 return FALSE; 1457 1458 Table[i] = DOUBLE_TO_1FIXED14(y); 1459 } 1460 return TRUE; 1461 } 1462 1463 // This table converts form 1.14 (being 0x4000 the last entry) to 8 bits after applying the curve 1464 static 1465 cmsBool FillSecondShaper(cmsUInt16Number* Table, cmsToneCurve* Curve, cmsBool Is8BitsOutput) 1466 { 1467 int i; 1468 cmsFloat32Number R, Val; 1469 1470 for (i=0; i < 16385; i++) { 1471 1472 R = (cmsFloat32Number) (i / 16384.0); 1473 Val = cmsEvalToneCurveFloat(Curve, R); // Val comes 0..1.0 1474 if (isinf(Val)) 1475 return FALSE; 1476 1477 if (Is8BitsOutput) { 1478 1479 // If 8 bits output, we can optimize further by computing the / 257 part. 1480 // first we compute the resulting byte and then we store the byte times 1481 // 257. This quantization allows to round very quick by doing a >> 8, but 1482 // since the low byte is always equal to msb, we can do a & 0xff and this works! 1483 cmsUInt16Number w = _cmsQuickSaturateWord(Val * 65535.0); 1484 cmsUInt8Number b = FROM_16_TO_8(w); 1485 1486 Table[i] = FROM_8_TO_16(b); 1487 } 1488 else Table[i] = _cmsQuickSaturateWord(Val * 65535.0); 1489 } 1490 return TRUE; 1491 } 1492 1493 // Compute the matrix-shaper structure 1494 static 1495 cmsBool SetMatShaper(cmsPipeline* Dest, cmsToneCurve* Curve1[3], cmsMAT3* Mat, cmsVEC3* Off, cmsToneCurve* Curve2[3], cmsUInt32Number* OutputFormat) 1496 { 1497 MatShaper8Data* p; 1498 int i, j; 1499 cmsBool Is8Bits = _cmsFormatterIs8bit(*OutputFormat); 1500 1501 // Allocate a big chuck of memory to store precomputed tables 1502 p = (MatShaper8Data*) _cmsMalloc(Dest ->ContextID, sizeof(MatShaper8Data)); 1503 if (p == NULL) return FALSE; 1504 1505 p -> ContextID = Dest -> ContextID; 1506 1507 // Precompute tables 1508 if (!FillFirstShaper(p ->Shaper1R, Curve1[0])) 1509 goto Error; 1510 if (!FillFirstShaper(p ->Shaper1G, Curve1[1])) 1511 goto Error; 1512 if (!FillFirstShaper(p ->Shaper1B, Curve1[2])) 1513 goto Error; 1514 1515 if (!FillSecondShaper(p ->Shaper2R, Curve2[0], Is8Bits)) 1516 goto Error; 1517 if (!FillSecondShaper(p ->Shaper2G, Curve2[1], Is8Bits)) 1518 goto Error; 1519 if (!FillSecondShaper(p ->Shaper2B, Curve2[2], Is8Bits)) 1520 goto Error; 1521 1522 // Convert matrix to nFixed14. Note that those values may take more than 16 bits as 1523 for (i=0; i < 3; i++) { 1524 for (j=0; j < 3; j++) { 1525 p ->Mat[i][j] = DOUBLE_TO_1FIXED14(Mat->v[i].n[j]); 1526 } 1527 } 1528 1529 for (i=0; i < 3; i++) { 1530 1531 if (Off == NULL) { 1532 p ->Off[i] = 0; 1533 } 1534 else { 1535 p ->Off[i] = DOUBLE_TO_1FIXED14(Off->n[i]); 1536 } 1537 } 1538 1539 // Mark as optimized for faster formatter 1540 if (Is8Bits) 1541 *OutputFormat |= OPTIMIZED_SH(1); 1542 1543 // Fill function pointers 1544 _cmsPipelineSetOptimizationParameters(Dest, MatShaperEval16, (void*) p, FreeMatShaper, DupMatShaper); 1545 return TRUE; 1546 Error: 1547 _cmsFree(Dest->ContextID, p); 1548 return FALSE; 1549 } 1550 1551 // 8 bits on input allows matrix-shaper boot up to 25 Mpixels per second on RGB. That's fast! 1552 // TODO: Allow a third matrix for abs. colorimetric 1553 static 1554 cmsBool OptimizeMatrixShaper(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags) 1555 { 1556 cmsStage* Curve1, *Curve2; 1557 cmsStage* Matrix1, *Matrix2; 1558 _cmsStageMatrixData* Data1; 1559 _cmsStageMatrixData* Data2; 1560 cmsMAT3 res; 1561 cmsBool IdentityMat; 1562 cmsPipeline* Dest, *Src; 1563 1564 // Only works on RGB to RGB 1565 if (T_CHANNELS(*InputFormat) != 3 || T_CHANNELS(*OutputFormat) != 3) return FALSE; 1566 1567 // Only works on 8 bit input 1568 if (!_cmsFormatterIs8bit(*InputFormat)) return FALSE; 1569 1570 // Seems suitable, proceed 1571 Src = *Lut; 1572 1573 // Check for shaper-matrix-matrix-shaper structure, that is what this optimizer stands for 1574 if (!cmsPipelineCheckAndRetreiveStages(Src, 4, 1575 cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType, 1576 &Curve1, &Matrix1, &Matrix2, &Curve2)) return FALSE; 1577 1578 // Get both matrices 1579 Data1 = (_cmsStageMatrixData*) cmsStageData(Matrix1); 1580 Data2 = (_cmsStageMatrixData*) cmsStageData(Matrix2); 1581 1582 // Input offset should be zero 1583 if (Data1 ->Offset != NULL) return FALSE; 1584 1585 // Multiply both matrices to get the result 1586 _cmsMAT3per(&res, (cmsMAT3*) Data2 ->Double, (cmsMAT3*) Data1 ->Double); 1587 1588 // Now the result is in res + Data2 -> Offset. Maybe is a plain identity? 1589 IdentityMat = FALSE; 1590 if (_cmsMAT3isIdentity(&res) && Data2 ->Offset == NULL) { 1591 1592 // We can get rid of full matrix 1593 IdentityMat = TRUE; 1594 } 1595 1596 // Allocate an empty LUT 1597 Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels); 1598 if (!Dest) return FALSE; 1599 1600 // Assamble the new LUT 1601 if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, cmsStageDup(Curve1))) 1602 goto Error; 1603 1604 if (!IdentityMat) 1605 if (!cmsPipelineInsertStage(Dest, cmsAT_END, cmsStageAllocMatrix(Dest ->ContextID, 3, 3, (const cmsFloat64Number*) &res, Data2 ->Offset))) 1606 goto Error; 1607 if (!cmsPipelineInsertStage(Dest, cmsAT_END, cmsStageDup(Curve2))) 1608 goto Error; 1609 1610 // If identity on matrix, we can further optimize the curves, so call the join curves routine 1611 if (IdentityMat) { 1612 1613 OptimizeByJoiningCurves(&Dest, Intent, InputFormat, OutputFormat, dwFlags); 1614 } 1615 else { 1616 _cmsStageToneCurvesData* mpeC1 = (_cmsStageToneCurvesData*) cmsStageData(Curve1); 1617 _cmsStageToneCurvesData* mpeC2 = (_cmsStageToneCurvesData*) cmsStageData(Curve2); 1618 1619 // In this particular optimization, cach?does not help as it takes more time to deal with 1620 // the cach?that with the pixel handling 1621 *dwFlags |= cmsFLAGS_NOCACHE; 1622 1623 // Setup the optimizarion routines 1624 if (!SetMatShaper(Dest, mpeC1 ->TheCurves, &res, (cmsVEC3*) Data2 ->Offset, mpeC2->TheCurves, OutputFormat)) 1625 goto Error; 1626 } 1627 1628 cmsPipelineFree(Src); 1629 *Lut = Dest; 1630 return TRUE; 1631 Error: 1632 // Leave Src unchanged 1633 cmsPipelineFree(Dest); 1634 return FALSE; 1635 } 1636 1637 1638 // ------------------------------------------------------------------------------------------------------------------------------------- 1639 // Optimization plug-ins 1640 1641 // List of optimizations 1642 typedef struct _cmsOptimizationCollection_st { 1643 1644 _cmsOPToptimizeFn OptimizePtr; 1645 1646 struct _cmsOptimizationCollection_st *Next; 1647 1648 } _cmsOptimizationCollection; 1649 1650 1651 // The built-in list. We currently implement 4 types of optimizations. Joining of curves, matrix-shaper, linearization and resampling 1652 static _cmsOptimizationCollection DefaultOptimization[] = { 1653 1654 { OptimizeByJoiningCurves, &DefaultOptimization[1] }, 1655 { OptimizeMatrixShaper, &DefaultOptimization[2] }, 1656 { OptimizeByComputingLinearization, &DefaultOptimization[3] }, 1657 { OptimizeByResampling, NULL } 1658 }; 1659 1660 // The linked list head 1661 _cmsOptimizationPluginChunkType _cmsOptimizationPluginChunk = { NULL }; 1662 1663 1664 // Duplicates the zone of memory used by the plug-in in the new context 1665 static 1666 void DupPluginOptimizationList(struct _cmsContext_struct* ctx, 1667 const struct _cmsContext_struct* src) 1668 { 1669 _cmsOptimizationPluginChunkType newHead = { NULL }; 1670 _cmsOptimizationCollection* entry; 1671 _cmsOptimizationCollection* Anterior = NULL; 1672 _cmsOptimizationPluginChunkType* head = (_cmsOptimizationPluginChunkType*) src->chunks[OptimizationPlugin]; 1673 1674 _cmsAssert(ctx != NULL); 1675 _cmsAssert(head != NULL); 1676 1677 // Walk the list copying all nodes 1678 for (entry = head->OptimizationCollection; 1679 entry != NULL; 1680 entry = entry ->Next) { 1681 1682 _cmsOptimizationCollection *newEntry = ( _cmsOptimizationCollection *) _cmsSubAllocDup(ctx ->MemPool, entry, sizeof(_cmsOptimizationCollection)); 1683 1684 if (newEntry == NULL) 1685 return; 1686 1687 // We want to keep the linked list order, so this is a little bit tricky 1688 newEntry -> Next = NULL; 1689 if (Anterior) 1690 Anterior -> Next = newEntry; 1691 1692 Anterior = newEntry; 1693 1694 if (newHead.OptimizationCollection == NULL) 1695 newHead.OptimizationCollection = newEntry; 1696 } 1697 1698 ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx->MemPool, &newHead, sizeof(_cmsOptimizationPluginChunkType)); 1699 } 1700 1701 void _cmsAllocOptimizationPluginChunk(struct _cmsContext_struct* ctx, 1702 const struct _cmsContext_struct* src) 1703 { 1704 if (src != NULL) { 1705 1706 // Copy all linked list 1707 DupPluginOptimizationList(ctx, src); 1708 } 1709 else { 1710 static _cmsOptimizationPluginChunkType OptimizationPluginChunkType = { NULL }; 1711 ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx ->MemPool, &OptimizationPluginChunkType, sizeof(_cmsOptimizationPluginChunkType)); 1712 } 1713 } 1714 1715 1716 // Register new ways to optimize 1717 cmsBool _cmsRegisterOptimizationPlugin(cmsContext ContextID, cmsPluginBase* Data) 1718 { 1719 cmsPluginOptimization* Plugin = (cmsPluginOptimization*) Data; 1720 _cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin); 1721 _cmsOptimizationCollection* fl; 1722 1723 if (Data == NULL) { 1724 1725 ctx->OptimizationCollection = NULL; 1726 return TRUE; 1727 } 1728 1729 // Optimizer callback is required 1730 if (Plugin ->OptimizePtr == NULL) return FALSE; 1731 1732 fl = (_cmsOptimizationCollection*) _cmsPluginMalloc(ContextID, sizeof(_cmsOptimizationCollection)); 1733 if (fl == NULL) return FALSE; 1734 1735 // Copy the parameters 1736 fl ->OptimizePtr = Plugin ->OptimizePtr; 1737 1738 // Keep linked list 1739 fl ->Next = ctx->OptimizationCollection; 1740 1741 // Set the head 1742 ctx ->OptimizationCollection = fl; 1743 1744 // All is ok 1745 return TRUE; 1746 } 1747 1748 // The entry point for LUT optimization 1749 cmsBool _cmsOptimizePipeline(cmsContext ContextID, 1750 cmsPipeline** PtrLut, 1751 int Intent, 1752 cmsUInt32Number* InputFormat, 1753 cmsUInt32Number* OutputFormat, 1754 cmsUInt32Number* dwFlags) 1755 { 1756 _cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin); 1757 _cmsOptimizationCollection* Opts; 1758 cmsBool AnySuccess = FALSE; 1759 1760 // A CLUT is being asked, so force this specific optimization 1761 if (*dwFlags & cmsFLAGS_FORCE_CLUT) { 1762 1763 PreOptimize(*PtrLut); 1764 return OptimizeByResampling(PtrLut, Intent, InputFormat, OutputFormat, dwFlags); 1765 } 1766 1767 // Anything to optimize? 1768 if ((*PtrLut) ->Elements == NULL) { 1769 _cmsPipelineSetOptimizationParameters(*PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL); 1770 return TRUE; 1771 } 1772 1773 // Try to get rid of identities and trivial conversions. 1774 AnySuccess = PreOptimize(*PtrLut); 1775 1776 // After removal do we end with an identity? 1777 if ((*PtrLut) ->Elements == NULL) { 1778 _cmsPipelineSetOptimizationParameters(*PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL); 1779 return TRUE; 1780 } 1781 1782 // Do not optimize, keep all precision 1783 if (*dwFlags & cmsFLAGS_NOOPTIMIZE) 1784 return FALSE; 1785 1786 // Try plug-in optimizations 1787 for (Opts = ctx->OptimizationCollection; 1788 Opts != NULL; 1789 Opts = Opts ->Next) { 1790 1791 // If one schema succeeded, we are done 1792 if (Opts ->OptimizePtr(PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) { 1793 1794 return TRUE; // Optimized! 1795 } 1796 } 1797 1798 // Try built-in optimizations 1799 for (Opts = DefaultOptimization; 1800 Opts != NULL; 1801 Opts = Opts ->Next) { 1802 1803 if (Opts ->OptimizePtr(PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) { 1804 1805 return TRUE; 1806 } 1807 } 1808 1809 // Only simple optimizations succeeded 1810 return AnySuccess; 1811 } 1812