Home | History | Annotate | Download | only in libjpeg
      1 /*
      2  * jfdctint.c
      3  *
      4  * Copyright (C) 1991-1996, Thomas G. Lane.
      5  * This file is part of the Independent JPEG Group's software.
      6  * For conditions of distribution and use, see the accompanying README file.
      7  *
      8  * This file contains a slow-but-accurate integer implementation of the
      9  * forward DCT (Discrete Cosine Transform).
     10  *
     11  * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
     12  * on each column.  Direct algorithms are also available, but they are
     13  * much more complex and seem not to be any faster when reduced to code.
     14  *
     15  * This implementation is based on an algorithm described in
     16  *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
     17  *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
     18  *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
     19  * The primary algorithm described there uses 11 multiplies and 29 adds.
     20  * We use their alternate method with 12 multiplies and 32 adds.
     21  * The advantage of this method is that no data path contains more than one
     22  * multiplication; this allows a very simple and accurate implementation in
     23  * scaled fixed-point arithmetic, with a minimal number of shifts.
     24  */
     25 
     26 #define JPEG_INTERNALS
     27 #include "jinclude.h"
     28 #include "jpeglib.h"
     29 #include "jdct.h"		/* Private declarations for DCT subsystem */
     30 
     31 #ifdef DCT_ISLOW_SUPPORTED
     32 
     33 
     34 /*
     35  * This module is specialized to the case DCTSIZE = 8.
     36  */
     37 
     38 #if DCTSIZE != 8
     39   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
     40 #endif
     41 
     42 
     43 /*
     44  * The poop on this scaling stuff is as follows:
     45  *
     46  * Each 1-D DCT step produces outputs which are a factor of sqrt(N)
     47  * larger than the true DCT outputs.  The final outputs are therefore
     48  * a factor of N larger than desired; since N=8 this can be cured by
     49  * a simple right shift at the end of the algorithm.  The advantage of
     50  * this arrangement is that we save two multiplications per 1-D DCT,
     51  * because the y0 and y4 outputs need not be divided by sqrt(N).
     52  * In the IJG code, this factor of 8 is removed by the quantization step
     53  * (in jcdctmgr.c), NOT in this module.
     54  *
     55  * We have to do addition and subtraction of the integer inputs, which
     56  * is no problem, and multiplication by fractional constants, which is
     57  * a problem to do in integer arithmetic.  We multiply all the constants
     58  * by CONST_SCALE and convert them to integer constants (thus retaining
     59  * CONST_BITS bits of precision in the constants).  After doing a
     60  * multiplication we have to divide the product by CONST_SCALE, with proper
     61  * rounding, to produce the correct output.  This division can be done
     62  * cheaply as a right shift of CONST_BITS bits.  We postpone shifting
     63  * as long as possible so that partial sums can be added together with
     64  * full fractional precision.
     65  *
     66  * The outputs of the first pass are scaled up by PASS1_BITS bits so that
     67  * they are represented to better-than-integral precision.  These outputs
     68  * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
     69  * with the recommended scaling.  (For 12-bit sample data, the intermediate
     70  * array is INT32 anyway.)
     71  *
     72  * To avoid overflow of the 32-bit intermediate results in pass 2, we must
     73  * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis
     74  * shows that the values given below are the most effective.
     75  */
     76 
     77 #if BITS_IN_JSAMPLE == 8
     78 #define CONST_BITS  13
     79 #define PASS1_BITS  2
     80 #else
     81 #define CONST_BITS  13
     82 #define PASS1_BITS  1		/* lose a little precision to avoid overflow */
     83 #endif
     84 
     85 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
     86  * causing a lot of useless floating-point operations at run time.
     87  * To get around this we use the following pre-calculated constants.
     88  * If you change CONST_BITS you may want to add appropriate values.
     89  * (With a reasonable C compiler, you can just rely on the FIX() macro...)
     90  */
     91 
     92 #if CONST_BITS == 13
     93 #define FIX_0_298631336  ((INT32)  2446)	/* FIX(0.298631336) */
     94 #define FIX_0_390180644  ((INT32)  3196)	/* FIX(0.390180644) */
     95 #define FIX_0_541196100  ((INT32)  4433)	/* FIX(0.541196100) */
     96 #define FIX_0_765366865  ((INT32)  6270)	/* FIX(0.765366865) */
     97 #define FIX_0_899976223  ((INT32)  7373)	/* FIX(0.899976223) */
     98 #define FIX_1_175875602  ((INT32)  9633)	/* FIX(1.175875602) */
     99 #define FIX_1_501321110  ((INT32)  12299)	/* FIX(1.501321110) */
    100 #define FIX_1_847759065  ((INT32)  15137)	/* FIX(1.847759065) */
    101 #define FIX_1_961570560  ((INT32)  16069)	/* FIX(1.961570560) */
    102 #define FIX_2_053119869  ((INT32)  16819)	/* FIX(2.053119869) */
    103 #define FIX_2_562915447  ((INT32)  20995)	/* FIX(2.562915447) */
    104 #define FIX_3_072711026  ((INT32)  25172)	/* FIX(3.072711026) */
    105 #else
    106 #define FIX_0_298631336  FIX(0.298631336)
    107 #define FIX_0_390180644  FIX(0.390180644)
    108 #define FIX_0_541196100  FIX(0.541196100)
    109 #define FIX_0_765366865  FIX(0.765366865)
    110 #define FIX_0_899976223  FIX(0.899976223)
    111 #define FIX_1_175875602  FIX(1.175875602)
    112 #define FIX_1_501321110  FIX(1.501321110)
    113 #define FIX_1_847759065  FIX(1.847759065)
    114 #define FIX_1_961570560  FIX(1.961570560)
    115 #define FIX_2_053119869  FIX(2.053119869)
    116 #define FIX_2_562915447  FIX(2.562915447)
    117 #define FIX_3_072711026  FIX(3.072711026)
    118 #endif
    119 
    120 
    121 /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
    122  * For 8-bit samples with the recommended scaling, all the variable
    123  * and constant values involved are no more than 16 bits wide, so a
    124  * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
    125  * For 12-bit samples, a full 32-bit multiplication will be needed.
    126  */
    127 
    128 #if BITS_IN_JSAMPLE == 8
    129 #define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
    130 #else
    131 #define MULTIPLY(var,const)  ((var) * (const))
    132 #endif
    133 
    134 
    135 /*
    136  * Perform the forward DCT on one block of samples.
    137  */
    138 
    139 GLOBAL(void)
    140 jpeg_fdct_islow (DCTELEM * data)
    141 {
    142   INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
    143   INT32 tmp10, tmp11, tmp12, tmp13;
    144   INT32 z1, z2, z3, z4, z5;
    145   DCTELEM *dataptr;
    146   int ctr;
    147   SHIFT_TEMPS
    148 
    149   /* Pass 1: process rows. */
    150   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
    151   /* furthermore, we scale the results by 2**PASS1_BITS. */
    152 
    153   dataptr = data;
    154   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
    155     tmp0 = dataptr[0] + dataptr[7];
    156     tmp7 = dataptr[0] - dataptr[7];
    157     tmp1 = dataptr[1] + dataptr[6];
    158     tmp6 = dataptr[1] - dataptr[6];
    159     tmp2 = dataptr[2] + dataptr[5];
    160     tmp5 = dataptr[2] - dataptr[5];
    161     tmp3 = dataptr[3] + dataptr[4];
    162     tmp4 = dataptr[3] - dataptr[4];
    163 
    164     /* Even part per LL&M figure 1 --- note that published figure is faulty;
    165      * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
    166      */
    167 
    168     tmp10 = tmp0 + tmp3;
    169     tmp13 = tmp0 - tmp3;
    170     tmp11 = tmp1 + tmp2;
    171     tmp12 = tmp1 - tmp2;
    172 
    173     dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
    174     dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
    175 
    176     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
    177     dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
    178 				   CONST_BITS-PASS1_BITS);
    179     dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
    180 				   CONST_BITS-PASS1_BITS);
    181 
    182     /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
    183      * cK represents cos(K*pi/16).
    184      * i0..i3 in the paper are tmp4..tmp7 here.
    185      */
    186 
    187     z1 = tmp4 + tmp7;
    188     z2 = tmp5 + tmp6;
    189     z3 = tmp4 + tmp6;
    190     z4 = tmp5 + tmp7;
    191     z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
    192 
    193     tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
    194     tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
    195     tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
    196     tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
    197     z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
    198     z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
    199     z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
    200     z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
    201 
    202     z3 += z5;
    203     z4 += z5;
    204 
    205     dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
    206     dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
    207     dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
    208     dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
    209 
    210     dataptr += DCTSIZE;		/* advance pointer to next row */
    211   }
    212 
    213   /* Pass 2: process columns.
    214    * We remove the PASS1_BITS scaling, but leave the results scaled up
    215    * by an overall factor of 8.
    216    */
    217 
    218   dataptr = data;
    219   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
    220     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
    221     tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
    222     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
    223     tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
    224     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
    225     tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
    226     tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
    227     tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
    228 
    229     /* Even part per LL&M figure 1 --- note that published figure is faulty;
    230      * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
    231      */
    232 
    233     tmp10 = tmp0 + tmp3;
    234     tmp13 = tmp0 - tmp3;
    235     tmp11 = tmp1 + tmp2;
    236     tmp12 = tmp1 - tmp2;
    237 
    238     dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
    239     dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);
    240 
    241     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
    242     dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
    243 					   CONST_BITS+PASS1_BITS);
    244     dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
    245 					   CONST_BITS+PASS1_BITS);
    246 
    247     /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
    248      * cK represents cos(K*pi/16).
    249      * i0..i3 in the paper are tmp4..tmp7 here.
    250      */
    251 
    252     z1 = tmp4 + tmp7;
    253     z2 = tmp5 + tmp6;
    254     z3 = tmp4 + tmp6;
    255     z4 = tmp5 + tmp7;
    256     z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
    257 
    258     tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
    259     tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
    260     tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
    261     tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
    262     z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
    263     z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
    264     z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
    265     z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
    266 
    267     z3 += z5;
    268     z4 += z5;
    269 
    270     dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3,
    271 					   CONST_BITS+PASS1_BITS);
    272     dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4,
    273 					   CONST_BITS+PASS1_BITS);
    274     dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3,
    275 					   CONST_BITS+PASS1_BITS);
    276     dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4,
    277 					   CONST_BITS+PASS1_BITS);
    278 
    279     dataptr++;			/* advance pointer to next column */
    280   }
    281 }
    282 
    283 #endif /* DCT_ISLOW_SUPPORTED */
    284