Home | History | Annotate | Download | only in libjpeg
      1 /*
      2  * jmemmgr.c
      3  *
      4  * Copyright (C) 1991-1997, Thomas G. Lane.
      5  * This file is part of the Independent JPEG Group's software.
      6  * For conditions of distribution and use, see the accompanying README file.
      7  *
      8  * This file contains the JPEG system-independent memory management
      9  * routines.  This code is usable across a wide variety of machines; most
     10  * of the system dependencies have been isolated in a separate file.
     11  * The major functions provided here are:
     12  *   * pool-based allocation and freeing of memory;
     13  *   * policy decisions about how to divide available memory among the
     14  *     virtual arrays;
     15  *   * control logic for swapping virtual arrays between main memory and
     16  *     backing storage.
     17  * The separate system-dependent file provides the actual backing-storage
     18  * access code, and it contains the policy decision about how much total
     19  * main memory to use.
     20  * This file is system-dependent in the sense that some of its functions
     21  * are unnecessary in some systems.  For example, if there is enough virtual
     22  * memory so that backing storage will never be used, much of the virtual
     23  * array control logic could be removed.  (Of course, if you have that much
     24  * memory then you shouldn't care about a little bit of unused code...)
     25  */
     26 
     27 #define JPEG_INTERNALS
     28 #define AM_MEMORY_MANAGER	/* we define jvirt_Xarray_control structs */
     29 #include "jinclude.h"
     30 #include "jpeglib.h"
     31 #include "jmemsys.h"		/* import the system-dependent declarations */
     32 
     33 #define NO_GETENV	/* XYQ: 2007-5-22 Don't use it */
     34 
     35 #ifndef NO_GETENV
     36 #ifndef HAVE_STDLIB_H		/* <stdlib.h> should declare getenv() */
     37 extern char * getenv JPP((const char * name));
     38 #endif
     39 #endif
     40 
     41 
     42 /*
     43  * Some important notes:
     44  *   The allocation routines provided here must never return NULL.
     45  *   They should exit to error_exit if unsuccessful.
     46  *
     47  *   It's not a good idea to try to merge the sarray and barray routines,
     48  *   even though they are textually almost the same, because samples are
     49  *   usually stored as bytes while coefficients are shorts or ints.  Thus,
     50  *   in machines where byte pointers have a different representation from
     51  *   word pointers, the resulting machine code could not be the same.
     52  */
     53 
     54 
     55 /*
     56  * Many machines require storage alignment: longs must start on 4-byte
     57  * boundaries, doubles on 8-byte boundaries, etc.  On such machines, malloc()
     58  * always returns pointers that are multiples of the worst-case alignment
     59  * requirement, and we had better do so too.
     60  * There isn't any really portable way to determine the worst-case alignment
     61  * requirement.  This module assumes that the alignment requirement is
     62  * multiples of sizeof(ALIGN_TYPE).
     63  * By default, we define ALIGN_TYPE as double.  This is necessary on some
     64  * workstations (where doubles really do need 8-byte alignment) and will work
     65  * fine on nearly everything.  If your machine has lesser alignment needs,
     66  * you can save a few bytes by making ALIGN_TYPE smaller.
     67  * The only place I know of where this will NOT work is certain Macintosh
     68  * 680x0 compilers that define double as a 10-byte IEEE extended float.
     69  * Doing 10-byte alignment is counterproductive because longwords won't be
     70  * aligned well.  Put "#define ALIGN_TYPE long" in jconfig.h if you have
     71  * such a compiler.
     72  */
     73 
     74 #ifndef ALIGN_TYPE		/* so can override from jconfig.h */
     75 #define ALIGN_TYPE  double
     76 #endif
     77 
     78 
     79 /*
     80  * We allocate objects from "pools", where each pool is gotten with a single
     81  * request to jpeg_get_small() or jpeg_get_large().  There is no per-object
     82  * overhead within a pool, except for alignment padding.  Each pool has a
     83  * header with a link to the next pool of the same class.
     84  * Small and large pool headers are identical except that the latter's
     85  * link pointer must be FAR on 80x86 machines.
     86  * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE
     87  * field.  This forces the compiler to make SIZEOF(small_pool_hdr) a multiple
     88  * of the alignment requirement of ALIGN_TYPE.
     89  */
     90 
     91 typedef union small_pool_struct * small_pool_ptr;
     92 
     93 typedef union small_pool_struct {
     94   struct {
     95     small_pool_ptr next;	/* next in list of pools */
     96     size_t bytes_used;		/* how many bytes already used within pool */
     97     size_t bytes_left;		/* bytes still available in this pool */
     98   } hdr;
     99   ALIGN_TYPE dummy;		/* included in union to ensure alignment */
    100 } small_pool_hdr;
    101 
    102 typedef union large_pool_struct FAR * large_pool_ptr;
    103 
    104 typedef union large_pool_struct {
    105   struct {
    106     large_pool_ptr next;	/* next in list of pools */
    107     size_t bytes_used;		/* how many bytes already used within pool */
    108     size_t bytes_left;		/* bytes still available in this pool */
    109   } hdr;
    110   ALIGN_TYPE dummy;		/* included in union to ensure alignment */
    111 } large_pool_hdr;
    112 
    113 
    114 /*
    115  * Here is the full definition of a memory manager object.
    116  */
    117 
    118 typedef struct {
    119   struct jpeg_memory_mgr pub;	/* public fields */
    120 
    121   /* Each pool identifier (lifetime class) names a linked list of pools. */
    122   small_pool_ptr small_list[JPOOL_NUMPOOLS];
    123   large_pool_ptr large_list[JPOOL_NUMPOOLS];
    124 
    125   /* Since we only have one lifetime class of virtual arrays, only one
    126    * linked list is necessary (for each datatype).  Note that the virtual
    127    * array control blocks being linked together are actually stored somewhere
    128    * in the small-pool list.
    129    */
    130   jvirt_sarray_ptr virt_sarray_list;
    131   jvirt_barray_ptr virt_barray_list;
    132 
    133   /* This counts total space obtained from jpeg_get_small/large */
    134   long total_space_allocated;
    135 
    136   /* alloc_sarray and alloc_barray set this value for use by virtual
    137    * array routines.
    138    */
    139   JDIMENSION last_rowsperchunk;	/* from most recent alloc_sarray/barray */
    140 } my_memory_mgr;
    141 
    142 typedef my_memory_mgr * my_mem_ptr;
    143 
    144 
    145 /*
    146  * The control blocks for virtual arrays.
    147  * Note that these blocks are allocated in the "small" pool area.
    148  * System-dependent info for the associated backing store (if any) is hidden
    149  * inside the backing_store_info struct.
    150  */
    151 
    152 struct jvirt_sarray_control {
    153   JSAMPARRAY mem_buffer;	/* => the in-memory buffer */
    154   JDIMENSION rows_in_array;	/* total virtual array height */
    155   JDIMENSION samplesperrow;	/* width of array (and of memory buffer) */
    156   JDIMENSION maxaccess;		/* max rows accessed by access_virt_sarray */
    157   JDIMENSION rows_in_mem;	/* height of memory buffer */
    158   JDIMENSION rowsperchunk;	/* allocation chunk size in mem_buffer */
    159   JDIMENSION cur_start_row;	/* first logical row # in the buffer */
    160   JDIMENSION first_undef_row;	/* row # of first uninitialized row */
    161   boolean pre_zero;		/* pre-zero mode requested? */
    162   boolean dirty;		/* do current buffer contents need written? */
    163   boolean b_s_open;		/* is backing-store data valid? */
    164   jvirt_sarray_ptr next;	/* link to next virtual sarray control block */
    165   backing_store_info b_s_info;	/* System-dependent control info */
    166 };
    167 
    168 struct jvirt_barray_control {
    169   JBLOCKARRAY mem_buffer;	/* => the in-memory buffer */
    170   JDIMENSION rows_in_array;	/* total virtual array height */
    171   JDIMENSION blocksperrow;	/* width of array (and of memory buffer) */
    172   JDIMENSION maxaccess;		/* max rows accessed by access_virt_barray */
    173   JDIMENSION rows_in_mem;	/* height of memory buffer */
    174   JDIMENSION rowsperchunk;	/* allocation chunk size in mem_buffer */
    175   JDIMENSION cur_start_row;	/* first logical row # in the buffer */
    176   JDIMENSION first_undef_row;	/* row # of first uninitialized row */
    177   boolean pre_zero;		/* pre-zero mode requested? */
    178   boolean dirty;		/* do current buffer contents need written? */
    179   boolean b_s_open;		/* is backing-store data valid? */
    180   jvirt_barray_ptr next;	/* link to next virtual barray control block */
    181   backing_store_info b_s_info;	/* System-dependent control info */
    182 };
    183 
    184 
    185 #ifdef MEM_STATS		/* optional extra stuff for statistics */
    186 
    187 LOCAL(void)
    188 print_mem_stats (j_common_ptr cinfo, int pool_id)
    189 {
    190   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    191   small_pool_ptr shdr_ptr;
    192   large_pool_ptr lhdr_ptr;
    193 
    194   /* Since this is only a debugging stub, we can cheat a little by using
    195    * fprintf directly rather than going through the trace message code.
    196    * This is helpful because message parm array can't handle longs.
    197    */
    198   FXSYS_fprintf(stderr, "Freeing pool %d, total space = %ld\n",
    199 	  pool_id, mem->total_space_allocated);
    200 
    201   for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
    202        lhdr_ptr = lhdr_ptr->hdr.next) {
    203     FXSYS_fprintf(stderr, "  Large chunk used %ld\n",
    204 	    (long) lhdr_ptr->hdr.bytes_used);
    205   }
    206 
    207   for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
    208        shdr_ptr = shdr_ptr->hdr.next) {
    209     FXSYS_fprintf(stderr, "  Small chunk used %ld free %ld\n",
    210 	    (long) shdr_ptr->hdr.bytes_used,
    211 	    (long) shdr_ptr->hdr.bytes_left);
    212   }
    213 }
    214 
    215 #endif /* MEM_STATS */
    216 
    217 
    218 LOCAL(void)
    219 out_of_memory (j_common_ptr cinfo, int which)
    220 /* Report an out-of-memory error and stop execution */
    221 /* If we compiled MEM_STATS support, report alloc requests before dying */
    222 {
    223 #ifdef MEM_STATS
    224   cinfo->err->trace_level = 2;	/* force self_destruct to report stats */
    225 #endif
    226   ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
    227 }
    228 
    229 
    230 /*
    231  * Allocation of "small" objects.
    232  *
    233  * For these, we use pooled storage.  When a new pool must be created,
    234  * we try to get enough space for the current request plus a "slop" factor,
    235  * where the slop will be the amount of leftover space in the new pool.
    236  * The speed vs. space tradeoff is largely determined by the slop values.
    237  * A different slop value is provided for each pool class (lifetime),
    238  * and we also distinguish the first pool of a class from later ones.
    239  * NOTE: the values given work fairly well on both 16- and 32-bit-int
    240  * machines, but may be too small if longs are 64 bits or more.
    241  */
    242 
    243 static const size_t first_pool_slop[JPOOL_NUMPOOLS] =
    244 {
    245 	1600,			/* first PERMANENT pool */
    246 	16000			/* first IMAGE pool */
    247 };
    248 
    249 static const size_t extra_pool_slop[JPOOL_NUMPOOLS] =
    250 {
    251 	0,			/* additional PERMANENT pools */
    252 	5000			/* additional IMAGE pools */
    253 };
    254 
    255 #define MIN_SLOP  50		/* greater than 0 to avoid futile looping */
    256 
    257 
    258 METHODDEF(void *)
    259 alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
    260 /* Allocate a "small" object */
    261 {
    262   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    263   small_pool_ptr hdr_ptr, prev_hdr_ptr;
    264   char * data_ptr;
    265   size_t odd_bytes, min_request, slop;
    266 
    267   /* Check for unsatisfiable request (do now to ensure no overflow below) */
    268   if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr)))
    269     out_of_memory(cinfo, 1);	/* request exceeds malloc's ability */
    270 
    271   /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
    272   odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
    273   if (odd_bytes > 0)
    274     sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
    275 
    276   /* See if space is available in any existing pool */
    277   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
    278     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
    279   prev_hdr_ptr = NULL;
    280   hdr_ptr = mem->small_list[pool_id];
    281   while (hdr_ptr != NULL) {
    282     if (hdr_ptr->hdr.bytes_left >= sizeofobject)
    283       break;			/* found pool with enough space */
    284     prev_hdr_ptr = hdr_ptr;
    285     hdr_ptr = hdr_ptr->hdr.next;
    286   }
    287 
    288   /* Time to make a new pool? */
    289   if (hdr_ptr == NULL) {
    290     /* min_request is what we need now, slop is what will be leftover */
    291     min_request = sizeofobject + SIZEOF(small_pool_hdr);
    292     if (prev_hdr_ptr == NULL)	/* first pool in class? */
    293       slop = first_pool_slop[pool_id];
    294     else
    295       slop = extra_pool_slop[pool_id];
    296     /* Don't ask for more than MAX_ALLOC_CHUNK */
    297     if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
    298       slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
    299     /* Try to get space, if fail reduce slop and try again */
    300     for (;;) {
    301       hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
    302       if (hdr_ptr != NULL)
    303 	break;
    304       slop /= 2;
    305       if (slop < MIN_SLOP)	/* give up when it gets real small */
    306 	out_of_memory(cinfo, 2); /* jpeg_get_small failed */
    307     }
    308     mem->total_space_allocated += min_request + slop;
    309     /* Success, initialize the new pool header and add to end of list */
    310     hdr_ptr->hdr.next = NULL;
    311     hdr_ptr->hdr.bytes_used = 0;
    312     hdr_ptr->hdr.bytes_left = sizeofobject + slop;
    313     if (prev_hdr_ptr == NULL)	/* first pool in class? */
    314       mem->small_list[pool_id] = hdr_ptr;
    315     else
    316       prev_hdr_ptr->hdr.next = hdr_ptr;
    317   }
    318 
    319   /* OK, allocate the object from the current pool */
    320   data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */
    321   data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */
    322   hdr_ptr->hdr.bytes_used += sizeofobject;
    323   hdr_ptr->hdr.bytes_left -= sizeofobject;
    324 
    325   return (void *) data_ptr;
    326 }
    327 
    328 
    329 /*
    330  * Allocation of "large" objects.
    331  *
    332  * The external semantics of these are the same as "small" objects,
    333  * except that FAR pointers are used on 80x86.  However the pool
    334  * management heuristics are quite different.  We assume that each
    335  * request is large enough that it may as well be passed directly to
    336  * jpeg_get_large; the pool management just links everything together
    337  * so that we can free it all on demand.
    338  * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
    339  * structures.  The routines that create these structures (see below)
    340  * deliberately bunch rows together to ensure a large request size.
    341  */
    342 
    343 METHODDEF(void FAR *)
    344 alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
    345 /* Allocate a "large" object */
    346 {
    347   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    348   large_pool_ptr hdr_ptr;
    349   size_t odd_bytes;
    350 
    351   /* Check for unsatisfiable request (do now to ensure no overflow below) */
    352   if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)))
    353     out_of_memory(cinfo, 3);	/* request exceeds malloc's ability */
    354 
    355   /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
    356   odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
    357   if (odd_bytes > 0)
    358     sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
    359 
    360   /* Always make a new pool */
    361   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
    362     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
    363 
    364   hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
    365 					    SIZEOF(large_pool_hdr));
    366   if (hdr_ptr == NULL)
    367     out_of_memory(cinfo, 4);	/* jpeg_get_large failed */
    368   mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr);
    369 
    370   /* Success, initialize the new pool header and add to list */
    371   hdr_ptr->hdr.next = mem->large_list[pool_id];
    372   /* We maintain space counts in each pool header for statistical purposes,
    373    * even though they are not needed for allocation.
    374    */
    375   hdr_ptr->hdr.bytes_used = sizeofobject;
    376   hdr_ptr->hdr.bytes_left = 0;
    377   mem->large_list[pool_id] = hdr_ptr;
    378 
    379   return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */
    380 }
    381 
    382 
    383 /*
    384  * Creation of 2-D sample arrays.
    385  * The pointers are in near heap, the samples themselves in FAR heap.
    386  *
    387  * To minimize allocation overhead and to allow I/O of large contiguous
    388  * blocks, we allocate the sample rows in groups of as many rows as possible
    389  * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
    390  * NB: the virtual array control routines, later in this file, know about
    391  * this chunking of rows.  The rowsperchunk value is left in the mem manager
    392  * object so that it can be saved away if this sarray is the workspace for
    393  * a virtual array.
    394  */
    395 
    396 METHODDEF(JSAMPARRAY)
    397 alloc_sarray (j_common_ptr cinfo, int pool_id,
    398 	      JDIMENSION samplesperrow, JDIMENSION numrows)
    399 /* Allocate a 2-D sample array */
    400 {
    401   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    402   JSAMPARRAY result;
    403   JSAMPROW workspace;
    404   JDIMENSION rowsperchunk, currow, i;
    405   long ltemp;
    406 
    407   /* Calculate max # of rows allowed in one allocation chunk */
    408   ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
    409 	  ((long) samplesperrow * SIZEOF(JSAMPLE));
    410   if (ltemp <= 0)
    411     ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
    412   if (ltemp < (long) numrows)
    413     rowsperchunk = (JDIMENSION) ltemp;
    414   else
    415     rowsperchunk = numrows;
    416   mem->last_rowsperchunk = rowsperchunk;
    417 
    418   /* Get space for row pointers (small object) */
    419   result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
    420 				    (size_t) (numrows * SIZEOF(JSAMPROW)));
    421 
    422   /* Get the rows themselves (large objects) */
    423   currow = 0;
    424   while (currow < numrows) {
    425     rowsperchunk = MIN(rowsperchunk, numrows - currow);
    426     workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
    427 	(size_t) ((size_t) rowsperchunk * (size_t) samplesperrow
    428 		  * SIZEOF(JSAMPLE)));
    429     for (i = rowsperchunk; i > 0; i--) {
    430       result[currow++] = workspace;
    431       workspace += samplesperrow;
    432     }
    433   }
    434 
    435   return result;
    436 }
    437 
    438 
    439 /*
    440  * Creation of 2-D coefficient-block arrays.
    441  * This is essentially the same as the code for sample arrays, above.
    442  */
    443 
    444 METHODDEF(JBLOCKARRAY)
    445 alloc_barray (j_common_ptr cinfo, int pool_id,
    446 	      JDIMENSION blocksperrow, JDIMENSION numrows)
    447 /* Allocate a 2-D coefficient-block array */
    448 {
    449   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    450   JBLOCKARRAY result;
    451   JBLOCKROW workspace;
    452   JDIMENSION rowsperchunk, currow, i;
    453   long ltemp;
    454 
    455   /* Calculate max # of rows allowed in one allocation chunk */
    456   ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
    457 	  ((long) blocksperrow * SIZEOF(JBLOCK));
    458   if (ltemp <= 0)
    459     ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
    460   if (ltemp < (long) numrows)
    461     rowsperchunk = (JDIMENSION) ltemp;
    462   else
    463     rowsperchunk = numrows;
    464   mem->last_rowsperchunk = rowsperchunk;
    465 
    466   /* Get space for row pointers (small object) */
    467   result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
    468 				     (size_t) (numrows * SIZEOF(JBLOCKROW)));
    469 
    470   /* Get the rows themselves (large objects) */
    471   currow = 0;
    472   while (currow < numrows) {
    473     rowsperchunk = MIN(rowsperchunk, numrows - currow);
    474     workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
    475 	(size_t) ((size_t) rowsperchunk * (size_t) blocksperrow
    476 		  * SIZEOF(JBLOCK)));
    477     for (i = rowsperchunk; i > 0; i--) {
    478       result[currow++] = workspace;
    479       workspace += blocksperrow;
    480     }
    481   }
    482 
    483   return result;
    484 }
    485 
    486 
    487 /*
    488  * About virtual array management:
    489  *
    490  * The above "normal" array routines are only used to allocate strip buffers
    491  * (as wide as the image, but just a few rows high).  Full-image-sized buffers
    492  * are handled as "virtual" arrays.  The array is still accessed a strip at a
    493  * time, but the memory manager must save the whole array for repeated
    494  * accesses.  The intended implementation is that there is a strip buffer in
    495  * memory (as high as is possible given the desired memory limit), plus a
    496  * backing file that holds the rest of the array.
    497  *
    498  * The request_virt_array routines are told the total size of the image and
    499  * the maximum number of rows that will be accessed at once.  The in-memory
    500  * buffer must be at least as large as the maxaccess value.
    501  *
    502  * The request routines create control blocks but not the in-memory buffers.
    503  * That is postponed until realize_virt_arrays is called.  At that time the
    504  * total amount of space needed is known (approximately, anyway), so free
    505  * memory can be divided up fairly.
    506  *
    507  * The access_virt_array routines are responsible for making a specific strip
    508  * area accessible (after reading or writing the backing file, if necessary).
    509  * Note that the access routines are told whether the caller intends to modify
    510  * the accessed strip; during a read-only pass this saves having to rewrite
    511  * data to disk.  The access routines are also responsible for pre-zeroing
    512  * any newly accessed rows, if pre-zeroing was requested.
    513  *
    514  * In current usage, the access requests are usually for nonoverlapping
    515  * strips; that is, successive access start_row numbers differ by exactly
    516  * num_rows = maxaccess.  This means we can get good performance with simple
    517  * buffer dump/reload logic, by making the in-memory buffer be a multiple
    518  * of the access height; then there will never be accesses across bufferload
    519  * boundaries.  The code will still work with overlapping access requests,
    520  * but it doesn't handle bufferload overlaps very efficiently.
    521  */
    522 
    523 
    524 METHODDEF(jvirt_sarray_ptr)
    525 request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
    526 		     JDIMENSION samplesperrow, JDIMENSION numrows,
    527 		     JDIMENSION maxaccess)
    528 /* Request a virtual 2-D sample array */
    529 {
    530   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    531   jvirt_sarray_ptr result;
    532 
    533   /* Only IMAGE-lifetime virtual arrays are currently supported */
    534   if (pool_id != JPOOL_IMAGE)
    535     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
    536 
    537   /* get control block */
    538   result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
    539 					  SIZEOF(struct jvirt_sarray_control));
    540 
    541   result->mem_buffer = NULL;	/* marks array not yet realized */
    542   result->rows_in_array = numrows;
    543   result->samplesperrow = samplesperrow;
    544   result->maxaccess = maxaccess;
    545   result->pre_zero = pre_zero;
    546   result->b_s_open = FALSE;	/* no associated backing-store object */
    547   result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
    548   mem->virt_sarray_list = result;
    549 
    550   return result;
    551 }
    552 
    553 
    554 METHODDEF(jvirt_barray_ptr)
    555 request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
    556 		     JDIMENSION blocksperrow, JDIMENSION numrows,
    557 		     JDIMENSION maxaccess)
    558 /* Request a virtual 2-D coefficient-block array */
    559 {
    560   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    561   jvirt_barray_ptr result;
    562 
    563   /* Only IMAGE-lifetime virtual arrays are currently supported */
    564   if (pool_id != JPOOL_IMAGE)
    565     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
    566 
    567   /* get control block */
    568   result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
    569 					  SIZEOF(struct jvirt_barray_control));
    570 
    571   result->mem_buffer = NULL;	/* marks array not yet realized */
    572   result->rows_in_array = numrows;
    573   result->blocksperrow = blocksperrow;
    574   result->maxaccess = maxaccess;
    575   result->pre_zero = pre_zero;
    576   result->b_s_open = FALSE;	/* no associated backing-store object */
    577   result->next = mem->virt_barray_list; /* add to list of virtual arrays */
    578   mem->virt_barray_list = result;
    579 
    580   return result;
    581 }
    582 
    583 
    584 METHODDEF(void)
    585 realize_virt_arrays (j_common_ptr cinfo)
    586 /* Allocate the in-memory buffers for any unrealized virtual arrays */
    587 {
    588   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    589   long space_per_minheight, maximum_space, avail_mem;
    590   long minheights, max_minheights;
    591   jvirt_sarray_ptr sptr;
    592   jvirt_barray_ptr bptr;
    593 
    594   /* Compute the minimum space needed (maxaccess rows in each buffer)
    595    * and the maximum space needed (full image height in each buffer).
    596    * These may be of use to the system-dependent jpeg_mem_available routine.
    597    */
    598   space_per_minheight = 0;
    599   maximum_space = 0;
    600   for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
    601     if (sptr->mem_buffer == NULL) { /* if not realized yet */
    602       space_per_minheight += (long) sptr->maxaccess *
    603 			     (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
    604       maximum_space += (long) sptr->rows_in_array *
    605 		       (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
    606     }
    607   }
    608   for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
    609     if (bptr->mem_buffer == NULL) { /* if not realized yet */
    610       space_per_minheight += (long) bptr->maxaccess *
    611 			     (long) bptr->blocksperrow * SIZEOF(JBLOCK);
    612       maximum_space += (long) bptr->rows_in_array *
    613 		       (long) bptr->blocksperrow * SIZEOF(JBLOCK);
    614     }
    615   }
    616 
    617   if (space_per_minheight <= 0)
    618     return;			/* no unrealized arrays, no work */
    619 
    620   /* Determine amount of memory to actually use; this is system-dependent. */
    621   avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
    622 				 mem->total_space_allocated);
    623 
    624   /* If the maximum space needed is available, make all the buffers full
    625    * height; otherwise parcel it out with the same number of minheights
    626    * in each buffer.
    627    */
    628   if (avail_mem >= maximum_space)
    629     max_minheights = 1000000000L;
    630   else {
    631     max_minheights = avail_mem / space_per_minheight;
    632     /* If there doesn't seem to be enough space, try to get the minimum
    633      * anyway.  This allows a "stub" implementation of jpeg_mem_available().
    634      */
    635     if (max_minheights <= 0)
    636       max_minheights = 1;
    637   }
    638 
    639   /* Allocate the in-memory buffers and initialize backing store as needed. */
    640 
    641   for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
    642     if (sptr->mem_buffer == NULL) { /* if not realized yet */
    643       minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
    644       if (minheights <= max_minheights) {
    645 	/* This buffer fits in memory */
    646 	sptr->rows_in_mem = sptr->rows_in_array;
    647       } else {
    648 	/* It doesn't fit in memory, create backing store. */
    649 	sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
    650 	jpeg_open_backing_store(cinfo, & sptr->b_s_info,
    651 				(long) sptr->rows_in_array *
    652 				(long) sptr->samplesperrow *
    653 				(long) SIZEOF(JSAMPLE));
    654 	sptr->b_s_open = TRUE;
    655       }
    656       sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
    657 				      sptr->samplesperrow, sptr->rows_in_mem);
    658       sptr->rowsperchunk = mem->last_rowsperchunk;
    659       sptr->cur_start_row = 0;
    660       sptr->first_undef_row = 0;
    661       sptr->dirty = FALSE;
    662     }
    663   }
    664 
    665   for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
    666     if (bptr->mem_buffer == NULL) { /* if not realized yet */
    667       minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
    668       if (minheights <= max_minheights) {
    669 	/* This buffer fits in memory */
    670 	bptr->rows_in_mem = bptr->rows_in_array;
    671       } else {
    672 	/* It doesn't fit in memory, create backing store. */
    673 	bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
    674 	jpeg_open_backing_store(cinfo, & bptr->b_s_info,
    675 				(long) bptr->rows_in_array *
    676 				(long) bptr->blocksperrow *
    677 				(long) SIZEOF(JBLOCK));
    678 	bptr->b_s_open = TRUE;
    679       }
    680       bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
    681 				      bptr->blocksperrow, bptr->rows_in_mem);
    682       bptr->rowsperchunk = mem->last_rowsperchunk;
    683       bptr->cur_start_row = 0;
    684       bptr->first_undef_row = 0;
    685       bptr->dirty = FALSE;
    686     }
    687   }
    688 }
    689 
    690 
    691 LOCAL(void)
    692 do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
    693 /* Do backing store read or write of a virtual sample array */
    694 {
    695   long bytesperrow, file_offset, byte_count, rows, thisrow, i;
    696 
    697   bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE);
    698   file_offset = ptr->cur_start_row * bytesperrow;
    699   /* Loop to read or write each allocation chunk in mem_buffer */
    700   for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
    701     /* One chunk, but check for short chunk at end of buffer */
    702     rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
    703     /* Transfer no more than is currently defined */
    704     thisrow = (long) ptr->cur_start_row + i;
    705     rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
    706     /* Transfer no more than fits in file */
    707     rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
    708     if (rows <= 0)		/* this chunk might be past end of file! */
    709       break;
    710     byte_count = rows * bytesperrow;
    711     if (writing)
    712       (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
    713 					    (void FAR *) ptr->mem_buffer[i],
    714 					    file_offset, byte_count);
    715     else
    716       (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
    717 					   (void FAR *) ptr->mem_buffer[i],
    718 					   file_offset, byte_count);
    719     file_offset += byte_count;
    720   }
    721 }
    722 
    723 
    724 LOCAL(void)
    725 do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
    726 /* Do backing store read or write of a virtual coefficient-block array */
    727 {
    728   long bytesperrow, file_offset, byte_count, rows, thisrow, i;
    729 
    730   bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK);
    731   file_offset = ptr->cur_start_row * bytesperrow;
    732   /* Loop to read or write each allocation chunk in mem_buffer */
    733   for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
    734     /* One chunk, but check for short chunk at end of buffer */
    735     rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
    736     /* Transfer no more than is currently defined */
    737     thisrow = (long) ptr->cur_start_row + i;
    738     rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
    739     /* Transfer no more than fits in file */
    740     rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
    741     if (rows <= 0)		/* this chunk might be past end of file! */
    742       break;
    743     byte_count = rows * bytesperrow;
    744     if (writing)
    745       (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
    746 					    (void FAR *) ptr->mem_buffer[i],
    747 					    file_offset, byte_count);
    748     else
    749       (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
    750 					   (void FAR *) ptr->mem_buffer[i],
    751 					   file_offset, byte_count);
    752     file_offset += byte_count;
    753   }
    754 }
    755 
    756 
    757 METHODDEF(JSAMPARRAY)
    758 access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
    759 		    JDIMENSION start_row, JDIMENSION num_rows,
    760 		    boolean writable)
    761 /* Access the part of a virtual sample array starting at start_row */
    762 /* and extending for num_rows rows.  writable is true if  */
    763 /* caller intends to modify the accessed area. */
    764 {
    765   JDIMENSION end_row = start_row + num_rows;
    766   JDIMENSION undef_row;
    767 
    768   /* debugging check */
    769   if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
    770       ptr->mem_buffer == NULL)
    771     ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
    772 
    773   /* Make the desired part of the virtual array accessible */
    774   if (start_row < ptr->cur_start_row ||
    775       end_row > ptr->cur_start_row+ptr->rows_in_mem) {
    776     if (! ptr->b_s_open)
    777       ERREXIT(cinfo, JERR_VIRTUAL_BUG);
    778     /* Flush old buffer contents if necessary */
    779     if (ptr->dirty) {
    780       do_sarray_io(cinfo, ptr, TRUE);
    781       ptr->dirty = FALSE;
    782     }
    783     /* Decide what part of virtual array to access.
    784      * Algorithm: if target address > current window, assume forward scan,
    785      * load starting at target address.  If target address < current window,
    786      * assume backward scan, load so that target area is top of window.
    787      * Note that when switching from forward write to forward read, will have
    788      * start_row = 0, so the limiting case applies and we load from 0 anyway.
    789      */
    790     if (start_row > ptr->cur_start_row) {
    791       ptr->cur_start_row = start_row;
    792     } else {
    793       /* use long arithmetic here to avoid overflow & unsigned problems */
    794       long ltemp;
    795 
    796       ltemp = (long) end_row - (long) ptr->rows_in_mem;
    797       if (ltemp < 0)
    798 	ltemp = 0;		/* don't fall off front end of file */
    799       ptr->cur_start_row = (JDIMENSION) ltemp;
    800     }
    801     /* Read in the selected part of the array.
    802      * During the initial write pass, we will do no actual read
    803      * because the selected part is all undefined.
    804      */
    805     do_sarray_io(cinfo, ptr, FALSE);
    806   }
    807   /* Ensure the accessed part of the array is defined; prezero if needed.
    808    * To improve locality of access, we only prezero the part of the array
    809    * that the caller is about to access, not the entire in-memory array.
    810    */
    811   if (ptr->first_undef_row < end_row) {
    812     if (ptr->first_undef_row < start_row) {
    813       if (writable)		/* writer skipped over a section of array */
    814 	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
    815       undef_row = start_row;	/* but reader is allowed to read ahead */
    816     } else {
    817       undef_row = ptr->first_undef_row;
    818     }
    819     if (writable)
    820       ptr->first_undef_row = end_row;
    821     if (ptr->pre_zero) {
    822       size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE);
    823       undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
    824       end_row -= ptr->cur_start_row;
    825       while (undef_row < end_row) {
    826 	jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
    827 	undef_row++;
    828       }
    829     } else {
    830       if (! writable)		/* reader looking at undefined data */
    831 	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
    832     }
    833   }
    834   /* Flag the buffer dirty if caller will write in it */
    835   if (writable)
    836     ptr->dirty = TRUE;
    837   /* Return address of proper part of the buffer */
    838   return ptr->mem_buffer + (start_row - ptr->cur_start_row);
    839 }
    840 
    841 
    842 METHODDEF(JBLOCKARRAY)
    843 access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
    844 		    JDIMENSION start_row, JDIMENSION num_rows,
    845 		    boolean writable)
    846 /* Access the part of a virtual block array starting at start_row */
    847 /* and extending for num_rows rows.  writable is true if  */
    848 /* caller intends to modify the accessed area. */
    849 {
    850   JDIMENSION end_row = start_row + num_rows;
    851   JDIMENSION undef_row;
    852 
    853   /* debugging check */
    854   if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
    855       ptr->mem_buffer == NULL)
    856     ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
    857 
    858   /* Make the desired part of the virtual array accessible */
    859   if (start_row < ptr->cur_start_row ||
    860       end_row > ptr->cur_start_row+ptr->rows_in_mem) {
    861     if (! ptr->b_s_open)
    862       ERREXIT(cinfo, JERR_VIRTUAL_BUG);
    863     /* Flush old buffer contents if necessary */
    864     if (ptr->dirty) {
    865       do_barray_io(cinfo, ptr, TRUE);
    866       ptr->dirty = FALSE;
    867     }
    868     /* Decide what part of virtual array to access.
    869      * Algorithm: if target address > current window, assume forward scan,
    870      * load starting at target address.  If target address < current window,
    871      * assume backward scan, load so that target area is top of window.
    872      * Note that when switching from forward write to forward read, will have
    873      * start_row = 0, so the limiting case applies and we load from 0 anyway.
    874      */
    875     if (start_row > ptr->cur_start_row) {
    876       ptr->cur_start_row = start_row;
    877     } else {
    878       /* use long arithmetic here to avoid overflow & unsigned problems */
    879       long ltemp;
    880 
    881       ltemp = (long) end_row - (long) ptr->rows_in_mem;
    882       if (ltemp < 0)
    883 	ltemp = 0;		/* don't fall off front end of file */
    884       ptr->cur_start_row = (JDIMENSION) ltemp;
    885     }
    886     /* Read in the selected part of the array.
    887      * During the initial write pass, we will do no actual read
    888      * because the selected part is all undefined.
    889      */
    890     do_barray_io(cinfo, ptr, FALSE);
    891   }
    892   /* Ensure the accessed part of the array is defined; prezero if needed.
    893    * To improve locality of access, we only prezero the part of the array
    894    * that the caller is about to access, not the entire in-memory array.
    895    */
    896   if (ptr->first_undef_row < end_row) {
    897     if (ptr->first_undef_row < start_row) {
    898       if (writable)		/* writer skipped over a section of array */
    899 	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
    900       undef_row = start_row;	/* but reader is allowed to read ahead */
    901     } else {
    902       undef_row = ptr->first_undef_row;
    903     }
    904     if (writable)
    905       ptr->first_undef_row = end_row;
    906     if (ptr->pre_zero) {
    907       size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK);
    908       undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
    909       end_row -= ptr->cur_start_row;
    910       while (undef_row < end_row) {
    911 	jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
    912 	undef_row++;
    913       }
    914     } else {
    915       if (! writable)		/* reader looking at undefined data */
    916 	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
    917     }
    918   }
    919   /* Flag the buffer dirty if caller will write in it */
    920   if (writable)
    921     ptr->dirty = TRUE;
    922   /* Return address of proper part of the buffer */
    923   return ptr->mem_buffer + (start_row - ptr->cur_start_row);
    924 }
    925 
    926 
    927 /*
    928  * Release all objects belonging to a specified pool.
    929  */
    930 
    931 METHODDEF(void)
    932 free_pool (j_common_ptr cinfo, int pool_id)
    933 {
    934   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    935   small_pool_ptr shdr_ptr;
    936   large_pool_ptr lhdr_ptr;
    937   size_t space_freed;
    938 
    939   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
    940     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
    941 
    942 #ifdef MEM_STATS
    943   if (cinfo->err->trace_level > 1)
    944     print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
    945 #endif
    946 
    947   /* If freeing IMAGE pool, close any virtual arrays first */
    948   if (pool_id == JPOOL_IMAGE) {
    949     jvirt_sarray_ptr sptr;
    950     jvirt_barray_ptr bptr;
    951 
    952     for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
    953       if (sptr->b_s_open) {	/* there may be no backing store */
    954 	sptr->b_s_open = FALSE;	/* prevent recursive close if error */
    955 	(*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
    956       }
    957     }
    958     mem->virt_sarray_list = NULL;
    959     for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
    960       if (bptr->b_s_open) {	/* there may be no backing store */
    961 	bptr->b_s_open = FALSE;	/* prevent recursive close if error */
    962 	(*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
    963       }
    964     }
    965     mem->virt_barray_list = NULL;
    966   }
    967 
    968   /* Release large objects */
    969   lhdr_ptr = mem->large_list[pool_id];
    970   mem->large_list[pool_id] = NULL;
    971 
    972   while (lhdr_ptr != NULL) {
    973     large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next;
    974     space_freed = lhdr_ptr->hdr.bytes_used +
    975 		  lhdr_ptr->hdr.bytes_left +
    976 		  SIZEOF(large_pool_hdr);
    977     jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed);
    978     mem->total_space_allocated -= space_freed;
    979     lhdr_ptr = next_lhdr_ptr;
    980   }
    981 
    982   /* Release small objects */
    983   shdr_ptr = mem->small_list[pool_id];
    984   mem->small_list[pool_id] = NULL;
    985 
    986   while (shdr_ptr != NULL) {
    987     small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next;
    988     space_freed = shdr_ptr->hdr.bytes_used +
    989 		  shdr_ptr->hdr.bytes_left +
    990 		  SIZEOF(small_pool_hdr);
    991     jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
    992     mem->total_space_allocated -= space_freed;
    993     shdr_ptr = next_shdr_ptr;
    994   }
    995 }
    996 
    997 
    998 /*
    999  * Close up shop entirely.
   1000  * Note that this cannot be called unless cinfo->mem is non-NULL.
   1001  */
   1002 
   1003 METHODDEF(void)
   1004 self_destruct (j_common_ptr cinfo)
   1005 {
   1006   int pool;
   1007 
   1008   /* Close all backing store, release all memory.
   1009    * Releasing pools in reverse order might help avoid fragmentation
   1010    * with some (brain-damaged) malloc libraries.
   1011    */
   1012   for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
   1013     free_pool(cinfo, pool);
   1014   }
   1015 
   1016   /* Release the memory manager control block too. */
   1017   jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr));
   1018   cinfo->mem = NULL;		/* ensures I will be called only once */
   1019 
   1020   jpeg_mem_term(cinfo);		/* system-dependent cleanup */
   1021 }
   1022 
   1023 
   1024 /*
   1025  * Memory manager initialization.
   1026  * When this is called, only the error manager pointer is valid in cinfo!
   1027  */
   1028 
   1029 GLOBAL(void)
   1030 jinit_memory_mgr (j_common_ptr cinfo)
   1031 {
   1032   my_mem_ptr mem;
   1033   long max_to_use;
   1034   int pool;
   1035   size_t test_mac;
   1036 
   1037   cinfo->mem = NULL;		/* for safety if init fails */
   1038 
   1039   /* Check for configuration errors.
   1040    * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
   1041    * doesn't reflect any real hardware alignment requirement.
   1042    * The test is a little tricky: for X>0, X and X-1 have no one-bits
   1043    * in common if and only if X is a power of 2, ie has only one one-bit.
   1044    * Some compilers may give an "unreachable code" warning here; ignore it.
   1045    */
   1046   if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0)
   1047     ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
   1048   /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
   1049    * a multiple of SIZEOF(ALIGN_TYPE).
   1050    * Again, an "unreachable code" warning may be ignored here.
   1051    * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
   1052    */
   1053   test_mac = (size_t) MAX_ALLOC_CHUNK;
   1054   if ((long) test_mac != MAX_ALLOC_CHUNK ||
   1055       (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0)
   1056     ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
   1057 
   1058   max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
   1059 
   1060   /* Attempt to allocate memory manager's control block */
   1061   mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr));
   1062 
   1063   if (mem == NULL) {
   1064     jpeg_mem_term(cinfo);	/* system-dependent cleanup */
   1065     ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
   1066   }
   1067 
   1068   /* OK, fill in the method pointers */
   1069   mem->pub.alloc_small = alloc_small;
   1070   mem->pub.alloc_large = alloc_large;
   1071   mem->pub.alloc_sarray = alloc_sarray;
   1072   mem->pub.alloc_barray = alloc_barray;
   1073   mem->pub.request_virt_sarray = request_virt_sarray;
   1074   mem->pub.request_virt_barray = request_virt_barray;
   1075   mem->pub.realize_virt_arrays = realize_virt_arrays;
   1076   mem->pub.access_virt_sarray = access_virt_sarray;
   1077   mem->pub.access_virt_barray = access_virt_barray;
   1078   mem->pub.free_pool = free_pool;
   1079   mem->pub.self_destruct = self_destruct;
   1080 
   1081   /* Make MAX_ALLOC_CHUNK accessible to other modules */
   1082   mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
   1083 
   1084   /* Initialize working state */
   1085   mem->pub.max_memory_to_use = max_to_use;
   1086 
   1087   for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
   1088     mem->small_list[pool] = NULL;
   1089     mem->large_list[pool] = NULL;
   1090   }
   1091   mem->virt_sarray_list = NULL;
   1092   mem->virt_barray_list = NULL;
   1093 
   1094   mem->total_space_allocated = SIZEOF(my_memory_mgr);
   1095 
   1096   /* Declare ourselves open for business */
   1097   cinfo->mem = & mem->pub;
   1098 
   1099   /* Check for an environment variable JPEGMEM; if found, override the
   1100    * default max_memory setting from jpeg_mem_init.  Note that the
   1101    * surrounding application may again override this value.
   1102    * If your system doesn't support getenv(), define NO_GETENV to disable
   1103    * this feature.
   1104    */
   1105 #ifndef NO_GETENV
   1106   { char * memenv;
   1107 
   1108     if ((memenv = getenv("JPEGMEM")) != NULL) {
   1109       char ch = 'x';
   1110 
   1111       if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
   1112 	if (ch == 'm' || ch == 'M')
   1113 	  max_to_use *= 1000L;
   1114 	mem->pub.max_memory_to_use = max_to_use * 1000L;
   1115       }
   1116     }
   1117   }
   1118 #endif
   1119 
   1120 }
   1121