Home | History | Annotate | Download | only in re2
      1 // Copyright 2007 The RE2 Authors.  All Rights Reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 // Compile regular expression to Prog.
      6 //
      7 // Prog and Inst are defined in prog.h.
      8 // This file's external interface is just Regexp::CompileToProg.
      9 // The Compiler class defined in this file is private.
     10 
     11 #include "re2/prog.h"
     12 #include "re2/re2.h"
     13 #include "re2/regexp.h"
     14 #include "re2/walker-inl.h"
     15 
     16 namespace re2 {
     17 
     18 // List of pointers to Inst* that need to be filled in (patched).
     19 // Because the Inst* haven't been filled in yet,
     20 // we can use the Inst* word to hold the list's "next" pointer.
     21 // It's kind of sleazy, but it works well in practice.
     22 // See http://swtch.com/~rsc/regexp/regexp1.html for inspiration.
     23 //
     24 // Because the out and out1 fields in Inst are no longer pointers,
     25 // we can't use pointers directly here either.  Instead, p refers
     26 // to inst_[p>>1].out (p&1 == 0) or inst_[p>>1].out1 (p&1 == 1).
     27 // p == 0 represents the NULL list.  This is okay because instruction #0
     28 // is always the fail instruction, which never appears on a list.
     29 
     30 struct PatchList {
     31   uint32 p;
     32 
     33   // Returns patch list containing just p.
     34   static PatchList Mk(uint32 p);
     35 
     36   // Patches all the entries on l to have value v.
     37   // Caller must not ever use patch list again.
     38   static void Patch(Prog::Inst *inst0, PatchList l, uint32 v);
     39 
     40   // Deref returns the next pointer pointed at by p.
     41   static PatchList Deref(Prog::Inst *inst0, PatchList l);
     42 
     43   // Appends two patch lists and returns result.
     44   static PatchList Append(Prog::Inst *inst0, PatchList l1, PatchList l2);
     45 };
     46 
     47 static PatchList nullPatchList;
     48 
     49 // Returns patch list containing just p.
     50 PatchList PatchList::Mk(uint32 p) {
     51   PatchList l;
     52   l.p = p;
     53   return l;
     54 }
     55 
     56 // Returns the next pointer pointed at by l.
     57 PatchList PatchList::Deref(Prog::Inst* inst0, PatchList l) {
     58   Prog::Inst* ip = &inst0[l.p>>1];
     59   if (l.p&1)
     60     l.p = ip->out1();
     61   else
     62     l.p = ip->out();
     63   return l;
     64 }
     65 
     66 // Patches all the entries on l to have value v.
     67 void PatchList::Patch(Prog::Inst *inst0, PatchList l, uint32 val) {
     68   while (l.p != 0) {
     69     Prog::Inst* ip = &inst0[l.p>>1];
     70     if (l.p&1) {
     71       l.p = ip->out1();
     72       ip->out1_ = val;
     73     } else {
     74       l.p = ip->out();
     75       ip->set_out(val);
     76     }
     77   }
     78 }
     79 
     80 // Appends two patch lists and returns result.
     81 PatchList PatchList::Append(Prog::Inst* inst0, PatchList l1, PatchList l2) {
     82   if (l1.p == 0)
     83     return l2;
     84   if (l2.p == 0)
     85     return l1;
     86 
     87   PatchList l = l1;
     88   for (;;) {
     89     PatchList next = PatchList::Deref(inst0, l);
     90     if (next.p == 0)
     91       break;
     92     l = next;
     93   }
     94 
     95   Prog::Inst* ip = &inst0[l.p>>1];
     96   if (l.p&1)
     97     ip->out1_ = l2.p;
     98   else
     99     ip->set_out(l2.p);
    100 
    101   return l1;
    102 }
    103 
    104 // Compiled program fragment.
    105 struct Frag {
    106   uint32 begin;
    107   PatchList end;
    108 
    109   explicit Frag(LinkerInitialized) {}
    110   Frag() : begin(0) { end.p = 0; }  // needed so Frag can go in vector
    111   Frag(uint32 begin, PatchList end) : begin(begin), end(end) {}
    112 };
    113 
    114 static Frag kNullFrag(LINKER_INITIALIZED);
    115 
    116 // Input encodings.
    117 enum Encoding {
    118   kEncodingUTF8 = 1,  // UTF-8 (0-10FFFF)
    119   kEncodingLatin1,    // Latin1 (0-FF)
    120 };
    121 
    122 class Compiler : public Regexp::Walker<Frag> {
    123  public:
    124   explicit Compiler();
    125   ~Compiler();
    126 
    127   // Compiles Regexp to a new Prog.
    128   // Caller is responsible for deleting Prog when finished with it.
    129   // If reversed is true, compiles for walking over the input
    130   // string backward (reverses all concatenations).
    131   static Prog *Compile(Regexp* re, bool reversed, int64 max_mem);
    132 
    133   // Compiles alternation of all the re to a new Prog.
    134   // Each re has a match with an id equal to its index in the vector.
    135   static Prog* CompileSet(const RE2::Options& options, RE2::Anchor anchor,
    136                           Regexp* re);
    137 
    138   // Interface for Regexp::Walker, which helps traverse the Regexp.
    139   // The walk is purely post-recursive: given the machines for the
    140   // children, PostVisit combines them to create the machine for
    141   // the current node.  The child_args are Frags.
    142   // The Compiler traverses the Regexp parse tree, visiting
    143   // each node in depth-first order.  It invokes PreVisit before
    144   // visiting the node's children and PostVisit after visiting
    145   // the children.
    146   Frag PreVisit(Regexp* re, Frag parent_arg, bool* stop);
    147   Frag PostVisit(Regexp* re, Frag parent_arg, Frag pre_arg, Frag* child_args,
    148                  int nchild_args);
    149   Frag ShortVisit(Regexp* re, Frag parent_arg);
    150   Frag Copy(Frag arg);
    151 
    152   // Given fragment a, returns a+ or a+?; a* or a*?; a? or a??
    153   Frag Plus(Frag a, bool nongreedy);
    154   Frag Star(Frag a, bool nongreedy);
    155   Frag Quest(Frag a, bool nongreedy);
    156 
    157   // Given fragment a, returns (a) capturing as \n.
    158   Frag Capture(Frag a, int n);
    159 
    160   // Given fragments a and b, returns ab; a|b
    161   Frag Cat(Frag a, Frag b);
    162   Frag Alt(Frag a, Frag b);
    163 
    164   // Returns a fragment that can't match anything.
    165   Frag NoMatch();
    166 
    167   // Returns a fragment that matches the empty string.
    168   Frag Match(int32 id);
    169 
    170   // Returns a no-op fragment.
    171   Frag Nop();
    172 
    173   // Returns a fragment matching the byte range lo-hi.
    174   Frag ByteRange(int lo, int hi, bool foldcase);
    175 
    176   // Returns a fragment matching an empty-width special op.
    177   Frag EmptyWidth(EmptyOp op);
    178 
    179   // Adds n instructions to the program.
    180   // Returns the index of the first one.
    181   // Returns -1 if no more instructions are available.
    182   int AllocInst(int n);
    183 
    184   // Deletes unused instructions.
    185   void Trim();
    186 
    187   // Rune range compiler.
    188 
    189   // Begins a new alternation.
    190   void BeginRange();
    191 
    192   // Adds a fragment matching the rune range lo-hi.
    193   void AddRuneRange(Rune lo, Rune hi, bool foldcase);
    194   void AddRuneRangeLatin1(Rune lo, Rune hi, bool foldcase);
    195   void AddRuneRangeUTF8(Rune lo, Rune hi, bool foldcase);
    196   void Add_80_10ffff();
    197 
    198   // New suffix that matches the byte range lo-hi, then goes to next.
    199   int RuneByteSuffix(uint8 lo, uint8 hi, bool foldcase, int next);
    200   int UncachedRuneByteSuffix(uint8 lo, uint8 hi, bool foldcase, int next);
    201 
    202   // Adds a suffix to alternation.
    203   void AddSuffix(int id);
    204 
    205   // Returns the alternation of all the added suffixes.
    206   Frag EndRange();
    207 
    208   // Single rune.
    209   Frag Literal(Rune r, bool foldcase);
    210 
    211   void Setup(Regexp::ParseFlags, int64, RE2::Anchor);
    212   Prog* Finish();
    213 
    214   // Returns .* where dot = any byte
    215   Frag DotStar();
    216 
    217  private:
    218   Prog* prog_;         // Program being built.
    219   bool failed_;        // Did we give up compiling?
    220   Encoding encoding_;  // Input encoding
    221   bool reversed_;      // Should program run backward over text?
    222 
    223   int max_inst_;       // Maximum number of instructions.
    224 
    225   Prog::Inst* inst_;   // Pointer to first instruction.
    226   int inst_len_;       // Number of instructions used.
    227   int inst_cap_;       // Number of instructions allocated.
    228 
    229   int64 max_mem_;      // Total memory budget.
    230 
    231   map<uint64, int> rune_cache_;
    232   Frag rune_range_;
    233 
    234   RE2::Anchor anchor_;  // anchor mode for RE2::Set
    235 
    236   DISALLOW_EVIL_CONSTRUCTORS(Compiler);
    237 };
    238 
    239 Compiler::Compiler() {
    240   prog_ = new Prog();
    241   failed_ = false;
    242   encoding_ = kEncodingUTF8;
    243   reversed_ = false;
    244   inst_ = NULL;
    245   inst_len_ = 0;
    246   inst_cap_ = 0;
    247   max_inst_ = 1;  // make AllocInst for fail instruction okay
    248   max_mem_ = 0;
    249   int fail = AllocInst(1);
    250   inst_[fail].InitFail();
    251   max_inst_ = 0;  // Caller must change
    252 }
    253 
    254 Compiler::~Compiler() {
    255   delete prog_;
    256   delete[] inst_;
    257 }
    258 
    259 int Compiler::AllocInst(int n) {
    260   if (failed_ || inst_len_ + n > max_inst_) {
    261     failed_ = true;
    262     return -1;
    263   }
    264 
    265   if (inst_len_ + n > inst_cap_) {
    266     if (inst_cap_ == 0)
    267       inst_cap_ = 8;
    268     while (inst_len_ + n > inst_cap_)
    269       inst_cap_ *= 2;
    270     Prog::Inst* ip = new Prog::Inst[inst_cap_];
    271     memmove(ip, inst_, inst_len_ * sizeof ip[0]);
    272     memset(ip + inst_len_, 0, (inst_cap_ - inst_len_) * sizeof ip[0]);
    273     delete[] inst_;
    274     inst_ = ip;
    275   }
    276   int id = inst_len_;
    277   inst_len_ += n;
    278   return id;
    279 }
    280 
    281 void Compiler::Trim() {
    282   if (inst_len_ < inst_cap_) {
    283     Prog::Inst* ip = new Prog::Inst[inst_len_];
    284     memmove(ip, inst_, inst_len_ * sizeof ip[0]);
    285     delete[] inst_;
    286     inst_ = ip;
    287     inst_cap_ = inst_len_;
    288   }
    289 }
    290 
    291 // These routines are somewhat hard to visualize in text --
    292 // see http://swtch.com/~rsc/regexp/regexp1.html for
    293 // pictures explaining what is going on here.
    294 
    295 // Returns an unmatchable fragment.
    296 Frag Compiler::NoMatch() {
    297   return Frag(0, nullPatchList);
    298 }
    299 
    300 // Is a an unmatchable fragment?
    301 static bool IsNoMatch(Frag a) {
    302   return a.begin == 0;
    303 }
    304 
    305 // Given fragments a and b, returns fragment for ab.
    306 Frag Compiler::Cat(Frag a, Frag b) {
    307   if (IsNoMatch(a) || IsNoMatch(b))
    308     return NoMatch();
    309 
    310   // Elide no-op.
    311   Prog::Inst* begin = &inst_[a.begin];
    312   if (begin->opcode() == kInstNop &&
    313       a.end.p == (a.begin << 1) &&
    314       begin->out() == 0) {
    315     PatchList::Patch(inst_, a.end, b.begin);  // in case refs to a somewhere
    316     return b;
    317   }
    318 
    319   // To run backward over string, reverse all concatenations.
    320   if (reversed_) {
    321     PatchList::Patch(inst_, b.end, a.begin);
    322     return Frag(b.begin, a.end);
    323   }
    324 
    325   PatchList::Patch(inst_, a.end, b.begin);
    326   return Frag(a.begin, b.end);
    327 }
    328 
    329 // Given fragments for a and b, returns fragment for a|b.
    330 Frag Compiler::Alt(Frag a, Frag b) {
    331   // Special case for convenience in loops.
    332   if (IsNoMatch(a))
    333     return b;
    334   if (IsNoMatch(b))
    335     return a;
    336 
    337   int id = AllocInst(1);
    338   if (id < 0)
    339     return NoMatch();
    340 
    341   inst_[id].InitAlt(a.begin, b.begin);
    342   return Frag(id, PatchList::Append(inst_, a.end, b.end));
    343 }
    344 
    345 // When capturing submatches in like-Perl mode, a kOpAlt Inst
    346 // treats out_ as the first choice, out1_ as the second.
    347 //
    348 // For *, +, and ?, if out_ causes another repetition,
    349 // then the operator is greedy.  If out1_ is the repetition
    350 // (and out_ moves forward), then the operator is non-greedy.
    351 
    352 // Given a fragment a, returns a fragment for a* or a*? (if nongreedy)
    353 Frag Compiler::Star(Frag a, bool nongreedy) {
    354   int id = AllocInst(1);
    355   if (id < 0)
    356     return NoMatch();
    357   inst_[id].InitAlt(0, 0);
    358   PatchList::Patch(inst_, a.end, id);
    359   if (nongreedy) {
    360     inst_[id].out1_ = a.begin;
    361     return Frag(id, PatchList::Mk(id << 1));
    362   } else {
    363     inst_[id].set_out(a.begin);
    364     return Frag(id, PatchList::Mk((id << 1) | 1));
    365   }
    366 }
    367 
    368 // Given a fragment for a, returns a fragment for a+ or a+? (if nongreedy)
    369 Frag Compiler::Plus(Frag a, bool nongreedy) {
    370   // a+ is just a* with a different entry point.
    371   Frag f = Star(a, nongreedy);
    372   return Frag(a.begin, f.end);
    373 }
    374 
    375 // Given a fragment for a, returns a fragment for a? or a?? (if nongreedy)
    376 Frag Compiler::Quest(Frag a, bool nongreedy) {
    377   int id = AllocInst(1);
    378   if (id < 0)
    379     return NoMatch();
    380   PatchList pl;
    381   if (nongreedy) {
    382     inst_[id].InitAlt(0, a.begin);
    383     pl = PatchList::Mk(id << 1);
    384   } else {
    385     inst_[id].InitAlt(a.begin, 0);
    386     pl = PatchList::Mk((id << 1) | 1);
    387   }
    388   return Frag(id, PatchList::Append(inst_, pl, a.end));
    389 }
    390 
    391 // Returns a fragment for the byte range lo-hi.
    392 Frag Compiler::ByteRange(int lo, int hi, bool foldcase) {
    393   int id = AllocInst(1);
    394   if (id < 0)
    395     return NoMatch();
    396   inst_[id].InitByteRange(lo, hi, foldcase, 0);
    397   prog_->byte_inst_count_++;
    398   prog_->MarkByteRange(lo, hi);
    399   if (foldcase && lo <= 'z' && hi >= 'a') {
    400     if (lo < 'a')
    401       lo = 'a';
    402     if (hi > 'z')
    403       hi = 'z';
    404     if (lo <= hi)
    405       prog_->MarkByteRange(lo + 'A' - 'a', hi + 'A' - 'a');
    406   }
    407   return Frag(id, PatchList::Mk(id << 1));
    408 }
    409 
    410 // Returns a no-op fragment.  Sometimes unavoidable.
    411 Frag Compiler::Nop() {
    412   int id = AllocInst(1);
    413   if (id < 0)
    414     return NoMatch();
    415   inst_[id].InitNop(0);
    416   return Frag(id, PatchList::Mk(id << 1));
    417 }
    418 
    419 // Returns a fragment that signals a match.
    420 Frag Compiler::Match(int32 match_id) {
    421   int id = AllocInst(1);
    422   if (id < 0)
    423     return NoMatch();
    424   inst_[id].InitMatch(match_id);
    425   return Frag(id, nullPatchList);
    426 }
    427 
    428 // Returns a fragment matching a particular empty-width op (like ^ or $)
    429 Frag Compiler::EmptyWidth(EmptyOp empty) {
    430   int id = AllocInst(1);
    431   if (id < 0)
    432     return NoMatch();
    433   inst_[id].InitEmptyWidth(empty, 0);
    434   if (empty & (kEmptyBeginLine|kEmptyEndLine))
    435     prog_->MarkByteRange('\n', '\n');
    436   if (empty & (kEmptyWordBoundary|kEmptyNonWordBoundary)) {
    437     int j;
    438     for (int i = 0; i < 256; i = j) {
    439       for (j = i+1; j < 256 && Prog::IsWordChar(i) == Prog::IsWordChar(j); j++)
    440         ;
    441       prog_->MarkByteRange(i, j-1);
    442     }
    443   }
    444   return Frag(id, PatchList::Mk(id << 1));
    445 }
    446 
    447 // Given a fragment a, returns a fragment with capturing parens around a.
    448 Frag Compiler::Capture(Frag a, int n) {
    449   int id = AllocInst(2);
    450   if (id < 0)
    451     return NoMatch();
    452   inst_[id].InitCapture(2*n, a.begin);
    453   inst_[id+1].InitCapture(2*n+1, 0);
    454   PatchList::Patch(inst_, a.end, id+1);
    455 
    456   return Frag(id, PatchList::Mk((id+1) << 1));
    457 }
    458 
    459 // A Rune is a name for a Unicode code point.
    460 // Returns maximum rune encoded by UTF-8 sequence of length len.
    461 static int MaxRune(int len) {
    462   int b;  // number of Rune bits in len-byte UTF-8 sequence (len < UTFmax)
    463   if (len == 1)
    464     b = 7;
    465   else
    466     b = 8-(len+1) + 6*(len-1);
    467   return (1<<b) - 1;   // maximum Rune for b bits.
    468 }
    469 
    470 // The rune range compiler caches common suffix fragments,
    471 // which are very common in UTF-8 (e.g., [80-bf]).
    472 // The fragment suffixes are identified by their start
    473 // instructions.  NULL denotes the eventual end match.
    474 // The Frag accumulates in rune_range_.  Caching common
    475 // suffixes reduces the UTF-8 "." from 32 to 24 instructions,
    476 // and it reduces the corresponding one-pass NFA from 16 nodes to 8.
    477 
    478 void Compiler::BeginRange() {
    479   rune_cache_.clear();
    480   rune_range_.begin = 0;
    481   rune_range_.end = nullPatchList;
    482 }
    483 
    484 int Compiler::UncachedRuneByteSuffix(uint8 lo, uint8 hi, bool foldcase,
    485                                      int next) {
    486   Frag f = ByteRange(lo, hi, foldcase);
    487   if (next != 0) {
    488     PatchList::Patch(inst_, f.end, next);
    489   } else {
    490     rune_range_.end = PatchList::Append(inst_, rune_range_.end, f.end);
    491   }
    492   return f.begin;
    493 }
    494 
    495 int Compiler::RuneByteSuffix(uint8 lo, uint8 hi, bool foldcase, int next) {
    496   // In Latin1 mode, there's no point in caching.
    497   // In forward UTF-8 mode, only need to cache continuation bytes.
    498   if (encoding_ == kEncodingLatin1 ||
    499       (encoding_ == kEncodingUTF8 &&
    500        !reversed_ &&
    501        !(0x80 <= lo && hi <= 0xbf))) {
    502     return UncachedRuneByteSuffix(lo, hi, foldcase, next);
    503   }
    504 
    505   uint64 key = ((uint64)next << 17) | (lo<<9) | (hi<<1) | foldcase;
    506   map<uint64, int>::iterator it = rune_cache_.find(key);
    507   if (it != rune_cache_.end())
    508     return it->second;
    509   int id = UncachedRuneByteSuffix(lo, hi, foldcase, next);
    510   rune_cache_[key] = id;
    511   return id;
    512 }
    513 
    514 void Compiler::AddSuffix(int id) {
    515   if (rune_range_.begin == 0) {
    516     rune_range_.begin = id;
    517     return;
    518   }
    519 
    520   int alt = AllocInst(1);
    521   if (alt < 0) {
    522     rune_range_.begin = 0;
    523     return;
    524   }
    525   inst_[alt].InitAlt(rune_range_.begin, id);
    526   rune_range_.begin = alt;
    527 }
    528 
    529 Frag Compiler::EndRange() {
    530   return rune_range_;
    531 }
    532 
    533 // Converts rune range lo-hi into a fragment that recognizes
    534 // the bytes that would make up those runes in the current
    535 // encoding (Latin 1 or UTF-8).
    536 // This lets the machine work byte-by-byte even when
    537 // using multibyte encodings.
    538 
    539 void Compiler::AddRuneRange(Rune lo, Rune hi, bool foldcase) {
    540   switch (encoding_) {
    541     default:
    542     case kEncodingUTF8:
    543       AddRuneRangeUTF8(lo, hi, foldcase);
    544       break;
    545     case kEncodingLatin1:
    546       AddRuneRangeLatin1(lo, hi, foldcase);
    547       break;
    548   }
    549 }
    550 
    551 void Compiler::AddRuneRangeLatin1(Rune lo, Rune hi, bool foldcase) {
    552   // Latin1 is easy: runes *are* bytes.
    553   if (lo > hi || lo > 0xFF)
    554     return;
    555   if (hi > 0xFF)
    556     hi = 0xFF;
    557   AddSuffix(RuneByteSuffix(lo, hi, foldcase, 0));
    558 }
    559 
    560 // Table describing how to make a UTF-8 matching machine
    561 // for the rune range 80-10FFFF (Runeself-Runemax).
    562 // This range happens frequently enough (for example /./ and /[^a-z]/)
    563 // and the rune_cache_ map is slow enough that this is worth
    564 // special handling.  Makes compilation of a small expression
    565 // with a dot in it about 10% faster.
    566 // The * in the comments below mark whole sequences.
    567 static struct ByteRangeProg {
    568   int next;
    569   int lo;
    570   int hi;
    571 } prog_80_10ffff[] = {
    572   // Two-byte
    573   { -1, 0x80, 0xBF, },  // 0:  80-BF
    574   {  0, 0xC2, 0xDF, },  // 1:  C2-DF 80-BF*
    575 
    576   // Three-byte
    577   {  0, 0xA0, 0xBF, },  // 2:  A0-BF 80-BF
    578   {  2, 0xE0, 0xE0, },  // 3:  E0 A0-BF 80-BF*
    579   {  0, 0x80, 0xBF, },  // 4:  80-BF 80-BF
    580   {  4, 0xE1, 0xEF, },  // 5:  E1-EF 80-BF 80-BF*
    581 
    582   // Four-byte
    583   {  4, 0x90, 0xBF, },  // 6:  90-BF 80-BF 80-BF
    584   {  6, 0xF0, 0xF0, },  // 7:  F0 90-BF 80-BF 80-BF*
    585   {  4, 0x80, 0xBF, },  // 8:  80-BF 80-BF 80-BF
    586   {  8, 0xF1, 0xF3, },  // 9: F1-F3 80-BF 80-BF 80-BF*
    587   {  4, 0x80, 0x8F, },  // 10: 80-8F 80-BF 80-BF
    588   { 10, 0xF4, 0xF4, },  // 11: F4 80-8F 80-BF 80-BF*
    589 };
    590 
    591 void Compiler::Add_80_10ffff() {
    592   int inst[arraysize(prog_80_10ffff)] = { 0 }; // does not need to be initialized; silences gcc warning
    593   for (int i = 0; i < arraysize(prog_80_10ffff); i++) {
    594     const ByteRangeProg& p = prog_80_10ffff[i];
    595     int next = 0;
    596     if (p.next >= 0)
    597       next = inst[p.next];
    598     inst[i] = UncachedRuneByteSuffix(p.lo, p.hi, false, next);
    599     if ((p.lo & 0xC0) != 0x80)
    600       AddSuffix(inst[i]);
    601   }
    602 }
    603 
    604 void Compiler::AddRuneRangeUTF8(Rune lo, Rune hi, bool foldcase) {
    605   if (lo > hi)
    606     return;
    607 
    608   // Pick off 80-10FFFF as a common special case
    609   // that can bypass the slow rune_cache_.
    610   if (lo == 0x80 && hi == 0x10ffff && !reversed_) {
    611     Add_80_10ffff();
    612     return;
    613   }
    614 
    615   // Split range into same-length sized ranges.
    616   for (int i = 1; i < UTFmax; i++) {
    617     Rune max = MaxRune(i);
    618     if (lo <= max && max < hi) {
    619       AddRuneRangeUTF8(lo, max, foldcase);
    620       AddRuneRangeUTF8(max+1, hi, foldcase);
    621       return;
    622     }
    623   }
    624 
    625   // ASCII range is always a special case.
    626   if (hi < Runeself) {
    627     AddSuffix(RuneByteSuffix(lo, hi, foldcase, 0));
    628     return;
    629   }
    630 
    631   // Split range into sections that agree on leading bytes.
    632   for (int i = 1; i < UTFmax; i++) {
    633     uint m = (1<<(6*i)) - 1;  // last i bytes of a UTF-8 sequence
    634     if ((lo & ~m) != (hi & ~m)) {
    635       if ((lo & m) != 0) {
    636         AddRuneRangeUTF8(lo, lo|m, foldcase);
    637         AddRuneRangeUTF8((lo|m)+1, hi, foldcase);
    638         return;
    639       }
    640       if ((hi & m) != m) {
    641         AddRuneRangeUTF8(lo, (hi&~m)-1, foldcase);
    642         AddRuneRangeUTF8(hi&~m, hi, foldcase);
    643         return;
    644       }
    645     }
    646   }
    647 
    648   // Finally.  Generate byte matching equivalent for lo-hi.
    649   uint8 ulo[UTFmax], uhi[UTFmax];
    650   int n = runetochar(reinterpret_cast<char*>(ulo), &lo);
    651   int m = runetochar(reinterpret_cast<char*>(uhi), &hi);
    652   (void)m;  // USED(m)
    653   DCHECK_EQ(n, m);
    654 
    655   int id = 0;
    656   if (reversed_) {
    657     for (int i = 0; i < n; i++)
    658       id = RuneByteSuffix(ulo[i], uhi[i], false, id);
    659   } else {
    660     for (int i = n-1; i >= 0; i--)
    661       id = RuneByteSuffix(ulo[i], uhi[i], false, id);
    662   }
    663   AddSuffix(id);
    664 }
    665 
    666 // Should not be called.
    667 Frag Compiler::Copy(Frag arg) {
    668   // We're using WalkExponential; there should be no copying.
    669   LOG(DFATAL) << "Compiler::Copy called!";
    670   failed_ = true;
    671   return NoMatch();
    672 }
    673 
    674 // Visits a node quickly; called once WalkExponential has
    675 // decided to cut this walk short.
    676 Frag Compiler::ShortVisit(Regexp* re, Frag) {
    677   failed_ = true;
    678   return NoMatch();
    679 }
    680 
    681 // Called before traversing a node's children during the walk.
    682 Frag Compiler::PreVisit(Regexp* re, Frag, bool* stop) {
    683   // Cut off walk if we've already failed.
    684   if (failed_)
    685     *stop = true;
    686 
    687   return kNullFrag;  // not used by caller
    688 }
    689 
    690 Frag Compiler::Literal(Rune r, bool foldcase) {
    691   switch (encoding_) {
    692     default:
    693       return kNullFrag;
    694 
    695     case kEncodingLatin1:
    696       return ByteRange(r, r, foldcase);
    697 
    698     case kEncodingUTF8: {
    699       if (r < Runeself)  // Make common case fast.
    700         return ByteRange(r, r, foldcase);
    701       uint8 buf[UTFmax];
    702       int n = runetochar(reinterpret_cast<char*>(buf), &r);
    703       Frag f = ByteRange((uint8)buf[0], buf[0], false);
    704       for (int i = 1; i < n; i++)
    705         f = Cat(f, ByteRange((uint8)buf[i], buf[i], false));
    706       return f;
    707     }
    708   }
    709 }
    710 
    711 // Called after traversing the node's children during the walk.
    712 // Given their frags, build and return the frag for this re.
    713 Frag Compiler::PostVisit(Regexp* re, Frag, Frag, Frag* child_frags,
    714                          int nchild_frags) {
    715   // If a child failed, don't bother going forward, especially
    716   // since the child_frags might contain Frags with NULLs in them.
    717   if (failed_)
    718     return NoMatch();
    719 
    720   // Given the child fragments, return the fragment for this node.
    721   switch (re->op()) {
    722     case kRegexpRepeat:
    723       // Should not see; code at bottom of function will print error
    724       break;
    725 
    726     case kRegexpNoMatch:
    727       return NoMatch();
    728 
    729     case kRegexpEmptyMatch:
    730       return Nop();
    731 
    732     case kRegexpHaveMatch: {
    733       Frag f = Match(re->match_id());
    734       // Remember unanchored match to end of string.
    735       if (anchor_ != RE2::ANCHOR_BOTH)
    736         f = Cat(DotStar(), Cat(EmptyWidth(kEmptyEndText), f));
    737       return f;
    738     }
    739 
    740     case kRegexpConcat: {
    741       Frag f = child_frags[0];
    742       for (int i = 1; i < nchild_frags; i++)
    743         f = Cat(f, child_frags[i]);
    744       return f;
    745     }
    746 
    747     case kRegexpAlternate: {
    748       Frag f = child_frags[0];
    749       for (int i = 1; i < nchild_frags; i++)
    750         f = Alt(f, child_frags[i]);
    751       return f;
    752     }
    753 
    754     case kRegexpStar:
    755       return Star(child_frags[0], re->parse_flags()&Regexp::NonGreedy);
    756 
    757     case kRegexpPlus:
    758       return Plus(child_frags[0], re->parse_flags()&Regexp::NonGreedy);
    759 
    760     case kRegexpQuest:
    761       return Quest(child_frags[0], re->parse_flags()&Regexp::NonGreedy);
    762 
    763     case kRegexpLiteral:
    764       return Literal(re->rune(), re->parse_flags()&Regexp::FoldCase);
    765 
    766     case kRegexpLiteralString: {
    767       // Concatenation of literals.
    768       if (re->nrunes() == 0)
    769         return Nop();
    770       Frag f;
    771       for (int i = 0; i < re->nrunes(); i++) {
    772         Frag f1 = Literal(re->runes()[i], re->parse_flags()&Regexp::FoldCase);
    773         if (i == 0)
    774           f = f1;
    775         else
    776           f = Cat(f, f1);
    777       }
    778       return f;
    779     }
    780 
    781     case kRegexpAnyChar:
    782       BeginRange();
    783       AddRuneRange(0, Runemax, false);
    784       return EndRange();
    785 
    786     case kRegexpAnyByte:
    787       return ByteRange(0x00, 0xFF, false);
    788 
    789     case kRegexpCharClass: {
    790       CharClass* cc = re->cc();
    791       if (cc->empty()) {
    792         // This can't happen.
    793         LOG(DFATAL) << "No ranges in char class";
    794         failed_ = true;
    795         return NoMatch();
    796       }
    797 
    798       // ASCII case-folding optimization: if the char class
    799       // behaves the same on A-Z as it does on a-z,
    800       // discard any ranges wholly contained in A-Z
    801       // and mark the other ranges as foldascii.
    802       // This reduces the size of a program for
    803       // (?i)abc from 3 insts per letter to 1 per letter.
    804       bool foldascii = cc->FoldsASCII();
    805 
    806       // Character class is just a big OR of the different
    807       // character ranges in the class.
    808       BeginRange();
    809       for (CharClass::iterator i = cc->begin(); i != cc->end(); ++i) {
    810         // ASCII case-folding optimization (see above).
    811         if (foldascii && 'A' <= i->lo && i->hi <= 'Z')
    812           continue;
    813 
    814         // If this range contains all of A-Za-z or none of it,
    815         // the fold flag is unnecessary; don't bother.
    816         bool fold = foldascii;
    817         if ((i->lo <= 'A' && 'z' <= i->hi) || i->hi < 'A' || 'z' < i->lo)
    818           fold = false;
    819 
    820         AddRuneRange(i->lo, i->hi, fold);
    821       }
    822       return EndRange();
    823     }
    824 
    825     case kRegexpCapture:
    826       // If this is a non-capturing parenthesis -- (?:foo) --
    827       // just use the inner expression.
    828       if (re->cap() < 0)
    829         return child_frags[0];
    830       return Capture(child_frags[0], re->cap());
    831 
    832     case kRegexpBeginLine:
    833       return EmptyWidth(reversed_ ? kEmptyEndLine : kEmptyBeginLine);
    834 
    835     case kRegexpEndLine:
    836       return EmptyWidth(reversed_ ? kEmptyBeginLine : kEmptyEndLine);
    837 
    838     case kRegexpBeginText:
    839       return EmptyWidth(reversed_ ? kEmptyEndText : kEmptyBeginText);
    840 
    841     case kRegexpEndText:
    842       return EmptyWidth(reversed_ ? kEmptyBeginText : kEmptyEndText);
    843 
    844     case kRegexpWordBoundary:
    845       return EmptyWidth(kEmptyWordBoundary);
    846 
    847     case kRegexpNoWordBoundary:
    848       return EmptyWidth(kEmptyNonWordBoundary);
    849   }
    850   LOG(DFATAL) << "Missing case in Compiler: " << re->op();
    851   failed_ = true;
    852   return NoMatch();
    853 }
    854 
    855 // Is this regexp required to start at the beginning of the text?
    856 // Only approximate; can return false for complicated regexps like (\Aa|\Ab),
    857 // but handles (\A(a|b)).  Could use the Walker to write a more exact one.
    858 static bool IsAnchorStart(Regexp** pre, int depth) {
    859   Regexp* re = *pre;
    860   Regexp* sub;
    861   // The depth limit makes sure that we don't overflow
    862   // the stack on a deeply nested regexp.  As the comment
    863   // above says, IsAnchorStart is conservative, so returning
    864   // a false negative is okay.  The exact limit is somewhat arbitrary.
    865   if (re == NULL || depth >= 4)
    866     return false;
    867   switch (re->op()) {
    868     default:
    869       break;
    870     case kRegexpConcat:
    871       if (re->nsub() > 0) {
    872         sub = re->sub()[0]->Incref();
    873         if (IsAnchorStart(&sub, depth+1)) {
    874           Regexp** subcopy = new Regexp*[re->nsub()];
    875           subcopy[0] = sub;  // already have reference
    876           for (int i = 1; i < re->nsub(); i++)
    877             subcopy[i] = re->sub()[i]->Incref();
    878           *pre = Regexp::Concat(subcopy, re->nsub(), re->parse_flags());
    879           delete[] subcopy;
    880           re->Decref();
    881           return true;
    882         }
    883         sub->Decref();
    884       }
    885       break;
    886     case kRegexpCapture:
    887       sub = re->sub()[0]->Incref();
    888       if (IsAnchorStart(&sub, depth+1)) {
    889         *pre = Regexp::Capture(sub, re->parse_flags(), re->cap());
    890         re->Decref();
    891         return true;
    892       }
    893       sub->Decref();
    894       break;
    895     case kRegexpBeginText:
    896       *pre = Regexp::LiteralString(NULL, 0, re->parse_flags());
    897       re->Decref();
    898       return true;
    899   }
    900   return false;
    901 }
    902 
    903 // Is this regexp required to start at the end of the text?
    904 // Only approximate; can return false for complicated regexps like (a\z|b\z),
    905 // but handles ((a|b)\z).  Could use the Walker to write a more exact one.
    906 static bool IsAnchorEnd(Regexp** pre, int depth) {
    907   Regexp* re = *pre;
    908   Regexp* sub;
    909   // The depth limit makes sure that we don't overflow
    910   // the stack on a deeply nested regexp.  As the comment
    911   // above says, IsAnchorEnd is conservative, so returning
    912   // a false negative is okay.  The exact limit is somewhat arbitrary.
    913   if (re == NULL || depth >= 4)
    914     return false;
    915   switch (re->op()) {
    916     default:
    917       break;
    918     case kRegexpConcat:
    919       if (re->nsub() > 0) {
    920         sub = re->sub()[re->nsub() - 1]->Incref();
    921         if (IsAnchorEnd(&sub, depth+1)) {
    922           Regexp** subcopy = new Regexp*[re->nsub()];
    923           subcopy[re->nsub() - 1] = sub;  // already have reference
    924           for (int i = 0; i < re->nsub() - 1; i++)
    925             subcopy[i] = re->sub()[i]->Incref();
    926           *pre = Regexp::Concat(subcopy, re->nsub(), re->parse_flags());
    927           delete[] subcopy;
    928           re->Decref();
    929           return true;
    930         }
    931         sub->Decref();
    932       }
    933       break;
    934     case kRegexpCapture:
    935       sub = re->sub()[0]->Incref();
    936       if (IsAnchorEnd(&sub, depth+1)) {
    937         *pre = Regexp::Capture(sub, re->parse_flags(), re->cap());
    938         re->Decref();
    939         return true;
    940       }
    941       sub->Decref();
    942       break;
    943     case kRegexpEndText:
    944       *pre = Regexp::LiteralString(NULL, 0, re->parse_flags());
    945       re->Decref();
    946       return true;
    947   }
    948   return false;
    949 }
    950 
    951 void Compiler::Setup(Regexp::ParseFlags flags, int64 max_mem,
    952                      RE2::Anchor anchor) {
    953   prog_->set_flags(flags);
    954 
    955   if (flags & Regexp::Latin1)
    956     encoding_ = kEncodingLatin1;
    957   max_mem_ = max_mem;
    958   if (max_mem <= 0) {
    959     max_inst_ = 100000;  // more than enough
    960   } else if (max_mem <= sizeof(Prog)) {
    961     // No room for anything.
    962     max_inst_ = 0;
    963   } else {
    964     int64 m = (max_mem - sizeof(Prog)) / sizeof(Prog::Inst);
    965     // Limit instruction count so that inst->id() fits nicely in an int.
    966     // SparseArray also assumes that the indices (inst->id()) are ints.
    967     // The call to WalkExponential uses 2*max_inst_ below,
    968     // and other places in the code use 2 or 3 * prog->size().
    969     // Limiting to 2^24 should avoid overflow in those places.
    970     // (The point of allowing more than 32 bits of memory is to
    971     // have plenty of room for the DFA states, not to use it up
    972     // on the program.)
    973     if (m >= 1<<24)
    974       m = 1<<24;
    975 
    976     // Inst imposes its own limit (currently bigger than 2^24 but be safe).
    977     if (m > Prog::Inst::kMaxInst)
    978       m = Prog::Inst::kMaxInst;
    979 
    980     max_inst_ = m;
    981   }
    982 
    983   anchor_ = anchor;
    984 }
    985 
    986 // Compiles re, returning program.
    987 // Caller is responsible for deleting prog_.
    988 // If reversed is true, compiles a program that expects
    989 // to run over the input string backward (reverses all concatenations).
    990 // The reversed flag is also recorded in the returned program.
    991 Prog* Compiler::Compile(Regexp* re, bool reversed, int64 max_mem) {
    992   Compiler c;
    993 
    994   c.Setup(re->parse_flags(), max_mem, RE2::ANCHOR_BOTH /* unused */);
    995   c.reversed_ = reversed;
    996 
    997   // Simplify to remove things like counted repetitions
    998   // and character classes like \d.
    999   Regexp* sre = re->Simplify();
   1000   if (sre == NULL)
   1001     return NULL;
   1002 
   1003   // Record whether prog is anchored, removing the anchors.
   1004   // (They get in the way of other optimizations.)
   1005   bool is_anchor_start = IsAnchorStart(&sre, 0);
   1006   bool is_anchor_end = IsAnchorEnd(&sre, 0);
   1007 
   1008   // Generate fragment for entire regexp.
   1009   Frag f = c.WalkExponential(sre, kNullFrag, 2*c.max_inst_);
   1010   sre->Decref();
   1011   if (c.failed_)
   1012     return NULL;
   1013 
   1014   // Success!  Finish by putting Match node at end, and record start.
   1015   // Turn off c.reversed_ (if it is set) to force the remaining concatenations
   1016   // to behave normally.
   1017   c.reversed_ = false;
   1018   Frag all = c.Cat(f, c.Match(0));
   1019   c.prog_->set_start(all.begin);
   1020 
   1021   if (reversed) {
   1022     c.prog_->set_anchor_start(is_anchor_end);
   1023     c.prog_->set_anchor_end(is_anchor_start);
   1024   } else {
   1025     c.prog_->set_anchor_start(is_anchor_start);
   1026     c.prog_->set_anchor_end(is_anchor_end);
   1027   }
   1028 
   1029   // Also create unanchored version, which starts with a .*? loop.
   1030   if (c.prog_->anchor_start()) {
   1031     c.prog_->set_start_unanchored(c.prog_->start());
   1032   } else {
   1033     Frag unanchored = c.Cat(c.DotStar(), all);
   1034     c.prog_->set_start_unanchored(unanchored.begin);
   1035   }
   1036 
   1037   c.prog_->set_reversed(reversed);
   1038 
   1039   // Hand ownership of prog_ to caller.
   1040   return c.Finish();
   1041 }
   1042 
   1043 Prog* Compiler::Finish() {
   1044   if (failed_)
   1045     return NULL;
   1046 
   1047   if (prog_->start() == 0 && prog_->start_unanchored() == 0) {
   1048     // No possible matches; keep Fail instruction only.
   1049     inst_len_ = 1;
   1050   }
   1051 
   1052   // Trim instruction to minimum array and transfer to Prog.
   1053   Trim();
   1054   prog_->inst_ = inst_;
   1055   prog_->size_ = inst_len_;
   1056   inst_ = NULL;
   1057 
   1058   // Compute byte map.
   1059   prog_->ComputeByteMap();
   1060 
   1061   prog_->Optimize();
   1062 
   1063   // Record remaining memory for DFA.
   1064   if (max_mem_ <= 0) {
   1065     prog_->set_dfa_mem(1<<20);
   1066   } else {
   1067     int64 m = max_mem_ - sizeof(Prog) - inst_len_*sizeof(Prog::Inst);
   1068     if (m < 0)
   1069       m = 0;
   1070     prog_->set_dfa_mem(m);
   1071   }
   1072 
   1073   Prog* p = prog_;
   1074   prog_ = NULL;
   1075   return p;
   1076 }
   1077 
   1078 // Converts Regexp to Prog.
   1079 Prog* Regexp::CompileToProg(int64 max_mem) {
   1080   return Compiler::Compile(this, false, max_mem);
   1081 }
   1082 
   1083 Prog* Regexp::CompileToReverseProg(int64 max_mem) {
   1084   return Compiler::Compile(this, true, max_mem);
   1085 }
   1086 
   1087 Frag Compiler::DotStar() {
   1088   return Star(ByteRange(0x00, 0xff, false), true);
   1089 }
   1090 
   1091 // Compiles RE set to Prog.
   1092 Prog* Compiler::CompileSet(const RE2::Options& options, RE2::Anchor anchor,
   1093                            Regexp* re) {
   1094   Compiler c;
   1095 
   1096   Regexp::ParseFlags pf = static_cast<Regexp::ParseFlags>(options.ParseFlags());
   1097   c.Setup(pf, options.max_mem(), anchor);
   1098 
   1099   // Compile alternation of fragments.
   1100   Frag all = c.WalkExponential(re, kNullFrag, 2*c.max_inst_);
   1101   re->Decref();
   1102   if (c.failed_)
   1103     return NULL;
   1104 
   1105   if (anchor == RE2::UNANCHORED) {
   1106     // The trailing .* was added while handling kRegexpHaveMatch.
   1107     // We just have to add the leading one.
   1108     all = c.Cat(c.DotStar(), all);
   1109   }
   1110 
   1111   c.prog_->set_start(all.begin);
   1112   c.prog_->set_start_unanchored(all.begin);
   1113   c.prog_->set_anchor_start(true);
   1114   c.prog_->set_anchor_end(true);
   1115 
   1116   Prog* prog = c.Finish();
   1117   if (prog == NULL)
   1118     return NULL;
   1119 
   1120   // Make sure DFA has enough memory to operate,
   1121   // since we're not going to fall back to the NFA.
   1122   bool failed;
   1123   StringPiece sp = "hello, world";
   1124   prog->SearchDFA(sp, sp, Prog::kAnchored, Prog::kManyMatch,
   1125                   NULL, &failed, NULL);
   1126   if (failed) {
   1127     delete prog;
   1128     return NULL;
   1129   }
   1130 
   1131   return prog;
   1132 }
   1133 
   1134 Prog* Prog::CompileSet(const RE2::Options& options, RE2::Anchor anchor,
   1135                        Regexp* re) {
   1136   return Compiler::CompileSet(options, anchor, re);
   1137 }
   1138 
   1139 }  // namespace re2
   1140