Home | History | Annotate | Download | only in util
      1 // Copyright 2006 The RE2 Authors.  All Rights Reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 // DESCRIPTION
      6 //
      7 // SparseSet<T>(m) is a set of integers in [0, m).
      8 // It requires sizeof(int)*m memory, but it provides
      9 // fast iteration through the elements in the set and fast clearing
     10 // of the set.
     11 //
     12 // Insertion and deletion are constant time operations.
     13 //
     14 // Allocating the set is a constant time operation
     15 // when memory allocation is a constant time operation.
     16 //
     17 // Clearing the set is a constant time operation (unusual!).
     18 //
     19 // Iterating through the set is an O(n) operation, where n
     20 // is the number of items in the set (not O(m)).
     21 //
     22 // The set iterator visits entries in the order they were first
     23 // inserted into the array.  It is safe to add items to the set while
     24 // using an iterator: the iterator will visit indices added to the set
     25 // during the iteration, but will not re-visit indices whose values
     26 // change after visiting.  Thus SparseSet can be a convenient
     27 // implementation of a work queue.
     28 //
     29 // The SparseSet implementation is NOT thread-safe.  It is up to the
     30 // caller to make sure only one thread is accessing the set.  (Typically
     31 // these sets are temporary values and used in situations where speed is
     32 // important.)
     33 //
     34 // The SparseSet interface does not present all the usual STL bells and
     35 // whistles.
     36 //
     37 // Implemented with reference to Briggs & Torczon, An Efficient
     38 // Representation for Sparse Sets, ACM Letters on Programming Languages
     39 // and Systems, Volume 2, Issue 1-4 (March-Dec.  1993), pp.  59-69.
     40 //
     41 // For a generalization to sparse array, see sparse_array.h.
     42 
     43 // IMPLEMENTATION
     44 //
     45 // See sparse_array.h for implementation details
     46 
     47 #ifndef RE2_UTIL_SPARSE_SET_H__
     48 #define RE2_UTIL_SPARSE_SET_H__
     49 
     50 #include "util/util.h"
     51 
     52 namespace re2 {
     53 
     54 class SparseSet {
     55  public:
     56   SparseSet()
     57     : size_(0), max_size_(0), sparse_to_dense_(NULL), dense_(NULL), valgrind_(RunningOnValgrind()) {}
     58 
     59   SparseSet(int max_size) {
     60     max_size_ = max_size;
     61     sparse_to_dense_ = new int[max_size];
     62     dense_ = new int[max_size];
     63     valgrind_ = RunningOnValgrind();
     64     // Don't need to zero the memory, but do so anyway
     65     // to appease Valgrind.
     66     if (valgrind_) {
     67       for (int i = 0; i < max_size; i++) {
     68         dense_[i] = 0xababababU;
     69         sparse_to_dense_[i] = 0xababababU;
     70       }
     71     }
     72     size_ = 0;
     73   }
     74 
     75   ~SparseSet() {
     76     delete[] sparse_to_dense_;
     77     delete[] dense_;
     78   }
     79 
     80   typedef int* iterator;
     81   typedef const int* const_iterator;
     82 
     83   int size() const { return size_; }
     84   iterator begin() { return dense_; }
     85   iterator end() { return dense_ + size_; }
     86   const_iterator begin() const { return dense_; }
     87   const_iterator end() const { return dense_ + size_; }
     88 
     89   // Change the maximum size of the array.
     90   // Invalidates all iterators.
     91   void resize(int new_max_size) {
     92     if (size_ > new_max_size)
     93       size_ = new_max_size;
     94     if (new_max_size > max_size_) {
     95       int* a = new int[new_max_size];
     96       if (sparse_to_dense_) {
     97         memmove(a, sparse_to_dense_, max_size_*sizeof a[0]);
     98         if (valgrind_) {
     99           for (int i = max_size_; i < new_max_size; i++)
    100             a[i] = 0xababababU;
    101         }
    102         delete[] sparse_to_dense_;
    103       }
    104       sparse_to_dense_ = a;
    105 
    106       a = new int[new_max_size];
    107       if (dense_) {
    108         memmove(a, dense_, size_*sizeof a[0]);
    109         if (valgrind_) {
    110           for (int i = size_; i < new_max_size; i++)
    111             a[i] = 0xababababU;
    112         }
    113         delete[] dense_;
    114       }
    115       dense_ = a;
    116     }
    117     max_size_ = new_max_size;
    118   }
    119 
    120   // Return the maximum size of the array.
    121   // Indices can be in the range [0, max_size).
    122   int max_size() const { return max_size_; }
    123 
    124   // Clear the array.
    125   void clear() { size_ = 0; }
    126 
    127   // Check whether i is in the array.
    128   bool contains(int i) const {
    129     DCHECK_GE(i, 0);
    130     DCHECK_LT(i, max_size_);
    131     if (static_cast<uint>(i) >= max_size_) {
    132       return false;
    133     }
    134     // Unsigned comparison avoids checking sparse_to_dense_[i] < 0.
    135     return (uint)sparse_to_dense_[i] < (uint)size_ &&
    136       dense_[sparse_to_dense_[i]] == i;
    137   }
    138 
    139   // Adds i to the set.
    140   void insert(int i) {
    141     if (!contains(i))
    142       insert_new(i);
    143   }
    144 
    145   // Set the value at the new index i to v.
    146   // Fast but unsafe: only use if contains(i) is false.
    147   void insert_new(int i) {
    148     if (static_cast<uint>(i) >= max_size_) {
    149       // Semantically, end() would be better here, but we already know
    150       // the user did something stupid, so begin() insulates them from
    151       // dereferencing an invalid pointer.
    152       return;
    153     }
    154     DCHECK(!contains(i));
    155     DCHECK_LT(size_, max_size_);
    156     sparse_to_dense_[i] = size_;
    157     dense_[size_] = i;
    158     size_++;
    159   }
    160 
    161   // Comparison function for sorting.
    162   // Can sort the sparse array so that future iterations
    163   // will visit indices in increasing order using
    164   // sort(arr.begin(), arr.end(), arr.less);
    165   static bool less(int a, int b) { return a < b; }
    166 
    167  private:
    168   int size_;
    169   int max_size_;
    170   int* sparse_to_dense_;
    171   int* dense_;
    172   bool valgrind_;
    173 
    174   DISALLOW_EVIL_CONSTRUCTORS(SparseSet);
    175 };
    176 
    177 }  // namespace re2
    178 
    179 #endif  // RE2_UTIL_SPARSE_SET_H__
    180