Home | History | Annotate | Download | only in gpu
      1 /*
      2  * Copyright 2011 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #include "GrPathUtils.h"
      9 
     10 #include "GrTypes.h"
     11 #include "SkGeometry.h"
     12 #include "SkMathPriv.h"
     13 
     14 SkScalar GrPathUtils::scaleToleranceToSrc(SkScalar devTol,
     15                                           const SkMatrix& viewM,
     16                                           const SkRect& pathBounds) {
     17     // In order to tesselate the path we get a bound on how much the matrix can
     18     // scale when mapping to screen coordinates.
     19     SkScalar stretch = viewM.getMaxScale();
     20     SkScalar srcTol = devTol;
     21 
     22     if (stretch < 0) {
     23         // take worst case mapRadius amoung four corners.
     24         // (less than perfect)
     25         for (int i = 0; i < 4; ++i) {
     26             SkMatrix mat;
     27             mat.setTranslate((i % 2) ? pathBounds.fLeft : pathBounds.fRight,
     28                              (i < 2) ? pathBounds.fTop : pathBounds.fBottom);
     29             mat.postConcat(viewM);
     30             stretch = SkMaxScalar(stretch, mat.mapRadius(SK_Scalar1));
     31         }
     32     }
     33     return srcTol / stretch;
     34 }
     35 
     36 static const int MAX_POINTS_PER_CURVE = 1 << 10;
     37 static const SkScalar gMinCurveTol = 0.0001f;
     38 
     39 uint32_t GrPathUtils::quadraticPointCount(const SkPoint points[],
     40                                           SkScalar tol) {
     41     if (tol < gMinCurveTol) {
     42         tol = gMinCurveTol;
     43     }
     44     SkASSERT(tol > 0);
     45 
     46     SkScalar d = points[1].distanceToLineSegmentBetween(points[0], points[2]);
     47     if (!SkScalarIsFinite(d)) {
     48         return MAX_POINTS_PER_CURVE;
     49     } else if (d <= tol) {
     50         return 1;
     51     } else {
     52         // Each time we subdivide, d should be cut in 4. So we need to
     53         // subdivide x = log4(d/tol) times. x subdivisions creates 2^(x)
     54         // points.
     55         // 2^(log4(x)) = sqrt(x);
     56         SkScalar divSqrt = SkScalarSqrt(d / tol);
     57         if (((SkScalar)SK_MaxS32) <= divSqrt) {
     58             return MAX_POINTS_PER_CURVE;
     59         } else {
     60             int temp = SkScalarCeilToInt(divSqrt);
     61             int pow2 = GrNextPow2(temp);
     62             // Because of NaNs & INFs we can wind up with a degenerate temp
     63             // such that pow2 comes out negative. Also, our point generator
     64             // will always output at least one pt.
     65             if (pow2 < 1) {
     66                 pow2 = 1;
     67             }
     68             return SkTMin(pow2, MAX_POINTS_PER_CURVE);
     69         }
     70     }
     71 }
     72 
     73 uint32_t GrPathUtils::generateQuadraticPoints(const SkPoint& p0,
     74                                               const SkPoint& p1,
     75                                               const SkPoint& p2,
     76                                               SkScalar tolSqd,
     77                                               SkPoint** points,
     78                                               uint32_t pointsLeft) {
     79     if (pointsLeft < 2 ||
     80         (p1.distanceToLineSegmentBetweenSqd(p0, p2)) < tolSqd) {
     81         (*points)[0] = p2;
     82         *points += 1;
     83         return 1;
     84     }
     85 
     86     SkPoint q[] = {
     87         { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
     88         { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
     89     };
     90     SkPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) };
     91 
     92     pointsLeft >>= 1;
     93     uint32_t a = generateQuadraticPoints(p0, q[0], r, tolSqd, points, pointsLeft);
     94     uint32_t b = generateQuadraticPoints(r, q[1], p2, tolSqd, points, pointsLeft);
     95     return a + b;
     96 }
     97 
     98 uint32_t GrPathUtils::cubicPointCount(const SkPoint points[],
     99                                            SkScalar tol) {
    100     if (tol < gMinCurveTol) {
    101         tol = gMinCurveTol;
    102     }
    103     SkASSERT(tol > 0);
    104 
    105     SkScalar d = SkTMax(
    106         points[1].distanceToLineSegmentBetweenSqd(points[0], points[3]),
    107         points[2].distanceToLineSegmentBetweenSqd(points[0], points[3]));
    108     d = SkScalarSqrt(d);
    109     if (!SkScalarIsFinite(d)) {
    110         return MAX_POINTS_PER_CURVE;
    111     } else if (d <= tol) {
    112         return 1;
    113     } else {
    114         SkScalar divSqrt = SkScalarSqrt(d / tol);
    115         if (((SkScalar)SK_MaxS32) <= divSqrt) {
    116             return MAX_POINTS_PER_CURVE;
    117         } else {
    118             int temp = SkScalarCeilToInt(SkScalarSqrt(d / tol));
    119             int pow2 = GrNextPow2(temp);
    120             // Because of NaNs & INFs we can wind up with a degenerate temp
    121             // such that pow2 comes out negative. Also, our point generator
    122             // will always output at least one pt.
    123             if (pow2 < 1) {
    124                 pow2 = 1;
    125             }
    126             return SkTMin(pow2, MAX_POINTS_PER_CURVE);
    127         }
    128     }
    129 }
    130 
    131 uint32_t GrPathUtils::generateCubicPoints(const SkPoint& p0,
    132                                           const SkPoint& p1,
    133                                           const SkPoint& p2,
    134                                           const SkPoint& p3,
    135                                           SkScalar tolSqd,
    136                                           SkPoint** points,
    137                                           uint32_t pointsLeft) {
    138     if (pointsLeft < 2 ||
    139         (p1.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd &&
    140          p2.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd)) {
    141         (*points)[0] = p3;
    142         *points += 1;
    143         return 1;
    144     }
    145     SkPoint q[] = {
    146         { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
    147         { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
    148         { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
    149     };
    150     SkPoint r[] = {
    151         { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
    152         { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
    153     };
    154     SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
    155     pointsLeft >>= 1;
    156     uint32_t a = generateCubicPoints(p0, q[0], r[0], s, tolSqd, points, pointsLeft);
    157     uint32_t b = generateCubicPoints(s, r[1], q[2], p3, tolSqd, points, pointsLeft);
    158     return a + b;
    159 }
    160 
    161 int GrPathUtils::worstCasePointCount(const SkPath& path, int* subpaths,
    162                                      SkScalar tol) {
    163     if (tol < gMinCurveTol) {
    164         tol = gMinCurveTol;
    165     }
    166     SkASSERT(tol > 0);
    167 
    168     int pointCount = 0;
    169     *subpaths = 1;
    170 
    171     bool first = true;
    172 
    173     SkPath::Iter iter(path, false);
    174     SkPath::Verb verb;
    175 
    176     SkPoint pts[4];
    177     while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
    178 
    179         switch (verb) {
    180             case SkPath::kLine_Verb:
    181                 pointCount += 1;
    182                 break;
    183             case SkPath::kConic_Verb: {
    184                 SkScalar weight = iter.conicWeight();
    185                 SkAutoConicToQuads converter;
    186                 const SkPoint* quadPts = converter.computeQuads(pts, weight, 0.25f);
    187                 for (int i = 0; i < converter.countQuads(); ++i) {
    188                     pointCount += quadraticPointCount(quadPts + 2*i, tol);
    189                 }
    190             }
    191             case SkPath::kQuad_Verb:
    192                 pointCount += quadraticPointCount(pts, tol);
    193                 break;
    194             case SkPath::kCubic_Verb:
    195                 pointCount += cubicPointCount(pts, tol);
    196                 break;
    197             case SkPath::kMove_Verb:
    198                 pointCount += 1;
    199                 if (!first) {
    200                     ++(*subpaths);
    201                 }
    202                 break;
    203             default:
    204                 break;
    205         }
    206         first = false;
    207     }
    208     return pointCount;
    209 }
    210 
    211 void GrPathUtils::QuadUVMatrix::set(const SkPoint qPts[3]) {
    212     SkMatrix m;
    213     // We want M such that M * xy_pt = uv_pt
    214     // We know M * control_pts = [0  1/2 1]
    215     //                           [0  0   1]
    216     //                           [1  1   1]
    217     // And control_pts = [x0 x1 x2]
    218     //                   [y0 y1 y2]
    219     //                   [1  1  1 ]
    220     // We invert the control pt matrix and post concat to both sides to get M.
    221     // Using the known form of the control point matrix and the result, we can
    222     // optimize and improve precision.
    223 
    224     double x0 = qPts[0].fX;
    225     double y0 = qPts[0].fY;
    226     double x1 = qPts[1].fX;
    227     double y1 = qPts[1].fY;
    228     double x2 = qPts[2].fX;
    229     double y2 = qPts[2].fY;
    230     double det = x0*y1 - y0*x1 + x2*y0 - y2*x0 + x1*y2 - y1*x2;
    231 
    232     if (!sk_float_isfinite(det)
    233         || SkScalarNearlyZero((float)det, SK_ScalarNearlyZero * SK_ScalarNearlyZero)) {
    234         // The quad is degenerate. Hopefully this is rare. Find the pts that are
    235         // farthest apart to compute a line (unless it is really a pt).
    236         SkScalar maxD = qPts[0].distanceToSqd(qPts[1]);
    237         int maxEdge = 0;
    238         SkScalar d = qPts[1].distanceToSqd(qPts[2]);
    239         if (d > maxD) {
    240             maxD = d;
    241             maxEdge = 1;
    242         }
    243         d = qPts[2].distanceToSqd(qPts[0]);
    244         if (d > maxD) {
    245             maxD = d;
    246             maxEdge = 2;
    247         }
    248         // We could have a tolerance here, not sure if it would improve anything
    249         if (maxD > 0) {
    250             // Set the matrix to give (u = 0, v = distance_to_line)
    251             SkVector lineVec = qPts[(maxEdge + 1)%3] - qPts[maxEdge];
    252             // when looking from the point 0 down the line we want positive
    253             // distances to be to the left. This matches the non-degenerate
    254             // case.
    255             lineVec.setOrthog(lineVec, SkPoint::kLeft_Side);
    256             // first row
    257             fM[0] = 0;
    258             fM[1] = 0;
    259             fM[2] = 0;
    260             // second row
    261             fM[3] = lineVec.fX;
    262             fM[4] = lineVec.fY;
    263             fM[5] = -lineVec.dot(qPts[maxEdge]);
    264         } else {
    265             // It's a point. It should cover zero area. Just set the matrix such
    266             // that (u, v) will always be far away from the quad.
    267             fM[0] = 0; fM[1] = 0; fM[2] = 100.f;
    268             fM[3] = 0; fM[4] = 0; fM[5] = 100.f;
    269         }
    270     } else {
    271         double scale = 1.0/det;
    272 
    273         // compute adjugate matrix
    274         double a2, a3, a4, a5, a6, a7, a8;
    275         a2 = x1*y2-x2*y1;
    276 
    277         a3 = y2-y0;
    278         a4 = x0-x2;
    279         a5 = x2*y0-x0*y2;
    280 
    281         a6 = y0-y1;
    282         a7 = x1-x0;
    283         a8 = x0*y1-x1*y0;
    284 
    285         // this performs the uv_pts*adjugate(control_pts) multiply,
    286         // then does the scale by 1/det afterwards to improve precision
    287         m[SkMatrix::kMScaleX] = (float)((0.5*a3 + a6)*scale);
    288         m[SkMatrix::kMSkewX]  = (float)((0.5*a4 + a7)*scale);
    289         m[SkMatrix::kMTransX] = (float)((0.5*a5 + a8)*scale);
    290 
    291         m[SkMatrix::kMSkewY]  = (float)(a6*scale);
    292         m[SkMatrix::kMScaleY] = (float)(a7*scale);
    293         m[SkMatrix::kMTransY] = (float)(a8*scale);
    294 
    295         // kMPersp0 & kMPersp1 should algebraically be zero
    296         m[SkMatrix::kMPersp0] = 0.0f;
    297         m[SkMatrix::kMPersp1] = 0.0f;
    298         m[SkMatrix::kMPersp2] = (float)((a2 + a5 + a8)*scale);
    299 
    300         // It may not be normalized to have 1.0 in the bottom right
    301         float m33 = m.get(SkMatrix::kMPersp2);
    302         if (1.f != m33) {
    303             m33 = 1.f / m33;
    304             fM[0] = m33 * m.get(SkMatrix::kMScaleX);
    305             fM[1] = m33 * m.get(SkMatrix::kMSkewX);
    306             fM[2] = m33 * m.get(SkMatrix::kMTransX);
    307             fM[3] = m33 * m.get(SkMatrix::kMSkewY);
    308             fM[4] = m33 * m.get(SkMatrix::kMScaleY);
    309             fM[5] = m33 * m.get(SkMatrix::kMTransY);
    310         } else {
    311             fM[0] = m.get(SkMatrix::kMScaleX);
    312             fM[1] = m.get(SkMatrix::kMSkewX);
    313             fM[2] = m.get(SkMatrix::kMTransX);
    314             fM[3] = m.get(SkMatrix::kMSkewY);
    315             fM[4] = m.get(SkMatrix::kMScaleY);
    316             fM[5] = m.get(SkMatrix::kMTransY);
    317         }
    318     }
    319 }
    320 
    321 ////////////////////////////////////////////////////////////////////////////////
    322 
    323 // k = (y2 - y0, x0 - x2, x2*y0 - x0*y2)
    324 // l = (y1 - y0, x0 - x1, x1*y0 - x0*y1) * 2*w
    325 // m = (y2 - y1, x1 - x2, x2*y1 - x1*y2) * 2*w
    326 void GrPathUtils::getConicKLM(const SkPoint p[3], const SkScalar weight, SkMatrix* out) {
    327     SkMatrix& klm = *out;
    328     const SkScalar w2 = 2.f * weight;
    329     klm[0] = p[2].fY - p[0].fY;
    330     klm[1] = p[0].fX - p[2].fX;
    331     klm[2] = p[2].fX * p[0].fY - p[0].fX * p[2].fY;
    332 
    333     klm[3] = w2 * (p[1].fY - p[0].fY);
    334     klm[4] = w2 * (p[0].fX - p[1].fX);
    335     klm[5] = w2 * (p[1].fX * p[0].fY - p[0].fX * p[1].fY);
    336 
    337     klm[6] = w2 * (p[2].fY - p[1].fY);
    338     klm[7] = w2 * (p[1].fX - p[2].fX);
    339     klm[8] = w2 * (p[2].fX * p[1].fY - p[1].fX * p[2].fY);
    340 
    341     // scale the max absolute value of coeffs to 10
    342     SkScalar scale = 0.f;
    343     for (int i = 0; i < 9; ++i) {
    344        scale = SkMaxScalar(scale, SkScalarAbs(klm[i]));
    345     }
    346     SkASSERT(scale > 0.f);
    347     scale = 10.f / scale;
    348     for (int i = 0; i < 9; ++i) {
    349         klm[i] *= scale;
    350     }
    351 }
    352 
    353 ////////////////////////////////////////////////////////////////////////////////
    354 
    355 namespace {
    356 
    357 // a is the first control point of the cubic.
    358 // ab is the vector from a to the second control point.
    359 // dc is the vector from the fourth to the third control point.
    360 // d is the fourth control point.
    361 // p is the candidate quadratic control point.
    362 // this assumes that the cubic doesn't inflect and is simple
    363 bool is_point_within_cubic_tangents(const SkPoint& a,
    364                                     const SkVector& ab,
    365                                     const SkVector& dc,
    366                                     const SkPoint& d,
    367                                     SkPathPriv::FirstDirection dir,
    368                                     const SkPoint p) {
    369     SkVector ap = p - a;
    370     SkScalar apXab = ap.cross(ab);
    371     if (SkPathPriv::kCW_FirstDirection == dir) {
    372         if (apXab > 0) {
    373             return false;
    374         }
    375     } else {
    376         SkASSERT(SkPathPriv::kCCW_FirstDirection == dir);
    377         if (apXab < 0) {
    378             return false;
    379         }
    380     }
    381 
    382     SkVector dp = p - d;
    383     SkScalar dpXdc = dp.cross(dc);
    384     if (SkPathPriv::kCW_FirstDirection == dir) {
    385         if (dpXdc < 0) {
    386             return false;
    387         }
    388     } else {
    389         SkASSERT(SkPathPriv::kCCW_FirstDirection == dir);
    390         if (dpXdc > 0) {
    391             return false;
    392         }
    393     }
    394     return true;
    395 }
    396 
    397 void convert_noninflect_cubic_to_quads(const SkPoint p[4],
    398                                        SkScalar toleranceSqd,
    399                                        bool constrainWithinTangents,
    400                                        SkPathPriv::FirstDirection dir,
    401                                        SkTArray<SkPoint, true>* quads,
    402                                        int sublevel = 0) {
    403 
    404     // Notation: Point a is always p[0]. Point b is p[1] unless p[1] == p[0], in which case it is
    405     // p[2]. Point d is always p[3]. Point c is p[2] unless p[2] == p[3], in which case it is p[1].
    406 
    407     SkVector ab = p[1] - p[0];
    408     SkVector dc = p[2] - p[3];
    409 
    410     if (ab.lengthSqd() < SK_ScalarNearlyZero) {
    411         if (dc.lengthSqd() < SK_ScalarNearlyZero) {
    412             SkPoint* degQuad = quads->push_back_n(3);
    413             degQuad[0] = p[0];
    414             degQuad[1] = p[0];
    415             degQuad[2] = p[3];
    416             return;
    417         }
    418         ab = p[2] - p[0];
    419     }
    420     if (dc.lengthSqd() < SK_ScalarNearlyZero) {
    421         dc = p[1] - p[3];
    422     }
    423 
    424     // When the ab and cd tangents are degenerate or nearly parallel with vector from d to a the
    425     // constraint that the quad point falls between the tangents becomes hard to enforce and we are
    426     // likely to hit the max subdivision count. However, in this case the cubic is approaching a
    427     // line and the accuracy of the quad point isn't so important. We check if the two middle cubic
    428     // control points are very close to the baseline vector. If so then we just pick quadratic
    429     // points on the control polygon.
    430 
    431     if (constrainWithinTangents) {
    432         SkVector da = p[0] - p[3];
    433         bool doQuads = dc.lengthSqd() < SK_ScalarNearlyZero ||
    434                        ab.lengthSqd() < SK_ScalarNearlyZero;
    435         if (!doQuads) {
    436             SkScalar invDALengthSqd = da.lengthSqd();
    437             if (invDALengthSqd > SK_ScalarNearlyZero) {
    438                 invDALengthSqd = SkScalarInvert(invDALengthSqd);
    439                 // cross(ab, da)^2/length(da)^2 == sqd distance from b to line from d to a.
    440                 // same goes for point c using vector cd.
    441                 SkScalar detABSqd = ab.cross(da);
    442                 detABSqd = SkScalarSquare(detABSqd);
    443                 SkScalar detDCSqd = dc.cross(da);
    444                 detDCSqd = SkScalarSquare(detDCSqd);
    445                 if (detABSqd * invDALengthSqd < toleranceSqd &&
    446                     detDCSqd * invDALengthSqd < toleranceSqd)
    447                 {
    448                     doQuads = true;
    449                 }
    450             }
    451         }
    452         if (doQuads) {
    453             SkPoint b = p[0] + ab;
    454             SkPoint c = p[3] + dc;
    455             SkPoint mid = b + c;
    456             mid.scale(SK_ScalarHalf);
    457             // Insert two quadratics to cover the case when ab points away from d and/or dc
    458             // points away from a.
    459             if (SkVector::DotProduct(da, dc) < 0 || SkVector::DotProduct(ab,da) > 0) {
    460                 SkPoint* qpts = quads->push_back_n(6);
    461                 qpts[0] = p[0];
    462                 qpts[1] = b;
    463                 qpts[2] = mid;
    464                 qpts[3] = mid;
    465                 qpts[4] = c;
    466                 qpts[5] = p[3];
    467             } else {
    468                 SkPoint* qpts = quads->push_back_n(3);
    469                 qpts[0] = p[0];
    470                 qpts[1] = mid;
    471                 qpts[2] = p[3];
    472             }
    473             return;
    474         }
    475     }
    476 
    477     static const SkScalar kLengthScale = 3 * SK_Scalar1 / 2;
    478     static const int kMaxSubdivs = 10;
    479 
    480     ab.scale(kLengthScale);
    481     dc.scale(kLengthScale);
    482 
    483     // e0 and e1 are extrapolations along vectors ab and dc.
    484     SkVector c0 = p[0];
    485     c0 += ab;
    486     SkVector c1 = p[3];
    487     c1 += dc;
    488 
    489     SkScalar dSqd = sublevel > kMaxSubdivs ? 0 : c0.distanceToSqd(c1);
    490     if (dSqd < toleranceSqd) {
    491         SkPoint cAvg = c0;
    492         cAvg += c1;
    493         cAvg.scale(SK_ScalarHalf);
    494 
    495         bool subdivide = false;
    496 
    497         if (constrainWithinTangents &&
    498             !is_point_within_cubic_tangents(p[0], ab, dc, p[3], dir, cAvg)) {
    499             // choose a new cAvg that is the intersection of the two tangent lines.
    500             ab.setOrthog(ab);
    501             SkScalar z0 = -ab.dot(p[0]);
    502             dc.setOrthog(dc);
    503             SkScalar z1 = -dc.dot(p[3]);
    504             cAvg.fX = ab.fY * z1 - z0 * dc.fY;
    505             cAvg.fY = z0 * dc.fX - ab.fX * z1;
    506             SkScalar z = ab.fX * dc.fY - ab.fY * dc.fX;
    507             z = SkScalarInvert(z);
    508             cAvg.fX *= z;
    509             cAvg.fY *= z;
    510             if (sublevel <= kMaxSubdivs) {
    511                 SkScalar d0Sqd = c0.distanceToSqd(cAvg);
    512                 SkScalar d1Sqd = c1.distanceToSqd(cAvg);
    513                 // We need to subdivide if d0 + d1 > tolerance but we have the sqd values. We know
    514                 // the distances and tolerance can't be negative.
    515                 // (d0 + d1)^2 > toleranceSqd
    516                 // d0Sqd + 2*d0*d1 + d1Sqd > toleranceSqd
    517                 SkScalar d0d1 = SkScalarSqrt(d0Sqd * d1Sqd);
    518                 subdivide = 2 * d0d1 + d0Sqd + d1Sqd > toleranceSqd;
    519             }
    520         }
    521         if (!subdivide) {
    522             SkPoint* pts = quads->push_back_n(3);
    523             pts[0] = p[0];
    524             pts[1] = cAvg;
    525             pts[2] = p[3];
    526             return;
    527         }
    528     }
    529     SkPoint choppedPts[7];
    530     SkChopCubicAtHalf(p, choppedPts);
    531     convert_noninflect_cubic_to_quads(choppedPts + 0,
    532                                       toleranceSqd,
    533                                       constrainWithinTangents,
    534                                       dir,
    535                                       quads,
    536                                       sublevel + 1);
    537     convert_noninflect_cubic_to_quads(choppedPts + 3,
    538                                       toleranceSqd,
    539                                       constrainWithinTangents,
    540                                       dir,
    541                                       quads,
    542                                       sublevel + 1);
    543 }
    544 }
    545 
    546 void GrPathUtils::convertCubicToQuads(const SkPoint p[4],
    547                                       SkScalar tolScale,
    548                                       SkTArray<SkPoint, true>* quads) {
    549     SkPoint chopped[10];
    550     int count = SkChopCubicAtInflections(p, chopped);
    551 
    552     const SkScalar tolSqd = SkScalarSquare(tolScale);
    553 
    554     for (int i = 0; i < count; ++i) {
    555         SkPoint* cubic = chopped + 3*i;
    556         // The direction param is ignored if the third param is false.
    557         convert_noninflect_cubic_to_quads(cubic, tolSqd, false,
    558                                           SkPathPriv::kCCW_FirstDirection, quads);
    559     }
    560 }
    561 
    562 void GrPathUtils::convertCubicToQuadsConstrainToTangents(const SkPoint p[4],
    563                                                          SkScalar tolScale,
    564                                                          SkPathPriv::FirstDirection dir,
    565                                                          SkTArray<SkPoint, true>* quads) {
    566     SkPoint chopped[10];
    567     int count = SkChopCubicAtInflections(p, chopped);
    568 
    569     const SkScalar tolSqd = SkScalarSquare(tolScale);
    570 
    571     for (int i = 0; i < count; ++i) {
    572         SkPoint* cubic = chopped + 3*i;
    573         convert_noninflect_cubic_to_quads(cubic, tolSqd, true, dir, quads);
    574     }
    575 }
    576 
    577 ////////////////////////////////////////////////////////////////////////////////
    578 
    579 /**
    580  * Computes an SkMatrix that can find the cubic KLM functionals as follows:
    581  *
    582  *     | ..K.. |   | ..kcoeffs.. |
    583  *     | ..L.. | = | ..lcoeffs.. | * inverse_transpose_power_basis_matrix
    584  *     | ..M.. |   | ..mcoeffs.. |
    585  *
    586  * 'kcoeffs' are the power basis coefficients to a scalar valued cubic function that returns the
    587  * signed distance to line K from a given point on the curve:
    588  *
    589  *     k(t,s) = C(t,s) * K   [C(t,s) is defined in the following comment]
    590  *
    591  * The same applies for lcoeffs and mcoeffs. These are found separately, depending on the type of
    592  * curve. There are 4 coefficients but 3 rows in the matrix, so in order to do this calculation the
    593  * caller must first remove a specific column of coefficients.
    594  *
    595  * @return which column of klm coefficients to exclude from the calculation.
    596  */
    597 static int calc_inverse_transpose_power_basis_matrix(const SkPoint pts[4], SkMatrix* out) {
    598     using SkScalar4 = SkNx<4, SkScalar>;
    599 
    600     // First we convert the bezier coordinates 'pts' to power basis coefficients X,Y,W=[0 0 0 1].
    601     // M3 is the matrix that does this conversion. The homogeneous equation for the cubic becomes:
    602     //
    603     //                                     | X   Y   0 |
    604     // C(t,s) = [t^3  t^2*s  t*s^2  s^3] * | .   .   0 |
    605     //                                     | .   .   0 |
    606     //                                     | .   .   1 |
    607     //
    608     const SkScalar4 M3[3] = {SkScalar4(-1, 3, -3, 1),
    609                              SkScalar4(3, -6, 3, 0),
    610                              SkScalar4(-3, 3, 0, 0)};
    611     // 4th column of M3   =  SkScalar4(1, 0, 0, 0)};
    612     SkScalar4 X(pts[3].x(), 0, 0, 0);
    613     SkScalar4 Y(pts[3].y(), 0, 0, 0);
    614     for (int i = 2; i >= 0; --i) {
    615         X += M3[i] * pts[i].x();
    616         Y += M3[i] * pts[i].y();
    617     }
    618 
    619     // The matrix is 3x4. In order to invert it, we first need to make it square by throwing out one
    620     // of the top three rows. We toss the row that leaves us with the largest determinant. Since the
    621     // right column will be [0 0 1], the determinant reduces to x0*y1 - y0*x1.
    622     SkScalar det[4];
    623     SkScalar4 DETX1 = SkNx_shuffle<1,0,0,3>(X), DETY1 = SkNx_shuffle<1,0,0,3>(Y);
    624     SkScalar4 DETX2 = SkNx_shuffle<2,2,1,3>(X), DETY2 = SkNx_shuffle<2,2,1,3>(Y);
    625     (DETX1 * DETY2 - DETY1 * DETX2).store(det);
    626     const int skipRow = det[0] > det[2] ? (det[0] > det[1] ? 0 : 1)
    627                                         : (det[1] > det[2] ? 1 : 2);
    628     const SkScalar rdet = 1 / det[skipRow];
    629     const int row0 = (0 != skipRow) ? 0 : 1;
    630     const int row1 = (2 == skipRow) ? 1 : 2;
    631 
    632     // Compute the inverse-transpose of the power basis matrix with the 'skipRow'th row removed.
    633     // Since W=[0 0 0 1], it follows that our corresponding solution will be equal to:
    634     //
    635     //             |  y1  -x1   x1*y2 - y1*x2 |
    636     //     1/det * | -y0   x0  -x0*y2 + y0*x2 |
    637     //             |   0    0             det |
    638     //
    639     const SkScalar4 R(rdet, rdet, rdet, 1);
    640     X *= R;
    641     Y *= R;
    642 
    643     SkScalar x[4], y[4], z[4];
    644     X.store(x);
    645     Y.store(y);
    646     (X * SkNx_shuffle<3,3,3,3>(Y) - Y * SkNx_shuffle<3,3,3,3>(X)).store(z);
    647 
    648     out->setAll( y[row1], -x[row1],  z[row1],
    649                 -y[row0],  x[row0], -z[row0],
    650                        0,        0,        1);
    651 
    652     return skipRow;
    653 }
    654 
    655 static void negate_kl(SkMatrix* klm) {
    656     // We could use klm->postScale(-1, -1), but it ends up doing a full matrix multiply.
    657     for (int i = 0; i < 6; ++i) {
    658         (*klm)[i] = -(*klm)[i];
    659     }
    660 }
    661 
    662 static void calc_serp_klm(const SkPoint pts[4], const SkScalar d[3], SkMatrix* klm) {
    663     SkMatrix CIT;
    664     int skipCol = calc_inverse_transpose_power_basis_matrix(pts, &CIT);
    665 
    666     const SkScalar root = SkScalarSqrt(9 * d[1] * d[1] - 12 * d[0] * d[2]);
    667 
    668     const SkScalar tl = 3 * d[1] + root;
    669     const SkScalar sl = 6 * d[0];
    670     const SkScalar tm = 3 * d[1] - root;
    671     const SkScalar sm = 6 * d[0];
    672 
    673     SkMatrix klmCoeffs;
    674     int col = 0;
    675     if (0 != skipCol) {
    676         klmCoeffs[0] = 0;
    677         klmCoeffs[3] = -sl * sl * sl;
    678         klmCoeffs[6] = -sm * sm * sm;
    679         ++col;
    680     }
    681     if (1 != skipCol) {
    682         klmCoeffs[col + 0] = sl * sm;
    683         klmCoeffs[col + 3] = 3 * sl * sl * tl;
    684         klmCoeffs[col + 6] = 3 * sm * sm * tm;
    685         ++col;
    686     }
    687     if (2 != skipCol) {
    688         klmCoeffs[col + 0] = -tl * sm - tm * sl;
    689         klmCoeffs[col + 3] = -3 * sl * tl * tl;
    690         klmCoeffs[col + 6] = -3 * sm * tm * tm;
    691         ++col;
    692     }
    693 
    694     SkASSERT(2 == col);
    695     klmCoeffs[2] = tl * tm;
    696     klmCoeffs[5] = tl * tl * tl;
    697     klmCoeffs[8] = tm * tm * tm;
    698 
    699     klm->setConcat(klmCoeffs, CIT);
    700 
    701     // If d0 > 0 we need to flip the orientation of our curve
    702     // This is done by negating the k and l values
    703     // We want negative distance values to be on the inside
    704     if (d[0] > 0) {
    705         negate_kl(klm);
    706     }
    707 }
    708 
    709 static void calc_loop_klm(const SkPoint pts[4], SkScalar d1, SkScalar td, SkScalar sd,
    710                           SkScalar te, SkScalar se, SkMatrix* klm) {
    711     SkMatrix CIT;
    712     int skipCol = calc_inverse_transpose_power_basis_matrix(pts, &CIT);
    713 
    714     const SkScalar tesd = te * sd;
    715     const SkScalar tdse = td * se;
    716 
    717     SkMatrix klmCoeffs;
    718     int col = 0;
    719     if (0 != skipCol) {
    720         klmCoeffs[0] = 0;
    721         klmCoeffs[3] = -sd * sd * se;
    722         klmCoeffs[6] = -se * se * sd;
    723         ++col;
    724     }
    725     if (1 != skipCol) {
    726         klmCoeffs[col + 0] = sd * se;
    727         klmCoeffs[col + 3] = sd * (2 * tdse + tesd);
    728         klmCoeffs[col + 6] = se * (2 * tesd + tdse);
    729         ++col;
    730     }
    731     if (2 != skipCol) {
    732         klmCoeffs[col + 0] = -tdse - tesd;
    733         klmCoeffs[col + 3] = -td * (tdse + 2 * tesd);
    734         klmCoeffs[col + 6] = -te * (tesd + 2 * tdse);
    735         ++col;
    736     }
    737 
    738     SkASSERT(2 == col);
    739     klmCoeffs[2] = td * te;
    740     klmCoeffs[5] = td * td * te;
    741     klmCoeffs[8] = te * te * td;
    742 
    743     klm->setConcat(klmCoeffs, CIT);
    744 
    745     // For the general loop curve, we flip the orientation in the same pattern as the serp case
    746     // above. Thus we only check d1. Technically we should check the value of the hessian as well
    747     // cause we care about the sign of d1*Hessian. However, the Hessian is always negative outside
    748     // the loop section and positive inside. We take care of the flipping for the loop sections
    749     // later on.
    750     if (d1 > 0) {
    751         negate_kl(klm);
    752     }
    753 }
    754 
    755 // For the case when we have a cusp at a parameter value of infinity (discr == 0, d1 == 0).
    756 static void calc_inf_cusp_klm(const SkPoint pts[4], SkScalar d2, SkScalar d3, SkMatrix* klm) {
    757     SkMatrix CIT;
    758     int skipCol = calc_inverse_transpose_power_basis_matrix(pts, &CIT);
    759 
    760     const SkScalar tn = d3;
    761     const SkScalar sn = 3 * d2;
    762 
    763     SkMatrix klmCoeffs;
    764     int col = 0;
    765     if (0 != skipCol) {
    766         klmCoeffs[0] = 0;
    767         klmCoeffs[3] = -sn * sn * sn;
    768         ++col;
    769     }
    770     if (1 != skipCol) {
    771         klmCoeffs[col + 0] = 0;
    772         klmCoeffs[col + 3] = 3 * sn * sn * tn;
    773         ++col;
    774     }
    775     if (2 != skipCol) {
    776         klmCoeffs[col + 0] = -sn;
    777         klmCoeffs[col + 3] = -3 * sn * tn * tn;
    778         ++col;
    779     }
    780 
    781     SkASSERT(2 == col);
    782     klmCoeffs[2] = tn;
    783     klmCoeffs[5] = tn * tn * tn;
    784 
    785     klmCoeffs[6] = 0;
    786     klmCoeffs[7] = 0;
    787     klmCoeffs[8] = 1;
    788 
    789     klm->setConcat(klmCoeffs, CIT);
    790 }
    791 
    792 // For the case when a cubic bezier is actually a quadratic. We duplicate k in l so that the
    793 // implicit becomes:
    794 //
    795 //     k^3 - l*m == k^3 - l*k == k * (k^2 - l)
    796 //
    797 // In the quadratic case we can simply assign fixed values at each control point:
    798 //
    799 //     | ..K.. |     | pts[0]  pts[1]  pts[2]  pts[3] |      | 0   1/3  2/3  1 |
    800 //     | ..L.. |  *  |   .       .       .       .    |  ==  | 0     0  1/3  1 |
    801 //     | ..K.. |     |   1       1       1       1    |      | 0   1/3  2/3  1 |
    802 //
    803 static void calc_quadratic_klm(const SkPoint pts[4], SkScalar d3, SkMatrix* klm) {
    804     SkMatrix klmAtPts;
    805     klmAtPts.setAll(0,  1.f/3,  1,
    806                     0,      0,  1,
    807                     0,  1.f/3,  1);
    808 
    809     SkMatrix inversePts;
    810     inversePts.setAll(pts[0].x(),  pts[1].x(),  pts[3].x(),
    811                       pts[0].y(),  pts[1].y(),  pts[3].y(),
    812                                1,           1,           1);
    813     SkAssertResult(inversePts.invert(&inversePts));
    814 
    815     klm->setConcat(klmAtPts, inversePts);
    816 
    817     // If d3 > 0 we need to flip the orientation of our curve
    818     // This is done by negating the k and l values
    819     if (d3 > 0) {
    820         negate_kl(klm);
    821     }
    822 }
    823 
    824 // For the case when a cubic bezier is actually a line. We set K=0, L=1, M=-line, which results in
    825 // the following implicit:
    826 //
    827 //     k^3 - l*m == 0^3 - 1*(-line) == -(-line) == line
    828 //
    829 static void calc_line_klm(const SkPoint pts[4], SkMatrix* klm) {
    830     SkScalar ny = pts[0].x() - pts[3].x();
    831     SkScalar nx = pts[3].y() - pts[0].y();
    832     SkScalar k = nx * pts[0].x() + ny * pts[0].y();
    833     klm->setAll(  0,   0, 0,
    834                   0,   0, 1,
    835                 -nx, -ny, k);
    836 }
    837 
    838 int GrPathUtils::chopCubicAtLoopIntersection(const SkPoint src[4], SkPoint dst[10], SkMatrix* klm,
    839                                              int* loopIndex) {
    840     // Variables to store the two parametric values at the loop double point.
    841     SkScalar t1 = 0, t2 = 0;
    842 
    843     // Homogeneous parametric values at the loop double point.
    844     SkScalar td, sd, te, se;
    845 
    846     SkScalar d[3];
    847     SkCubicType cType = SkClassifyCubic(src, d);
    848 
    849     int chop_count = 0;
    850     if (kLoop_SkCubicType == cType) {
    851         SkScalar tempSqrt = SkScalarSqrt(4.f * d[0] * d[2] - 3.f * d[1] * d[1]);
    852         td = d[1] + tempSqrt;
    853         sd = 2.f * d[0];
    854         te = d[1] - tempSqrt;
    855         se = 2.f * d[0];
    856 
    857         t1 = td / sd;
    858         t2 = te / se;
    859         // need to have t values sorted since this is what is expected by SkChopCubicAt
    860         if (t1 > t2) {
    861             SkTSwap(t1, t2);
    862         }
    863 
    864         SkScalar chop_ts[2];
    865         if (t1 > 0.f && t1 < 1.f) {
    866             chop_ts[chop_count++] = t1;
    867         }
    868         if (t2 > 0.f && t2 < 1.f) {
    869             chop_ts[chop_count++] = t2;
    870         }
    871         if(dst) {
    872             SkChopCubicAt(src, dst, chop_ts, chop_count);
    873         }
    874     } else {
    875         if (dst) {
    876             memcpy(dst, src, sizeof(SkPoint) * 4);
    877         }
    878     }
    879 
    880     if (loopIndex) {
    881         if (2 == chop_count) {
    882             *loopIndex = 1;
    883         } else if (1 == chop_count) {
    884             if (t1 < 0.f) {
    885                 *loopIndex = 0;
    886             } else {
    887                 *loopIndex = 1;
    888             }
    889         } else {
    890             if (t1 < 0.f && t2 > 1.f) {
    891                 *loopIndex = 0;
    892             } else {
    893                 *loopIndex = -1;
    894             }
    895         }
    896     }
    897 
    898     if (klm) {
    899         switch (cType) {
    900             case kSerpentine_SkCubicType:
    901                 calc_serp_klm(src, d, klm);
    902                 break;
    903             case kLoop_SkCubicType:
    904                 calc_loop_klm(src, d[0], td, sd, te, se, klm);
    905                 break;
    906             case kCusp_SkCubicType:
    907                 if (0 != d[0]) {
    908                     // FIXME: SkClassifyCubic has a tolerance, but we need an exact classification
    909                     // here to be sure we won't get a negative in the square root.
    910                     calc_serp_klm(src, d, klm);
    911                 } else {
    912                     calc_inf_cusp_klm(src, d[1], d[2], klm);
    913                 }
    914                 break;
    915             case kQuadratic_SkCubicType:
    916                 calc_quadratic_klm(src, d[2], klm);
    917                 break;
    918             case kLine_SkCubicType:
    919             case kPoint_SkCubicType:
    920                 calc_line_klm(src, klm);
    921                 break;
    922         };
    923     }
    924     return chop_count + 1;
    925 }
    926