Home | History | Annotate | Download | only in pathops
      1 /*
      2  * Copyright 2012 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 #include "SkIntersections.h"
      8 #include "SkPathOpsCubic.h"
      9 #include "SkPathOpsCurve.h"
     10 #include "SkPathOpsLine.h"
     11 
     12 /*
     13 Find the interection of a line and cubic by solving for valid t values.
     14 
     15 Analogous to line-quadratic intersection, solve line-cubic intersection by
     16 representing the cubic as:
     17   x = a(1-t)^3 + 2b(1-t)^2t + c(1-t)t^2 + dt^3
     18   y = e(1-t)^3 + 2f(1-t)^2t + g(1-t)t^2 + ht^3
     19 and the line as:
     20   y = i*x + j  (if the line is more horizontal)
     21 or:
     22   x = i*y + j  (if the line is more vertical)
     23 
     24 Then using Mathematica, solve for the values of t where the cubic intersects the
     25 line:
     26 
     27   (in) Resultant[
     28         a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - x,
     29         e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - i*x - j, x]
     30   (out) -e     +   j     +
     31        3 e t   - 3 f t   -
     32        3 e t^2 + 6 f t^2 - 3 g t^2 +
     33          e t^3 - 3 f t^3 + 3 g t^3 - h t^3 +
     34      i ( a     -
     35        3 a t + 3 b t +
     36        3 a t^2 - 6 b t^2 + 3 c t^2 -
     37          a t^3 + 3 b t^3 - 3 c t^3 + d t^3 )
     38 
     39 if i goes to infinity, we can rewrite the line in terms of x. Mathematica:
     40 
     41   (in) Resultant[
     42         a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - i*y - j,
     43         e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y,       y]
     44   (out)  a     -   j     -
     45        3 a t   + 3 b t   +
     46        3 a t^2 - 6 b t^2 + 3 c t^2 -
     47          a t^3 + 3 b t^3 - 3 c t^3 + d t^3 -
     48      i ( e     -
     49        3 e t   + 3 f t   +
     50        3 e t^2 - 6 f t^2 + 3 g t^2 -
     51          e t^3 + 3 f t^3 - 3 g t^3 + h t^3 )
     52 
     53 Solving this with Mathematica produces an expression with hundreds of terms;
     54 instead, use Numeric Solutions recipe to solve the cubic.
     55 
     56 The near-horizontal case, in terms of:  Ax^3 + Bx^2 + Cx + D == 0
     57     A =   (-(-e + 3*f - 3*g + h) + i*(-a + 3*b - 3*c + d)     )
     58     B = 3*(-( e - 2*f +   g    ) + i*( a - 2*b +   c    )     )
     59     C = 3*(-(-e +   f          ) + i*(-a +   b          )     )
     60     D =   (-( e                ) + i*( a                ) + j )
     61 
     62 The near-vertical case, in terms of:  Ax^3 + Bx^2 + Cx + D == 0
     63     A =   ( (-a + 3*b - 3*c + d) - i*(-e + 3*f - 3*g + h)     )
     64     B = 3*( ( a - 2*b +   c    ) - i*( e - 2*f +   g    )     )
     65     C = 3*( (-a +   b          ) - i*(-e +   f          )     )
     66     D =   ( ( a                ) - i*( e                ) - j )
     67 
     68 For horizontal lines:
     69 (in) Resultant[
     70       a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - j,
     71       e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, y]
     72 (out)  e     -   j     -
     73      3 e t   + 3 f t   +
     74      3 e t^2 - 6 f t^2 + 3 g t^2 -
     75        e t^3 + 3 f t^3 - 3 g t^3 + h t^3
     76  */
     77 
     78 class LineCubicIntersections {
     79 public:
     80     enum PinTPoint {
     81         kPointUninitialized,
     82         kPointInitialized
     83     };
     84 
     85     LineCubicIntersections(const SkDCubic& c, const SkDLine& l, SkIntersections* i)
     86         : fCubic(c)
     87         , fLine(l)
     88         , fIntersections(i)
     89         , fAllowNear(true) {
     90         i->setMax(4);
     91     }
     92 
     93     void allowNear(bool allow) {
     94         fAllowNear = allow;
     95     }
     96 
     97     void checkCoincident() {
     98         int last = fIntersections->used() - 1;
     99         for (int index = 0; index < last; ) {
    100             double cubicMidT = ((*fIntersections)[0][index] + (*fIntersections)[0][index + 1]) / 2;
    101             SkDPoint cubicMidPt = fCubic.ptAtT(cubicMidT);
    102             double t = fLine.nearPoint(cubicMidPt, nullptr);
    103             if (t < 0) {
    104                 ++index;
    105                 continue;
    106             }
    107             if (fIntersections->isCoincident(index)) {
    108                 fIntersections->removeOne(index);
    109                 --last;
    110             } else if (fIntersections->isCoincident(index + 1)) {
    111                 fIntersections->removeOne(index + 1);
    112                 --last;
    113             } else {
    114                 fIntersections->setCoincident(index++);
    115             }
    116             fIntersections->setCoincident(index);
    117         }
    118     }
    119 
    120     // see parallel routine in line quadratic intersections
    121     int intersectRay(double roots[3]) {
    122         double adj = fLine[1].fX - fLine[0].fX;
    123         double opp = fLine[1].fY - fLine[0].fY;
    124         SkDCubic c;
    125         SkDEBUGCODE(c.fDebugGlobalState = fIntersections->globalState());
    126         for (int n = 0; n < 4; ++n) {
    127             c[n].fX = (fCubic[n].fY - fLine[0].fY) * adj - (fCubic[n].fX - fLine[0].fX) * opp;
    128         }
    129         double A, B, C, D;
    130         SkDCubic::Coefficients(&c[0].fX, &A, &B, &C, &D);
    131         int count = SkDCubic::RootsValidT(A, B, C, D, roots);
    132         for (int index = 0; index < count; ++index) {
    133             SkDPoint calcPt = c.ptAtT(roots[index]);
    134             if (!approximately_zero(calcPt.fX)) {
    135                 for (int n = 0; n < 4; ++n) {
    136                     c[n].fY = (fCubic[n].fY - fLine[0].fY) * opp
    137                             + (fCubic[n].fX - fLine[0].fX) * adj;
    138                 }
    139                 double extremeTs[6];
    140                 int extrema = SkDCubic::FindExtrema(&c[0].fX, extremeTs);
    141                 count = c.searchRoots(extremeTs, extrema, 0, SkDCubic::kXAxis, roots);
    142                 break;
    143             }
    144         }
    145         return count;
    146     }
    147 
    148     int intersect() {
    149         addExactEndPoints();
    150         if (fAllowNear) {
    151             addNearEndPoints();
    152         }
    153         double rootVals[3];
    154         int roots = intersectRay(rootVals);
    155         for (int index = 0; index < roots; ++index) {
    156             double cubicT = rootVals[index];
    157             double lineT = findLineT(cubicT);
    158             SkDPoint pt;
    159             if (pinTs(&cubicT, &lineT, &pt, kPointUninitialized) && uniqueAnswer(cubicT, pt)) {
    160                 fIntersections->insert(cubicT, lineT, pt);
    161             }
    162         }
    163         checkCoincident();
    164         return fIntersections->used();
    165     }
    166 
    167     static int HorizontalIntersect(const SkDCubic& c, double axisIntercept, double roots[3]) {
    168         double A, B, C, D;
    169         SkDCubic::Coefficients(&c[0].fY, &A, &B, &C, &D);
    170         D -= axisIntercept;
    171         int count = SkDCubic::RootsValidT(A, B, C, D, roots);
    172         for (int index = 0; index < count; ++index) {
    173             SkDPoint calcPt = c.ptAtT(roots[index]);
    174             if (!approximately_equal(calcPt.fY, axisIntercept)) {
    175                 double extremeTs[6];
    176                 int extrema = SkDCubic::FindExtrema(&c[0].fY, extremeTs);
    177                 count = c.searchRoots(extremeTs, extrema, axisIntercept, SkDCubic::kYAxis, roots);
    178                 break;
    179             }
    180         }
    181         return count;
    182     }
    183 
    184     int horizontalIntersect(double axisIntercept, double left, double right, bool flipped) {
    185         addExactHorizontalEndPoints(left, right, axisIntercept);
    186         if (fAllowNear) {
    187             addNearHorizontalEndPoints(left, right, axisIntercept);
    188         }
    189         double roots[3];
    190         int count = HorizontalIntersect(fCubic, axisIntercept, roots);
    191         for (int index = 0; index < count; ++index) {
    192             double cubicT = roots[index];
    193             SkDPoint pt = { fCubic.ptAtT(cubicT).fX,  axisIntercept };
    194             double lineT = (pt.fX - left) / (right - left);
    195             if (pinTs(&cubicT, &lineT, &pt, kPointInitialized) && uniqueAnswer(cubicT, pt)) {
    196                 fIntersections->insert(cubicT, lineT, pt);
    197             }
    198         }
    199         if (flipped) {
    200             fIntersections->flip();
    201         }
    202         checkCoincident();
    203         return fIntersections->used();
    204     }
    205 
    206         bool uniqueAnswer(double cubicT, const SkDPoint& pt) {
    207             for (int inner = 0; inner < fIntersections->used(); ++inner) {
    208                 if (fIntersections->pt(inner) != pt) {
    209                     continue;
    210                 }
    211                 double existingCubicT = (*fIntersections)[0][inner];
    212                 if (cubicT == existingCubicT) {
    213                     return false;
    214                 }
    215                 // check if midway on cubic is also same point. If so, discard this
    216                 double cubicMidT = (existingCubicT + cubicT) / 2;
    217                 SkDPoint cubicMidPt = fCubic.ptAtT(cubicMidT);
    218                 if (cubicMidPt.approximatelyEqual(pt)) {
    219                     return false;
    220                 }
    221             }
    222 #if ONE_OFF_DEBUG
    223             SkDPoint cPt = fCubic.ptAtT(cubicT);
    224             SkDebugf("%s pt=(%1.9g,%1.9g) cPt=(%1.9g,%1.9g)\n", __FUNCTION__, pt.fX, pt.fY,
    225                     cPt.fX, cPt.fY);
    226 #endif
    227             return true;
    228         }
    229 
    230     static int VerticalIntersect(const SkDCubic& c, double axisIntercept, double roots[3]) {
    231         double A, B, C, D;
    232         SkDCubic::Coefficients(&c[0].fX, &A, &B, &C, &D);
    233         D -= axisIntercept;
    234         int count = SkDCubic::RootsValidT(A, B, C, D, roots);
    235         for (int index = 0; index < count; ++index) {
    236             SkDPoint calcPt = c.ptAtT(roots[index]);
    237             if (!approximately_equal(calcPt.fX, axisIntercept)) {
    238                 double extremeTs[6];
    239                 int extrema = SkDCubic::FindExtrema(&c[0].fX, extremeTs);
    240                 count = c.searchRoots(extremeTs, extrema, axisIntercept, SkDCubic::kXAxis, roots);
    241                 break;
    242             }
    243         }
    244         return count;
    245     }
    246 
    247     int verticalIntersect(double axisIntercept, double top, double bottom, bool flipped) {
    248         addExactVerticalEndPoints(top, bottom, axisIntercept);
    249         if (fAllowNear) {
    250             addNearVerticalEndPoints(top, bottom, axisIntercept);
    251         }
    252         double roots[3];
    253         int count = VerticalIntersect(fCubic, axisIntercept, roots);
    254         for (int index = 0; index < count; ++index) {
    255             double cubicT = roots[index];
    256             SkDPoint pt = { axisIntercept, fCubic.ptAtT(cubicT).fY };
    257             double lineT = (pt.fY - top) / (bottom - top);
    258             if (pinTs(&cubicT, &lineT, &pt, kPointInitialized) && uniqueAnswer(cubicT, pt)) {
    259                 fIntersections->insert(cubicT, lineT, pt);
    260             }
    261         }
    262         if (flipped) {
    263             fIntersections->flip();
    264         }
    265         checkCoincident();
    266         return fIntersections->used();
    267     }
    268 
    269     protected:
    270 
    271     void addExactEndPoints() {
    272         for (int cIndex = 0; cIndex < 4; cIndex += 3) {
    273             double lineT = fLine.exactPoint(fCubic[cIndex]);
    274             if (lineT < 0) {
    275                 continue;
    276             }
    277             double cubicT = (double) (cIndex >> 1);
    278             fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
    279         }
    280     }
    281 
    282     /* Note that this does not look for endpoints of the line that are near the cubic.
    283        These points are found later when check ends looks for missing points */
    284     void addNearEndPoints() {
    285         for (int cIndex = 0; cIndex < 4; cIndex += 3) {
    286             double cubicT = (double) (cIndex >> 1);
    287             if (fIntersections->hasT(cubicT)) {
    288                 continue;
    289             }
    290             double lineT = fLine.nearPoint(fCubic[cIndex], nullptr);
    291             if (lineT < 0) {
    292                 continue;
    293             }
    294             fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
    295         }
    296         this->addLineNearEndPoints();
    297     }
    298 
    299     void addLineNearEndPoints() {
    300         for (int lIndex = 0; lIndex < 2; ++lIndex) {
    301             double lineT = (double) lIndex;
    302             if (fIntersections->hasOppT(lineT)) {
    303                 continue;
    304             }
    305             double cubicT = ((SkDCurve*) &fCubic)->nearPoint(SkPath::kCubic_Verb,
    306                 fLine[lIndex], fLine[!lIndex]);
    307             if (cubicT < 0) {
    308                 continue;
    309             }
    310             fIntersections->insert(cubicT, lineT, fLine[lIndex]);
    311         }
    312     }
    313 
    314     void addExactHorizontalEndPoints(double left, double right, double y) {
    315         for (int cIndex = 0; cIndex < 4; cIndex += 3) {
    316             double lineT = SkDLine::ExactPointH(fCubic[cIndex], left, right, y);
    317             if (lineT < 0) {
    318                 continue;
    319             }
    320             double cubicT = (double) (cIndex >> 1);
    321             fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
    322         }
    323     }
    324 
    325     void addNearHorizontalEndPoints(double left, double right, double y) {
    326         for (int cIndex = 0; cIndex < 4; cIndex += 3) {
    327             double cubicT = (double) (cIndex >> 1);
    328             if (fIntersections->hasT(cubicT)) {
    329                 continue;
    330             }
    331             double lineT = SkDLine::NearPointH(fCubic[cIndex], left, right, y);
    332             if (lineT < 0) {
    333                 continue;
    334             }
    335             fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
    336         }
    337         this->addLineNearEndPoints();
    338     }
    339 
    340     void addExactVerticalEndPoints(double top, double bottom, double x) {
    341         for (int cIndex = 0; cIndex < 4; cIndex += 3) {
    342             double lineT = SkDLine::ExactPointV(fCubic[cIndex], top, bottom, x);
    343             if (lineT < 0) {
    344                 continue;
    345             }
    346             double cubicT = (double) (cIndex >> 1);
    347             fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
    348         }
    349     }
    350 
    351     void addNearVerticalEndPoints(double top, double bottom, double x) {
    352         for (int cIndex = 0; cIndex < 4; cIndex += 3) {
    353             double cubicT = (double) (cIndex >> 1);
    354             if (fIntersections->hasT(cubicT)) {
    355                 continue;
    356             }
    357             double lineT = SkDLine::NearPointV(fCubic[cIndex], top, bottom, x);
    358             if (lineT < 0) {
    359                 continue;
    360             }
    361             fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
    362         }
    363         this->addLineNearEndPoints();
    364     }
    365 
    366     double findLineT(double t) {
    367         SkDPoint xy = fCubic.ptAtT(t);
    368         double dx = fLine[1].fX - fLine[0].fX;
    369         double dy = fLine[1].fY - fLine[0].fY;
    370         if (fabs(dx) > fabs(dy)) {
    371             return (xy.fX - fLine[0].fX) / dx;
    372         }
    373         return (xy.fY - fLine[0].fY) / dy;
    374     }
    375 
    376     bool pinTs(double* cubicT, double* lineT, SkDPoint* pt, PinTPoint ptSet) {
    377         if (!approximately_one_or_less(*lineT)) {
    378             return false;
    379         }
    380         if (!approximately_zero_or_more(*lineT)) {
    381             return false;
    382         }
    383         double cT = *cubicT = SkPinT(*cubicT);
    384         double lT = *lineT = SkPinT(*lineT);
    385         SkDPoint lPt = fLine.ptAtT(lT);
    386         SkDPoint cPt = fCubic.ptAtT(cT);
    387         if (!lPt.roughlyEqual(cPt)) {
    388             return false;
    389         }
    390         // FIXME: if points are roughly equal but not approximately equal, need to do
    391         // a binary search like quad/quad intersection to find more precise t values
    392         if (lT == 0 || lT == 1 || (ptSet == kPointUninitialized && cT != 0 && cT != 1)) {
    393             *pt = lPt;
    394         } else if (ptSet == kPointUninitialized) {
    395             *pt = cPt;
    396         }
    397         SkPoint gridPt = pt->asSkPoint();
    398         if (gridPt == fLine[0].asSkPoint()) {
    399             *lineT = 0;
    400         } else if (gridPt == fLine[1].asSkPoint()) {
    401             *lineT = 1;
    402         }
    403         if (gridPt == fCubic[0].asSkPoint() && approximately_equal(*cubicT, 0)) {
    404             *cubicT = 0;
    405         } else if (gridPt == fCubic[3].asSkPoint() && approximately_equal(*cubicT, 1)) {
    406             *cubicT = 1;
    407         }
    408         return true;
    409     }
    410 
    411 private:
    412     const SkDCubic& fCubic;
    413     const SkDLine& fLine;
    414     SkIntersections* fIntersections;
    415     bool fAllowNear;
    416 };
    417 
    418 int SkIntersections::horizontal(const SkDCubic& cubic, double left, double right, double y,
    419         bool flipped) {
    420     SkDLine line = {{{ left, y }, { right, y }}};
    421     LineCubicIntersections c(cubic, line, this);
    422     return c.horizontalIntersect(y, left, right, flipped);
    423 }
    424 
    425 int SkIntersections::vertical(const SkDCubic& cubic, double top, double bottom, double x,
    426         bool flipped) {
    427     SkDLine line = {{{ x, top }, { x, bottom }}};
    428     LineCubicIntersections c(cubic, line, this);
    429     return c.verticalIntersect(x, top, bottom, flipped);
    430 }
    431 
    432 int SkIntersections::intersect(const SkDCubic& cubic, const SkDLine& line) {
    433     LineCubicIntersections c(cubic, line, this);
    434     c.allowNear(fAllowNear);
    435     return c.intersect();
    436 }
    437 
    438 int SkIntersections::intersectRay(const SkDCubic& cubic, const SkDLine& line) {
    439     LineCubicIntersections c(cubic, line, this);
    440     fUsed = c.intersectRay(fT[0]);
    441     for (int index = 0; index < fUsed; ++index) {
    442         fPt[index] = cubic.ptAtT(fT[0][index]);
    443     }
    444     return fUsed;
    445 }
    446 
    447 // SkDCubic accessors to Intersection utilities
    448 
    449 int SkDCubic::horizontalIntersect(double yIntercept, double roots[3]) const {
    450     return LineCubicIntersections::HorizontalIntersect(*this, yIntercept, roots);
    451 }
    452 
    453 int SkDCubic::verticalIntersect(double xIntercept, double roots[3]) const {
    454     return LineCubicIntersections::VerticalIntersect(*this, xIntercept, roots);
    455 }
    456