Home | History | Annotate | Download | only in utils
      1 /*
      2  * Copyright 2014 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #include "SkDashPathPriv.h"
      9 #include "SkPathMeasure.h"
     10 #include "SkStrokeRec.h"
     11 
     12 static inline int is_even(int x) {
     13     return !(x & 1);
     14 }
     15 
     16 static SkScalar find_first_interval(const SkScalar intervals[], SkScalar phase,
     17                                     int32_t* index, int count) {
     18     for (int i = 0; i < count; ++i) {
     19         SkScalar gap = intervals[i];
     20         if (phase > gap || (phase == gap && gap)) {
     21             phase -= gap;
     22         } else {
     23             *index = i;
     24             return gap - phase;
     25         }
     26     }
     27     // If we get here, phase "appears" to be larger than our length. This
     28     // shouldn't happen with perfect precision, but we can accumulate errors
     29     // during the initial length computation (rounding can make our sum be too
     30     // big or too small. In that event, we just have to eat the error here.
     31     *index = 0;
     32     return intervals[0];
     33 }
     34 
     35 void SkDashPath::CalcDashParameters(SkScalar phase, const SkScalar intervals[], int32_t count,
     36                                     SkScalar* initialDashLength, int32_t* initialDashIndex,
     37                                     SkScalar* intervalLength, SkScalar* adjustedPhase) {
     38     SkScalar len = 0;
     39     for (int i = 0; i < count; i++) {
     40         len += intervals[i];
     41     }
     42     *intervalLength = len;
     43     // Adjust phase to be between 0 and len, "flipping" phase if negative.
     44     // e.g., if len is 100, then phase of -20 (or -120) is equivalent to 80
     45     if (adjustedPhase) {
     46         if (phase < 0) {
     47             phase = -phase;
     48             if (phase > len) {
     49                 phase = SkScalarMod(phase, len);
     50             }
     51             phase = len - phase;
     52 
     53             // Due to finite precision, it's possible that phase == len,
     54             // even after the subtract (if len >>> phase), so fix that here.
     55             // This fixes http://crbug.com/124652 .
     56             SkASSERT(phase <= len);
     57             if (phase == len) {
     58                 phase = 0;
     59             }
     60         } else if (phase >= len) {
     61             phase = SkScalarMod(phase, len);
     62         }
     63         *adjustedPhase = phase;
     64     }
     65     SkASSERT(phase >= 0 && phase < len);
     66 
     67     *initialDashLength = find_first_interval(intervals, phase,
     68                                             initialDashIndex, count);
     69 
     70     SkASSERT(*initialDashLength >= 0);
     71     SkASSERT(*initialDashIndex >= 0 && *initialDashIndex < count);
     72 }
     73 
     74 static void outset_for_stroke(SkRect* rect, const SkStrokeRec& rec) {
     75     SkScalar radius = SkScalarHalf(rec.getWidth());
     76     if (0 == radius) {
     77         radius = SK_Scalar1;    // hairlines
     78     }
     79     if (SkPaint::kMiter_Join == rec.getJoin()) {
     80         radius *= rec.getMiter();
     81     }
     82     rect->outset(radius, radius);
     83 }
     84 
     85 // Only handles lines for now. If returns true, dstPath is the new (smaller)
     86 // path. If returns false, then dstPath parameter is ignored.
     87 static bool cull_path(const SkPath& srcPath, const SkStrokeRec& rec,
     88                       const SkRect* cullRect, SkScalar intervalLength,
     89                       SkPath* dstPath) {
     90     if (nullptr == cullRect) {
     91         return false;
     92     }
     93 
     94     SkPoint pts[2];
     95     if (!srcPath.isLine(pts)) {
     96         return false;
     97     }
     98 
     99     SkRect bounds = *cullRect;
    100     outset_for_stroke(&bounds, rec);
    101 
    102     SkScalar dx = pts[1].x() - pts[0].x();
    103     SkScalar dy = pts[1].y() - pts[0].y();
    104 
    105     // just do horizontal lines for now (lazy)
    106     if (dy) {
    107         return false;
    108     }
    109 
    110     SkScalar minX = pts[0].fX;
    111     SkScalar maxX = pts[1].fX;
    112 
    113     if (dx < 0) {
    114         SkTSwap(minX, maxX);
    115     }
    116 
    117     SkASSERT(minX <= maxX);
    118     if (maxX < bounds.fLeft || minX > bounds.fRight) {
    119         return false;
    120     }
    121 
    122     // Now we actually perform the chop, removing the excess to the left and
    123     // right of the bounds (keeping our new line "in phase" with the dash,
    124     // hence the (mod intervalLength).
    125 
    126     if (minX < bounds.fLeft) {
    127         minX = bounds.fLeft - SkScalarMod(bounds.fLeft - minX,
    128                                           intervalLength);
    129     }
    130     if (maxX > bounds.fRight) {
    131         maxX = bounds.fRight + SkScalarMod(maxX - bounds.fRight,
    132                                            intervalLength);
    133     }
    134 
    135     SkASSERT(maxX >= minX);
    136     if (dx < 0) {
    137         SkTSwap(minX, maxX);
    138     }
    139     pts[0].fX = minX;
    140     pts[1].fX = maxX;
    141 
    142     dstPath->moveTo(pts[0]);
    143     dstPath->lineTo(pts[1]);
    144     return true;
    145 }
    146 
    147 class SpecialLineRec {
    148 public:
    149     bool init(const SkPath& src, SkPath* dst, SkStrokeRec* rec,
    150               int intervalCount, SkScalar intervalLength) {
    151         if (rec->isHairlineStyle() || !src.isLine(fPts)) {
    152             return false;
    153         }
    154 
    155         // can relax this in the future, if we handle square and round caps
    156         if (SkPaint::kButt_Cap != rec->getCap()) {
    157             return false;
    158         }
    159 
    160         SkScalar pathLength = SkPoint::Distance(fPts[0], fPts[1]);
    161 
    162         fTangent = fPts[1] - fPts[0];
    163         if (fTangent.isZero()) {
    164             return false;
    165         }
    166 
    167         fPathLength = pathLength;
    168         fTangent.scale(SkScalarInvert(pathLength));
    169         fTangent.rotateCCW(&fNormal);
    170         fNormal.scale(SkScalarHalf(rec->getWidth()));
    171 
    172         // now estimate how many quads will be added to the path
    173         //     resulting segments = pathLen * intervalCount / intervalLen
    174         //     resulting points = 4 * segments
    175 
    176         SkScalar ptCount = pathLength * intervalCount / (float)intervalLength;
    177         ptCount = SkTMin(ptCount, SkDashPath::kMaxDashCount);
    178         int n = SkScalarCeilToInt(ptCount) << 2;
    179         dst->incReserve(n);
    180 
    181         // we will take care of the stroking
    182         rec->setFillStyle();
    183         return true;
    184     }
    185 
    186     void addSegment(SkScalar d0, SkScalar d1, SkPath* path) const {
    187         SkASSERT(d0 <= fPathLength);
    188         // clamp the segment to our length
    189         if (d1 > fPathLength) {
    190             d1 = fPathLength;
    191         }
    192 
    193         SkScalar x0 = fPts[0].fX + fTangent.fX * d0;
    194         SkScalar x1 = fPts[0].fX + fTangent.fX * d1;
    195         SkScalar y0 = fPts[0].fY + fTangent.fY * d0;
    196         SkScalar y1 = fPts[0].fY + fTangent.fY * d1;
    197 
    198         SkPoint pts[4];
    199         pts[0].set(x0 + fNormal.fX, y0 + fNormal.fY);   // moveTo
    200         pts[1].set(x1 + fNormal.fX, y1 + fNormal.fY);   // lineTo
    201         pts[2].set(x1 - fNormal.fX, y1 - fNormal.fY);   // lineTo
    202         pts[3].set(x0 - fNormal.fX, y0 - fNormal.fY);   // lineTo
    203 
    204         path->addPoly(pts, SK_ARRAY_COUNT(pts), false);
    205     }
    206 
    207 private:
    208     SkPoint fPts[2];
    209     SkVector fTangent;
    210     SkVector fNormal;
    211     SkScalar fPathLength;
    212 };
    213 
    214 
    215 bool SkDashPath::InternalFilter(SkPath* dst, const SkPath& src, SkStrokeRec* rec,
    216                                 const SkRect* cullRect, const SkScalar aIntervals[],
    217                                 int32_t count, SkScalar initialDashLength, int32_t initialDashIndex,
    218                                 SkScalar intervalLength,
    219                                 StrokeRecApplication strokeRecApplication) {
    220 
    221     // we do nothing if the src wants to be filled
    222     SkStrokeRec::Style style = rec->getStyle();
    223     if (SkStrokeRec::kFill_Style == style || SkStrokeRec::kStrokeAndFill_Style == style) {
    224         return false;
    225     }
    226 
    227     const SkScalar* intervals = aIntervals;
    228     SkScalar        dashCount = 0;
    229     int             segCount = 0;
    230 
    231     SkPath cullPathStorage;
    232     const SkPath* srcPtr = &src;
    233     if (cull_path(src, *rec, cullRect, intervalLength, &cullPathStorage)) {
    234         srcPtr = &cullPathStorage;
    235     }
    236 
    237     SpecialLineRec lineRec;
    238     bool specialLine = (StrokeRecApplication::kAllow == strokeRecApplication) &&
    239                        lineRec.init(*srcPtr, dst, rec, count >> 1, intervalLength);
    240 
    241     SkPathMeasure   meas(*srcPtr, false, rec->getResScale());
    242 
    243     do {
    244         bool        skipFirstSegment = meas.isClosed();
    245         bool        addedSegment = false;
    246         SkScalar    length = meas.getLength();
    247         int         index = initialDashIndex;
    248 
    249         // Since the path length / dash length ratio may be arbitrarily large, we can exert
    250         // significant memory pressure while attempting to build the filtered path. To avoid this,
    251         // we simply give up dashing beyond a certain threshold.
    252         //
    253         // The original bug report (http://crbug.com/165432) is based on a path yielding more than
    254         // 90 million dash segments and crashing the memory allocator. A limit of 1 million
    255         // segments seems reasonable: at 2 verbs per segment * 9 bytes per verb, this caps the
    256         // maximum dash memory overhead at roughly 17MB per path.
    257         dashCount += length * (count >> 1) / intervalLength;
    258         if (dashCount > kMaxDashCount) {
    259             dst->reset();
    260             return false;
    261         }
    262 
    263         // Using double precision to avoid looping indefinitely due to single precision rounding
    264         // (for extreme path_length/dash_length ratios). See test_infinite_dash() unittest.
    265         double  distance = 0;
    266         double  dlen = initialDashLength;
    267 
    268         while (distance < length) {
    269             SkASSERT(dlen >= 0);
    270             addedSegment = false;
    271             if (is_even(index) && !skipFirstSegment) {
    272                 addedSegment = true;
    273                 ++segCount;
    274 
    275                 if (specialLine) {
    276                     lineRec.addSegment(SkDoubleToScalar(distance),
    277                                        SkDoubleToScalar(distance + dlen),
    278                                        dst);
    279                 } else {
    280                     meas.getSegment(SkDoubleToScalar(distance),
    281                                     SkDoubleToScalar(distance + dlen),
    282                                     dst, true);
    283                 }
    284             }
    285             distance += dlen;
    286 
    287             // clear this so we only respect it the first time around
    288             skipFirstSegment = false;
    289 
    290             // wrap around our intervals array if necessary
    291             index += 1;
    292             SkASSERT(index <= count);
    293             if (index == count) {
    294                 index = 0;
    295             }
    296 
    297             // fetch our next dlen
    298             dlen = intervals[index];
    299         }
    300 
    301         // extend if we ended on a segment and we need to join up with the (skipped) initial segment
    302         if (meas.isClosed() && is_even(initialDashIndex) &&
    303             initialDashLength >= 0) {
    304             meas.getSegment(0, initialDashLength, dst, !addedSegment);
    305             ++segCount;
    306         }
    307     } while (meas.nextContour());
    308 
    309     if (segCount > 1) {
    310         dst->setConvexity(SkPath::kConcave_Convexity);
    311     }
    312 
    313     return true;
    314 }
    315 
    316 bool SkDashPath::FilterDashPath(SkPath* dst, const SkPath& src, SkStrokeRec* rec,
    317                                 const SkRect* cullRect, const SkPathEffect::DashInfo& info) {
    318     if (!ValidDashPath(info.fPhase, info.fIntervals, info.fCount)) {
    319         return false;
    320     }
    321     SkScalar initialDashLength = 0;
    322     int32_t initialDashIndex = 0;
    323     SkScalar intervalLength = 0;
    324     CalcDashParameters(info.fPhase, info.fIntervals, info.fCount,
    325                        &initialDashLength, &initialDashIndex, &intervalLength);
    326     return InternalFilter(dst, src, rec, cullRect, info.fIntervals, info.fCount, initialDashLength,
    327                           initialDashIndex, intervalLength);
    328 }
    329 
    330 bool SkDashPath::ValidDashPath(SkScalar phase, const SkScalar intervals[], int32_t count) {
    331     if (count < 2 || !SkIsAlign2(count)) {
    332         return false;
    333     }
    334     SkScalar length = 0;
    335     for (int i = 0; i < count; i++) {
    336         if (intervals[i] < 0) {
    337             return false;
    338         }
    339         length += intervals[i];
    340     }
    341     // watch out for values that might make us go out of bounds
    342     return length > 0 && SkScalarIsFinite(phase) && SkScalarIsFinite(length);
    343 }
    344