1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" 2 "http://www.w3.org/TR/html4/strict.dtd"> 3 <html> 4 <head> 5 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> 6 <title>LLVM Bitcode File Format</title> 7 <link rel="stylesheet" href="llvm.css" type="text/css"> 8 </head> 9 <body> 10 <h1> LLVM Bitcode File Format</h1> 11 <ol> 12 <li><a href="#abstract">Abstract</a></li> 13 <li><a href="#overview">Overview</a></li> 14 <li><a href="#bitstream">Bitstream Format</a> 15 <ol> 16 <li><a href="#magic">Magic Numbers</a></li> 17 <li><a href="#primitives">Primitives</a></li> 18 <li><a href="#abbrevid">Abbreviation IDs</a></li> 19 <li><a href="#blocks">Blocks</a></li> 20 <li><a href="#datarecord">Data Records</a></li> 21 <li><a href="#abbreviations">Abbreviations</a></li> 22 <li><a href="#stdblocks">Standard Blocks</a></li> 23 </ol> 24 </li> 25 <li><a href="#wrapper">Bitcode Wrapper Format</a> 26 </li> 27 <li><a href="#llvmir">LLVM IR Encoding</a> 28 <ol> 29 <li><a href="#basics">Basics</a></li> 30 <li><a href="#MODULE_BLOCK">MODULE_BLOCK Contents</a></li> 31 <li><a href="#PARAMATTR_BLOCK">PARAMATTR_BLOCK Contents</a></li> 32 <li><a href="#TYPE_BLOCK">TYPE_BLOCK Contents</a></li> 33 <li><a href="#CONSTANTS_BLOCK">CONSTANTS_BLOCK Contents</a></li> 34 <li><a href="#FUNCTION_BLOCK">FUNCTION_BLOCK Contents</a></li> 35 <li><a href="#TYPE_SYMTAB_BLOCK">TYPE_SYMTAB_BLOCK Contents</a></li> 36 <li><a href="#VALUE_SYMTAB_BLOCK">VALUE_SYMTAB_BLOCK Contents</a></li> 37 <li><a href="#METADATA_BLOCK">METADATA_BLOCK Contents</a></li> 38 <li><a href="#METADATA_ATTACHMENT">METADATA_ATTACHMENT Contents</a></li> 39 </ol> 40 </li> 41 </ol> 42 <div class="doc_author"> 43 <p>Written by <a href="mailto:sabre (a] nondot.org">Chris Lattner</a>, 44 <a href="http://www.reverberate.org">Joshua Haberman</a>, 45 and <a href="mailto:housel (a] acm.org">Peter S. Housel</a>. 46 </p> 47 </div> 48 49 <!-- *********************************************************************** --> 50 <h2><a name="abstract">Abstract</a></h2> 51 <!-- *********************************************************************** --> 52 53 <div> 54 55 <p>This document describes the LLVM bitstream file format and the encoding of 56 the LLVM IR into it.</p> 57 58 </div> 59 60 <!-- *********************************************************************** --> 61 <h2><a name="overview">Overview</a></h2> 62 <!-- *********************************************************************** --> 63 64 <div> 65 66 <p> 67 What is commonly known as the LLVM bitcode file format (also, sometimes 68 anachronistically known as bytecode) is actually two things: a <a 69 href="#bitstream">bitstream container format</a> 70 and an <a href="#llvmir">encoding of LLVM IR</a> into the container format.</p> 71 72 <p> 73 The bitstream format is an abstract encoding of structured data, very 74 similar to XML in some ways. Like XML, bitstream files contain tags, and nested 75 structures, and you can parse the file without having to understand the tags. 76 Unlike XML, the bitstream format is a binary encoding, and unlike XML it 77 provides a mechanism for the file to self-describe "abbreviations", which are 78 effectively size optimizations for the content.</p> 79 80 <p>LLVM IR files may be optionally embedded into a <a 81 href="#wrapper">wrapper</a> structure that makes it easy to embed extra data 82 along with LLVM IR files.</p> 83 84 <p>This document first describes the LLVM bitstream format, describes the 85 wrapper format, then describes the record structure used by LLVM IR files. 86 </p> 87 88 </div> 89 90 <!-- *********************************************************************** --> 91 <h2><a name="bitstream">Bitstream Format</a></h2> 92 <!-- *********************************************************************** --> 93 94 <div> 95 96 <p> 97 The bitstream format is literally a stream of bits, with a very simple 98 structure. This structure consists of the following concepts: 99 </p> 100 101 <ul> 102 <li>A "<a href="#magic">magic number</a>" that identifies the contents of 103 the stream.</li> 104 <li>Encoding <a href="#primitives">primitives</a> like variable bit-rate 105 integers.</li> 106 <li><a href="#blocks">Blocks</a>, which define nested content.</li> 107 <li><a href="#datarecord">Data Records</a>, which describe entities within the 108 file.</li> 109 <li>Abbreviations, which specify compression optimizations for the file.</li> 110 </ul> 111 112 <p>Note that the <a 113 href="CommandGuide/html/llvm-bcanalyzer.html">llvm-bcanalyzer</a> tool can be 114 used to dump and inspect arbitrary bitstreams, which is very useful for 115 understanding the encoding.</p> 116 117 <!-- ======================================================================= --> 118 <h3> 119 <a name="magic">Magic Numbers</a> 120 </h3> 121 122 <div> 123 124 <p>The first two bytes of a bitcode file are 'BC' (0x42, 0x43). 125 The second two bytes are an application-specific magic number. Generic 126 bitcode tools can look at only the first two bytes to verify the file is 127 bitcode, while application-specific programs will want to look at all four.</p> 128 129 </div> 130 131 <!-- ======================================================================= --> 132 <h3> 133 <a name="primitives">Primitives</a> 134 </h3> 135 136 <div> 137 138 <p> 139 A bitstream literally consists of a stream of bits, which are read in order 140 starting with the least significant bit of each byte. The stream is made up of a 141 number of primitive values that encode a stream of unsigned integer values. 142 These integers are encoded in two ways: either as <a href="#fixedwidth">Fixed 143 Width Integers</a> or as <a href="#variablewidth">Variable Width 144 Integers</a>. 145 </p> 146 147 <!-- _______________________________________________________________________ --> 148 <h4> 149 <a name="fixedwidth">Fixed Width Integers</a> 150 </h4> 151 152 <div> 153 154 <p>Fixed-width integer values have their low bits emitted directly to the file. 155 For example, a 3-bit integer value encodes 1 as 001. Fixed width integers 156 are used when there are a well-known number of options for a field. For 157 example, boolean values are usually encoded with a 1-bit wide integer. 158 </p> 159 160 </div> 161 162 <!-- _______________________________________________________________________ --> 163 <h4> 164 <a name="variablewidth">Variable Width Integers</a> 165 </h4> 166 167 <div> 168 169 <p>Variable-width integer (VBR) values encode values of arbitrary size, 170 optimizing for the case where the values are small. Given a 4-bit VBR field, 171 any 3-bit value (0 through 7) is encoded directly, with the high bit set to 172 zero. Values larger than N-1 bits emit their bits in a series of N-1 bit 173 chunks, where all but the last set the high bit.</p> 174 175 <p>For example, the value 27 (0x1B) is encoded as 1011 0011 when emitted as a 176 vbr4 value. The first set of four bits indicates the value 3 (011) with a 177 continuation piece (indicated by a high bit of 1). The next word indicates a 178 value of 24 (011 << 3) with no continuation. The sum (3+24) yields the value 179 27. 180 </p> 181 182 </div> 183 184 <!-- _______________________________________________________________________ --> 185 <h4><a name="char6">6-bit characters</a></h4> 186 187 <div> 188 189 <p>6-bit characters encode common characters into a fixed 6-bit field. They 190 represent the following characters with the following 6-bit values:</p> 191 192 <div class="doc_code"> 193 <pre> 194 'a' .. 'z' — 0 .. 25 195 'A' .. 'Z' — 26 .. 51 196 '0' .. '9' — 52 .. 61 197 '.' — 62 198 '_' — 63 199 </pre> 200 </div> 201 202 <p>This encoding is only suitable for encoding characters and strings that 203 consist only of the above characters. It is completely incapable of encoding 204 characters not in the set.</p> 205 206 </div> 207 208 <!-- _______________________________________________________________________ --> 209 <h4><a name="wordalign">Word Alignment</a></h4> 210 211 <div> 212 213 <p>Occasionally, it is useful to emit zero bits until the bitstream is a 214 multiple of 32 bits. This ensures that the bit position in the stream can be 215 represented as a multiple of 32-bit words.</p> 216 217 </div> 218 219 </div> 220 221 <!-- ======================================================================= --> 222 <h3> 223 <a name="abbrevid">Abbreviation IDs</a> 224 </h3> 225 226 <div> 227 228 <p> 229 A bitstream is a sequential series of <a href="#blocks">Blocks</a> and 230 <a href="#datarecord">Data Records</a>. Both of these start with an 231 abbreviation ID encoded as a fixed-bitwidth field. The width is specified by 232 the current block, as described below. The value of the abbreviation ID 233 specifies either a builtin ID (which have special meanings, defined below) or 234 one of the abbreviation IDs defined for the current block by the stream itself. 235 </p> 236 237 <p> 238 The set of builtin abbrev IDs is: 239 </p> 240 241 <ul> 242 <li><tt>0 - <a href="#END_BLOCK">END_BLOCK</a></tt> — This abbrev ID marks 243 the end of the current block.</li> 244 <li><tt>1 - <a href="#ENTER_SUBBLOCK">ENTER_SUBBLOCK</a></tt> — This 245 abbrev ID marks the beginning of a new block.</li> 246 <li><tt>2 - <a href="#DEFINE_ABBREV">DEFINE_ABBREV</a></tt> — This defines 247 a new abbreviation.</li> 248 <li><tt>3 - <a href="#UNABBREV_RECORD">UNABBREV_RECORD</a></tt> — This ID 249 specifies the definition of an unabbreviated record.</li> 250 </ul> 251 252 <p>Abbreviation IDs 4 and above are defined by the stream itself, and specify 253 an <a href="#abbrev_records">abbreviated record encoding</a>.</p> 254 255 </div> 256 257 <!-- ======================================================================= --> 258 <h3> 259 <a name="blocks">Blocks</a> 260 </h3> 261 262 <div> 263 264 <p> 265 Blocks in a bitstream denote nested regions of the stream, and are identified by 266 a content-specific id number (for example, LLVM IR uses an ID of 12 to represent 267 function bodies). Block IDs 0-7 are reserved for <a href="#stdblocks">standard blocks</a> 268 whose meaning is defined by Bitcode; block IDs 8 and greater are 269 application specific. Nested blocks capture the hierarchical structure of the data 270 encoded in it, and various properties are associated with blocks as the file is 271 parsed. Block definitions allow the reader to efficiently skip blocks 272 in constant time if the reader wants a summary of blocks, or if it wants to 273 efficiently skip data it does not understand. The LLVM IR reader uses this 274 mechanism to skip function bodies, lazily reading them on demand. 275 </p> 276 277 <p> 278 When reading and encoding the stream, several properties are maintained for the 279 block. In particular, each block maintains: 280 </p> 281 282 <ol> 283 <li>A current abbrev id width. This value starts at 2 at the beginning of 284 the stream, and is set every time a 285 block record is entered. The block entry specifies the abbrev id width for 286 the body of the block.</li> 287 288 <li>A set of abbreviations. Abbreviations may be defined within a block, in 289 which case they are only defined in that block (neither subblocks nor 290 enclosing blocks see the abbreviation). Abbreviations can also be defined 291 inside a <tt><a href="#BLOCKINFO">BLOCKINFO</a></tt> block, in which case 292 they are defined in all blocks that match the ID that the BLOCKINFO block is 293 describing. 294 </li> 295 </ol> 296 297 <p> 298 As sub blocks are entered, these properties are saved and the new sub-block has 299 its own set of abbreviations, and its own abbrev id width. When a sub-block is 300 popped, the saved values are restored. 301 </p> 302 303 <!-- _______________________________________________________________________ --> 304 <h4><a name="ENTER_SUBBLOCK">ENTER_SUBBLOCK Encoding</a></h4> 305 306 <div> 307 308 <p><tt>[ENTER_SUBBLOCK, blockid<sub>vbr8</sub>, newabbrevlen<sub>vbr4</sub>, 309 <align32bits>, blocklen<sub>32</sub>]</tt></p> 310 311 <p> 312 The <tt>ENTER_SUBBLOCK</tt> abbreviation ID specifies the start of a new block 313 record. The <tt>blockid</tt> value is encoded as an 8-bit VBR identifier, and 314 indicates the type of block being entered, which can be 315 a <a href="#stdblocks">standard block</a> or an application-specific block. 316 The <tt>newabbrevlen</tt> value is a 4-bit VBR, which specifies the abbrev id 317 width for the sub-block. The <tt>blocklen</tt> value is a 32-bit aligned value 318 that specifies the size of the subblock in 32-bit words. This value allows the 319 reader to skip over the entire block in one jump. 320 </p> 321 322 </div> 323 324 <!-- _______________________________________________________________________ --> 325 <h4><a name="END_BLOCK">END_BLOCK Encoding</a></h4> 326 327 <div> 328 329 <p><tt>[END_BLOCK, <align32bits>]</tt></p> 330 331 <p> 332 The <tt>END_BLOCK</tt> abbreviation ID specifies the end of the current block 333 record. Its end is aligned to 32-bits to ensure that the size of the block is 334 an even multiple of 32-bits. 335 </p> 336 337 </div> 338 339 </div> 340 341 <!-- ======================================================================= --> 342 <h3> 343 <a name="datarecord">Data Records</a> 344 </h3> 345 346 <div> 347 <p> 348 Data records consist of a record code and a number of (up to) 64-bit 349 integer values. The interpretation of the code and values is 350 application specific and may vary between different block types. 351 Records can be encoded either using an unabbrev record, or with an 352 abbreviation. In the LLVM IR format, for example, there is a record 353 which encodes the target triple of a module. The code is 354 <tt>MODULE_CODE_TRIPLE</tt>, and the values of the record are the 355 ASCII codes for the characters in the string. 356 </p> 357 358 <!-- _______________________________________________________________________ --> 359 <h4><a name="UNABBREV_RECORD">UNABBREV_RECORD Encoding</a></h4> 360 361 <div> 362 363 <p><tt>[UNABBREV_RECORD, code<sub>vbr6</sub>, numops<sub>vbr6</sub>, 364 op0<sub>vbr6</sub>, op1<sub>vbr6</sub>, ...]</tt></p> 365 366 <p> 367 An <tt>UNABBREV_RECORD</tt> provides a default fallback encoding, which is both 368 completely general and extremely inefficient. It can describe an arbitrary 369 record by emitting the code and operands as VBRs. 370 </p> 371 372 <p> 373 For example, emitting an LLVM IR target triple as an unabbreviated record 374 requires emitting the <tt>UNABBREV_RECORD</tt> abbrevid, a vbr6 for the 375 <tt>MODULE_CODE_TRIPLE</tt> code, a vbr6 for the length of the string, which is 376 equal to the number of operands, and a vbr6 for each character. Because there 377 are no letters with values less than 32, each letter would need to be emitted as 378 at least a two-part VBR, which means that each letter would require at least 12 379 bits. This is not an efficient encoding, but it is fully general. 380 </p> 381 382 </div> 383 384 <!-- _______________________________________________________________________ --> 385 <h4><a name="abbrev_records">Abbreviated Record Encoding</a></h4> 386 387 <div> 388 389 <p><tt>[<abbrevid>, fields...]</tt></p> 390 391 <p> 392 An abbreviated record is a abbreviation id followed by a set of fields that are 393 encoded according to the <a href="#abbreviations">abbreviation definition</a>. 394 This allows records to be encoded significantly more densely than records 395 encoded with the <tt><a href="#UNABBREV_RECORD">UNABBREV_RECORD</a></tt> type, 396 and allows the abbreviation types to be specified in the stream itself, which 397 allows the files to be completely self describing. The actual encoding of 398 abbreviations is defined below. 399 </p> 400 401 <p>The record code, which is the first field of an abbreviated record, 402 may be encoded in the abbreviation definition (as a literal 403 operand) or supplied in the abbreviated record (as a Fixed or VBR 404 operand value).</p> 405 406 </div> 407 408 </div> 409 410 <!-- ======================================================================= --> 411 <h3> 412 <a name="abbreviations">Abbreviations</a> 413 </h3> 414 415 <div> 416 <p> 417 Abbreviations are an important form of compression for bitstreams. The idea is 418 to specify a dense encoding for a class of records once, then use that encoding 419 to emit many records. It takes space to emit the encoding into the file, but 420 the space is recouped (hopefully plus some) when the records that use it are 421 emitted. 422 </p> 423 424 <p> 425 Abbreviations can be determined dynamically per client, per file. Because the 426 abbreviations are stored in the bitstream itself, different streams of the same 427 format can contain different sets of abbreviations according to the needs 428 of the specific stream. 429 As a concrete example, LLVM IR files usually emit an abbreviation 430 for binary operators. If a specific LLVM module contained no or few binary 431 operators, the abbreviation does not need to be emitted. 432 </p> 433 434 <!-- _______________________________________________________________________ --> 435 <h4><a name="DEFINE_ABBREV">DEFINE_ABBREV Encoding</a></h4> 436 437 <div> 438 439 <p><tt>[DEFINE_ABBREV, numabbrevops<sub>vbr5</sub>, abbrevop0, abbrevop1, 440 ...]</tt></p> 441 442 <p> 443 A <tt>DEFINE_ABBREV</tt> record adds an abbreviation to the list of currently 444 defined abbreviations in the scope of this block. This definition only exists 445 inside this immediate block — it is not visible in subblocks or enclosing 446 blocks. Abbreviations are implicitly assigned IDs sequentially starting from 4 447 (the first application-defined abbreviation ID). Any abbreviations defined in a 448 <tt>BLOCKINFO</tt> record for the particular block type 449 receive IDs first, in order, followed by any 450 abbreviations defined within the block itself. Abbreviated data records 451 reference this ID to indicate what abbreviation they are invoking. 452 </p> 453 454 <p> 455 An abbreviation definition consists of the <tt>DEFINE_ABBREV</tt> abbrevid 456 followed by a VBR that specifies the number of abbrev operands, then the abbrev 457 operands themselves. Abbreviation operands come in three forms. They all start 458 with a single bit that indicates whether the abbrev operand is a literal operand 459 (when the bit is 1) or an encoding operand (when the bit is 0). 460 </p> 461 462 <ol> 463 <li>Literal operands — <tt>[1<sub>1</sub>, litvalue<sub>vbr8</sub>]</tt> 464 — Literal operands specify that the value in the result is always a single 465 specific value. This specific value is emitted as a vbr8 after the bit 466 indicating that it is a literal operand.</li> 467 <li>Encoding info without data — <tt>[0<sub>1</sub>, 468 encoding<sub>3</sub>]</tt> — Operand encodings that do not have extra 469 data are just emitted as their code. 470 </li> 471 <li>Encoding info with data — <tt>[0<sub>1</sub>, encoding<sub>3</sub>, 472 value<sub>vbr5</sub>]</tt> — Operand encodings that do have extra data are 473 emitted as their code, followed by the extra data. 474 </li> 475 </ol> 476 477 <p>The possible operand encodings are:</p> 478 479 <ul> 480 <li>Fixed (code 1): The field should be emitted as 481 a <a href="#fixedwidth">fixed-width value</a>, whose width is specified by 482 the operand's extra data.</li> 483 <li>VBR (code 2): The field should be emitted as 484 a <a href="#variablewidth">variable-width value</a>, whose width is 485 specified by the operand's extra data.</li> 486 <li>Array (code 3): This field is an array of values. The array operand 487 has no extra data, but expects another operand to follow it, indicating 488 the element type of the array. When reading an array in an abbreviated 489 record, the first integer is a vbr6 that indicates the array length, 490 followed by the encoded elements of the array. An array may only occur as 491 the last operand of an abbreviation (except for the one final operand that 492 gives the array's type).</li> 493 <li>Char6 (code 4): This field should be emitted as 494 a <a href="#char6">char6-encoded value</a>. This operand type takes no 495 extra data. Char6 encoding is normally used as an array element type. 496 </li> 497 <li>Blob (code 5): This field is emitted as a vbr6, followed by padding to a 498 32-bit boundary (for alignment) and an array of 8-bit objects. The array of 499 bytes is further followed by tail padding to ensure that its total length is 500 a multiple of 4 bytes. This makes it very efficient for the reader to 501 decode the data without having to make a copy of it: it can use a pointer to 502 the data in the mapped in file and poke directly at it. A blob may only 503 occur as the last operand of an abbreviation.</li> 504 </ul> 505 506 <p> 507 For example, target triples in LLVM modules are encoded as a record of the 508 form <tt>[TRIPLE, 'a', 'b', 'c', 'd']</tt>. Consider if the bitstream emitted 509 the following abbrev entry: 510 </p> 511 512 <div class="doc_code"> 513 <pre> 514 [0, Fixed, 4] 515 [0, Array] 516 [0, Char6] 517 </pre> 518 </div> 519 520 <p> 521 When emitting a record with this abbreviation, the above entry would be emitted 522 as: 523 </p> 524 525 <div class="doc_code"> 526 <p> 527 <tt>[4<sub>abbrevwidth</sub>, 2<sub>4</sub>, 4<sub>vbr6</sub>, 0<sub>6</sub>, 528 1<sub>6</sub>, 2<sub>6</sub>, 3<sub>6</sub>]</tt> 529 </p> 530 </div> 531 532 <p>These values are:</p> 533 534 <ol> 535 <li>The first value, 4, is the abbreviation ID for this abbreviation.</li> 536 <li>The second value, 2, is the record code for <tt>TRIPLE</tt> records within LLVM IR file <tt>MODULE_BLOCK</tt> blocks.</li> 537 <li>The third value, 4, is the length of the array.</li> 538 <li>The rest of the values are the char6 encoded values 539 for <tt>"abcd"</tt>.</li> 540 </ol> 541 542 <p> 543 With this abbreviation, the triple is emitted with only 37 bits (assuming a 544 abbrev id width of 3). Without the abbreviation, significantly more space would 545 be required to emit the target triple. Also, because the <tt>TRIPLE</tt> value 546 is not emitted as a literal in the abbreviation, the abbreviation can also be 547 used for any other string value. 548 </p> 549 550 </div> 551 552 </div> 553 554 <!-- ======================================================================= --> 555 <h3> 556 <a name="stdblocks">Standard Blocks</a> 557 </h3> 558 559 <div> 560 561 <p> 562 In addition to the basic block structure and record encodings, the bitstream 563 also defines specific built-in block types. These block types specify how the 564 stream is to be decoded or other metadata. In the future, new standard blocks 565 may be added. Block IDs 0-7 are reserved for standard blocks. 566 </p> 567 568 <!-- _______________________________________________________________________ --> 569 <h4><a name="BLOCKINFO">#0 - BLOCKINFO Block</a></h4> 570 571 <div> 572 573 <p> 574 The <tt>BLOCKINFO</tt> block allows the description of metadata for other 575 blocks. The currently specified records are: 576 </p> 577 578 <div class="doc_code"> 579 <pre> 580 [SETBID (#1), blockid] 581 [DEFINE_ABBREV, ...] 582 [BLOCKNAME, ...name...] 583 [SETRECORDNAME, RecordID, ...name...] 584 </pre> 585 </div> 586 587 <p> 588 The <tt>SETBID</tt> record (code 1) indicates which block ID is being 589 described. <tt>SETBID</tt> records can occur multiple times throughout the 590 block to change which block ID is being described. There must be 591 a <tt>SETBID</tt> record prior to any other records. 592 </p> 593 594 <p> 595 Standard <tt>DEFINE_ABBREV</tt> records can occur inside <tt>BLOCKINFO</tt> 596 blocks, but unlike their occurrence in normal blocks, the abbreviation is 597 defined for blocks matching the block ID we are describing, <i>not</i> the 598 <tt>BLOCKINFO</tt> block itself. The abbreviations defined 599 in <tt>BLOCKINFO</tt> blocks receive abbreviation IDs as described 600 in <tt><a href="#DEFINE_ABBREV">DEFINE_ABBREV</a></tt>. 601 </p> 602 603 <p>The <tt>BLOCKNAME</tt> record (code 2) can optionally occur in this block. The elements of 604 the record are the bytes of the string name of the block. llvm-bcanalyzer can use 605 this to dump out bitcode files symbolically.</p> 606 607 <p>The <tt>SETRECORDNAME</tt> record (code 3) can also optionally occur in this block. The 608 first operand value is a record ID number, and the rest of the elements of the record are 609 the bytes for the string name of the record. llvm-bcanalyzer can use 610 this to dump out bitcode files symbolically.</p> 611 612 <p> 613 Note that although the data in <tt>BLOCKINFO</tt> blocks is described as 614 "metadata," the abbreviations they contain are essential for parsing records 615 from the corresponding blocks. It is not safe to skip them. 616 </p> 617 618 </div> 619 620 </div> 621 622 </div> 623 624 <!-- *********************************************************************** --> 625 <h2><a name="wrapper">Bitcode Wrapper Format</a></h2> 626 <!-- *********************************************************************** --> 627 628 <div> 629 630 <p> 631 Bitcode files for LLVM IR may optionally be wrapped in a simple wrapper 632 structure. This structure contains a simple header that indicates the offset 633 and size of the embedded BC file. This allows additional information to be 634 stored alongside the BC file. The structure of this file header is: 635 </p> 636 637 <div class="doc_code"> 638 <p> 639 <tt>[Magic<sub>32</sub>, Version<sub>32</sub>, Offset<sub>32</sub>, 640 Size<sub>32</sub>, CPUType<sub>32</sub>]</tt> 641 </p> 642 </div> 643 644 <p> 645 Each of the fields are 32-bit fields stored in little endian form (as with 646 the rest of the bitcode file fields). The Magic number is always 647 <tt>0x0B17C0DE</tt> and the version is currently always <tt>0</tt>. The Offset 648 field is the offset in bytes to the start of the bitcode stream in the file, and 649 the Size field is the size in bytes of the stream. CPUType is a target-specific 650 value that can be used to encode the CPU of the target. 651 </p> 652 653 </div> 654 655 <!-- *********************************************************************** --> 656 <h2><a name="llvmir">LLVM IR Encoding</a></h2> 657 <!-- *********************************************************************** --> 658 659 <div> 660 661 <p> 662 LLVM IR is encoded into a bitstream by defining blocks and records. It uses 663 blocks for things like constant pools, functions, symbol tables, etc. It uses 664 records for things like instructions, global variable descriptors, type 665 descriptions, etc. This document does not describe the set of abbreviations 666 that the writer uses, as these are fully self-described in the file, and the 667 reader is not allowed to build in any knowledge of this. 668 </p> 669 670 <!-- ======================================================================= --> 671 <h3> 672 <a name="basics">Basics</a> 673 </h3> 674 675 <div> 676 677 <!-- _______________________________________________________________________ --> 678 <h4><a name="ir_magic">LLVM IR Magic Number</a></h4> 679 680 <div> 681 682 <p> 683 The magic number for LLVM IR files is: 684 </p> 685 686 <div class="doc_code"> 687 <p> 688 <tt>[0x0<sub>4</sub>, 0xC<sub>4</sub>, 0xE<sub>4</sub>, 0xD<sub>4</sub>]</tt> 689 </p> 690 </div> 691 692 <p> 693 When combined with the bitcode magic number and viewed as bytes, this is 694 <tt>"BC 0xC0DE"</tt>. 695 </p> 696 697 </div> 698 699 <!-- _______________________________________________________________________ --> 700 <h4><a name="ir_signed_vbr">Signed VBRs</a></h4> 701 702 <div> 703 704 <p> 705 <a href="#variablewidth">Variable Width Integer</a> encoding is an efficient way to 706 encode arbitrary sized unsigned values, but is an extremely inefficient for 707 encoding signed values, as signed values are otherwise treated as maximally large 708 unsigned values. 709 </p> 710 711 <p> 712 As such, signed VBR values of a specific width are emitted as follows: 713 </p> 714 715 <ul> 716 <li>Positive values are emitted as VBRs of the specified width, but with their 717 value shifted left by one.</li> 718 <li>Negative values are emitted as VBRs of the specified width, but the negated 719 value is shifted left by one, and the low bit is set.</li> 720 </ul> 721 722 <p> 723 With this encoding, small positive and small negative values can both 724 be emitted efficiently. Signed VBR encoding is used in 725 <tt>CST_CODE_INTEGER</tt> and <tt>CST_CODE_WIDE_INTEGER</tt> records 726 within <tt>CONSTANTS_BLOCK</tt> blocks. 727 </p> 728 729 </div> 730 731 732 <!-- _______________________________________________________________________ --> 733 <h4><a name="ir_blocks">LLVM IR Blocks</a></h4> 734 735 <div> 736 737 <p> 738 LLVM IR is defined with the following blocks: 739 </p> 740 741 <ul> 742 <li>8 — <a href="#MODULE_BLOCK"><tt>MODULE_BLOCK</tt></a> — This is the top-level block that 743 contains the entire module, and describes a variety of per-module 744 information.</li> 745 <li>9 — <a href="#PARAMATTR_BLOCK"><tt>PARAMATTR_BLOCK</tt></a> — This enumerates the parameter 746 attributes.</li> 747 <li>10 — <a href="#TYPE_BLOCK"><tt>TYPE_BLOCK</tt></a> — This describes all of the types in 748 the module.</li> 749 <li>11 — <a href="#CONSTANTS_BLOCK"><tt>CONSTANTS_BLOCK</tt></a> — This describes constants for a 750 module or function.</li> 751 <li>12 — <a href="#FUNCTION_BLOCK"><tt>FUNCTION_BLOCK</tt></a> — This describes a function 752 body.</li> 753 <li>13 — <a href="#TYPE_SYMTAB_BLOCK"><tt>TYPE_SYMTAB_BLOCK</tt></a> — This describes the type symbol 754 table.</li> 755 <li>14 — <a href="#VALUE_SYMTAB_BLOCK"><tt>VALUE_SYMTAB_BLOCK</tt></a> — This describes a value symbol 756 table.</li> 757 <li>15 — <a href="#METADATA_BLOCK"><tt>METADATA_BLOCK</tt></a> — This describes metadata items.</li> 758 <li>16 — <a href="#METADATA_ATTACHMENT"><tt>METADATA_ATTACHMENT</tt></a> — This contains records associating metadata with function instruction values.</li> 759 </ul> 760 761 </div> 762 763 </div> 764 765 <!-- ======================================================================= --> 766 <h3> 767 <a name="MODULE_BLOCK">MODULE_BLOCK Contents</a> 768 </h3> 769 770 <div> 771 772 <p>The <tt>MODULE_BLOCK</tt> block (id 8) is the top-level block for LLVM 773 bitcode files, and each bitcode file must contain exactly one. In 774 addition to records (described below) containing information 775 about the module, a <tt>MODULE_BLOCK</tt> block may contain the 776 following sub-blocks: 777 </p> 778 779 <ul> 780 <li><a href="#BLOCKINFO"><tt>BLOCKINFO</tt></a></li> 781 <li><a href="#PARAMATTR_BLOCK"><tt>PARAMATTR_BLOCK</tt></a></li> 782 <li><a href="#TYPE_BLOCK"><tt>TYPE_BLOCK</tt></a></li> 783 <li><a href="#TYPE_SYMTAB_BLOCK"><tt>TYPE_SYMTAB_BLOCK</tt></a></li> 784 <li><a href="#VALUE_SYMTAB_BLOCK"><tt>VALUE_SYMTAB_BLOCK</tt></a></li> 785 <li><a href="#CONSTANTS_BLOCK"><tt>CONSTANTS_BLOCK</tt></a></li> 786 <li><a href="#FUNCTION_BLOCK"><tt>FUNCTION_BLOCK</tt></a></li> 787 <li><a href="#METADATA_BLOCK"><tt>METADATA_BLOCK</tt></a></li> 788 </ul> 789 790 <!-- _______________________________________________________________________ --> 791 <h4><a name="MODULE_CODE_VERSION">MODULE_CODE_VERSION Record</a></h4> 792 793 <div> 794 795 <p><tt>[VERSION, version#]</tt></p> 796 797 <p>The <tt>VERSION</tt> record (code 1) contains a single value 798 indicating the format version. Only version 0 is supported at this 799 time.</p> 800 </div> 801 802 <!-- _______________________________________________________________________ --> 803 <h4><a name="MODULE_CODE_TRIPLE">MODULE_CODE_TRIPLE Record</a></h4> 804 805 <div> 806 <p><tt>[TRIPLE, ...string...]</tt></p> 807 808 <p>The <tt>TRIPLE</tt> record (code 2) contains a variable number of 809 values representing the bytes of the <tt>target triple</tt> 810 specification string.</p> 811 </div> 812 813 <!-- _______________________________________________________________________ --> 814 <h4><a name="MODULE_CODE_DATALAYOUT">MODULE_CODE_DATALAYOUT Record</a></h4> 815 816 <div> 817 <p><tt>[DATALAYOUT, ...string...]</tt></p> 818 819 <p>The <tt>DATALAYOUT</tt> record (code 3) contains a variable number of 820 values representing the bytes of the <tt>target datalayout</tt> 821 specification string.</p> 822 </div> 823 824 <!-- _______________________________________________________________________ --> 825 <h4><a name="MODULE_CODE_ASM">MODULE_CODE_ASM Record</a></h4> 826 827 <div> 828 <p><tt>[ASM, ...string...]</tt></p> 829 830 <p>The <tt>ASM</tt> record (code 4) contains a variable number of 831 values representing the bytes of <tt>module asm</tt> strings, with 832 individual assembly blocks separated by newline (ASCII 10) characters.</p> 833 </div> 834 835 <!-- _______________________________________________________________________ --> 836 <h4><a name="MODULE_CODE_SECTIONNAME">MODULE_CODE_SECTIONNAME Record</a></h4> 837 838 <div> 839 <p><tt>[SECTIONNAME, ...string...]</tt></p> 840 841 <p>The <tt>SECTIONNAME</tt> record (code 5) contains a variable number 842 of values representing the bytes of a single section name 843 string. There should be one <tt>SECTIONNAME</tt> record for each 844 section name referenced (e.g., in global variable or function 845 <tt>section</tt> attributes) within the module. These records can be 846 referenced by the 1-based index in the <i>section</i> fields of 847 <tt>GLOBALVAR</tt> or <tt>FUNCTION</tt> records.</p> 848 </div> 849 850 <!-- _______________________________________________________________________ --> 851 <h4><a name="MODULE_CODE_DEPLIB">MODULE_CODE_DEPLIB Record</a></h4> 852 853 <div> 854 <p><tt>[DEPLIB, ...string...]</tt></p> 855 856 <p>The <tt>DEPLIB</tt> record (code 6) contains a variable number of 857 values representing the bytes of a single dependent library name 858 string, one of the libraries mentioned in a <tt>deplibs</tt> 859 declaration. There should be one <tt>DEPLIB</tt> record for each 860 library name referenced.</p> 861 </div> 862 863 <!-- _______________________________________________________________________ --> 864 <h4><a name="MODULE_CODE_GLOBALVAR">MODULE_CODE_GLOBALVAR Record</a></h4> 865 866 <div> 867 <p><tt>[GLOBALVAR, pointer type, isconst, initid, linkage, alignment, section, visibility, threadlocal]</tt></p> 868 869 <p>The <tt>GLOBALVAR</tt> record (code 7) marks the declaration or 870 definition of a global variable. The operand fields are:</p> 871 872 <ul> 873 <li><i>pointer type</i>: The type index of the pointer type used to point to 874 this global variable</li> 875 876 <li><i>isconst</i>: Non-zero if the variable is treated as constant within 877 the module, or zero if it is not</li> 878 879 <li><i>initid</i>: If non-zero, the value index of the initializer for this 880 variable, plus 1.</li> 881 882 <li><a name="linkage"><i>linkage</i></a>: An encoding of the linkage 883 type for this variable: 884 <ul> 885 <li><tt>external</tt>: code 0</li> 886 <li><tt>weak</tt>: code 1</li> 887 <li><tt>appending</tt>: code 2</li> 888 <li><tt>internal</tt>: code 3</li> 889 <li><tt>linkonce</tt>: code 4</li> 890 <li><tt>dllimport</tt>: code 5</li> 891 <li><tt>dllexport</tt>: code 6</li> 892 <li><tt>extern_weak</tt>: code 7</li> 893 <li><tt>common</tt>: code 8</li> 894 <li><tt>private</tt>: code 9</li> 895 <li><tt>weak_odr</tt>: code 10</li> 896 <li><tt>linkonce_odr</tt>: code 11</li> 897 <li><tt>available_externally</tt>: code 12</li> 898 <li><tt>linker_private</tt>: code 13</li> 899 </ul> 900 </li> 901 902 <li><i>alignment</i>: The logarithm base 2 of the variable's requested 903 alignment, plus 1</li> 904 905 <li><i>section</i>: If non-zero, the 1-based section index in the 906 table of <a href="#MODULE_CODE_SECTIONNAME">MODULE_CODE_SECTIONNAME</a> 907 entries.</li> 908 909 <li><a name="visibility"><i>visibility</i></a>: If present, an 910 encoding of the visibility of this variable: 911 <ul> 912 <li><tt>default</tt>: code 0</li> 913 <li><tt>hidden</tt>: code 1</li> 914 <li><tt>protected</tt>: code 2</li> 915 </ul> 916 </li> 917 918 <li><i>threadlocal</i>: If present and non-zero, indicates that the variable 919 is <tt>thread_local</tt></li> 920 921 <li><i>unnamed_addr</i>: If present and non-zero, indicates that the variable 922 has <tt>unnamed_addr</tt></li> 923 924 </ul> 925 </div> 926 927 <!-- _______________________________________________________________________ --> 928 <h4><a name="MODULE_CODE_FUNCTION">MODULE_CODE_FUNCTION Record</a></h4> 929 930 <div> 931 932 <p><tt>[FUNCTION, type, callingconv, isproto, linkage, paramattr, alignment, section, visibility, gc]</tt></p> 933 934 <p>The <tt>FUNCTION</tt> record (code 8) marks the declaration or 935 definition of a function. The operand fields are:</p> 936 937 <ul> 938 <li><i>type</i>: The type index of the function type describing this function</li> 939 940 <li><i>callingconv</i>: The calling convention number: 941 <ul> 942 <li><tt>ccc</tt>: code 0</li> 943 <li><tt>fastcc</tt>: code 8</li> 944 <li><tt>coldcc</tt>: code 9</li> 945 <li><tt>x86_stdcallcc</tt>: code 64</li> 946 <li><tt>x86_fastcallcc</tt>: code 65</li> 947 <li><tt>arm_apcscc</tt>: code 66</li> 948 <li><tt>arm_aapcscc</tt>: code 67</li> 949 <li><tt>arm_aapcs_vfpcc</tt>: code 68</li> 950 </ul> 951 </li> 952 953 <li><i>isproto</i>: Non-zero if this entry represents a declaration 954 rather than a definition</li> 955 956 <li><i>linkage</i>: An encoding of the <a href="#linkage">linkage type</a> 957 for this function</li> 958 959 <li><i>paramattr</i>: If nonzero, the 1-based parameter attribute index 960 into the table of <a href="#PARAMATTR_CODE_ENTRY">PARAMATTR_CODE_ENTRY</a> 961 entries.</li> 962 963 <li><i>alignment</i>: The logarithm base 2 of the function's requested 964 alignment, plus 1</li> 965 966 <li><i>section</i>: If non-zero, the 1-based section index in the 967 table of <a href="#MODULE_CODE_SECTIONNAME">MODULE_CODE_SECTIONNAME</a> 968 entries.</li> 969 970 <li><i>visibility</i>: An encoding of the <a href="#visibility">visibility</a> 971 of this function</li> 972 973 <li><i>gc</i>: If present and nonzero, the 1-based garbage collector 974 index in the table of 975 <a href="#MODULE_CODE_GCNAME">MODULE_CODE_GCNAME</a> entries.</li> 976 977 <li><i>unnamed_addr</i>: If present and non-zero, indicates that the function 978 has <tt>unnamed_addr</tt></li> 979 980 </ul> 981 </div> 982 983 <!-- _______________________________________________________________________ --> 984 <h4><a name="MODULE_CODE_ALIAS">MODULE_CODE_ALIAS Record</a></h4> 985 986 <div> 987 988 <p><tt>[ALIAS, alias type, aliasee val#, linkage, visibility]</tt></p> 989 990 <p>The <tt>ALIAS</tt> record (code 9) marks the definition of an 991 alias. The operand fields are</p> 992 993 <ul> 994 <li><i>alias type</i>: The type index of the alias</li> 995 996 <li><i>aliasee val#</i>: The value index of the aliased value</li> 997 998 <li><i>linkage</i>: An encoding of the <a href="#linkage">linkage type</a> 999 for this alias</li> 1000 1001 <li><i>visibility</i>: If present, an encoding of the 1002 <a href="#visibility">visibility</a> of the alias</li> 1003 1004 </ul> 1005 </div> 1006 1007 <!-- _______________________________________________________________________ --> 1008 <h4><a name="MODULE_CODE_PURGEVALS">MODULE_CODE_PURGEVALS Record</a></h4> 1009 1010 <div> 1011 <p><tt>[PURGEVALS, numvals]</tt></p> 1012 1013 <p>The <tt>PURGEVALS</tt> record (code 10) resets the module-level 1014 value list to the size given by the single operand value. Module-level 1015 value list items are added by <tt>GLOBALVAR</tt>, <tt>FUNCTION</tt>, 1016 and <tt>ALIAS</tt> records. After a <tt>PURGEVALS</tt> record is seen, 1017 new value indices will start from the given <i>numvals</i> value.</p> 1018 </div> 1019 1020 <!-- _______________________________________________________________________ --> 1021 <h4><a name="MODULE_CODE_GCNAME">MODULE_CODE_GCNAME Record</a></h4> 1022 1023 <div> 1024 <p><tt>[GCNAME, ...string...]</tt></p> 1025 1026 <p>The <tt>GCNAME</tt> record (code 11) contains a variable number of 1027 values representing the bytes of a single garbage collector name 1028 string. There should be one <tt>GCNAME</tt> record for each garbage 1029 collector name referenced in function <tt>gc</tt> attributes within 1030 the module. These records can be referenced by 1-based index in the <i>gc</i> 1031 fields of <tt>FUNCTION</tt> records.</p> 1032 </div> 1033 1034 </div> 1035 1036 <!-- ======================================================================= --> 1037 <h3> 1038 <a name="PARAMATTR_BLOCK">PARAMATTR_BLOCK Contents</a> 1039 </h3> 1040 1041 <div> 1042 1043 <p>The <tt>PARAMATTR_BLOCK</tt> block (id 9) contains a table of 1044 entries describing the attributes of function parameters. These 1045 entries are referenced by 1-based index in the <i>paramattr</i> field 1046 of module block <a name="MODULE_CODE_FUNCTION"><tt>FUNCTION</tt></a> 1047 records, or within the <i>attr</i> field of function block <a 1048 href="#FUNC_CODE_INST_INVOKE"><tt>INST_INVOKE</tt></a> and <a 1049 href="#FUNC_CODE_INST_CALL"><tt>INST_CALL</tt></a> records.</p> 1050 1051 <p>Entries within <tt>PARAMATTR_BLOCK</tt> are constructed to ensure 1052 that each is unique (i.e., no two indicies represent equivalent 1053 attribute lists). </p> 1054 1055 <!-- _______________________________________________________________________ --> 1056 <h4><a name="PARAMATTR_CODE_ENTRY">PARAMATTR_CODE_ENTRY Record</a></h4> 1057 1058 <div> 1059 1060 <p><tt>[ENTRY, paramidx0, attr0, paramidx1, attr1...]</tt></p> 1061 1062 <p>The <tt>ENTRY</tt> record (code 1) contains an even number of 1063 values describing a unique set of function parameter attributes. Each 1064 <i>paramidx</i> value indicates which set of attributes is 1065 represented, with 0 representing the return value attributes, 1066 0xFFFFFFFF representing function attributes, and other values 1067 representing 1-based function parameters. Each <i>attr</i> value is a 1068 bitmap with the following interpretation: 1069 </p> 1070 1071 <ul> 1072 <li>bit 0: <tt>zeroext</tt></li> 1073 <li>bit 1: <tt>signext</tt></li> 1074 <li>bit 2: <tt>noreturn</tt></li> 1075 <li>bit 3: <tt>inreg</tt></li> 1076 <li>bit 4: <tt>sret</tt></li> 1077 <li>bit 5: <tt>nounwind</tt></li> 1078 <li>bit 6: <tt>noalias</tt></li> 1079 <li>bit 7: <tt>byval</tt></li> 1080 <li>bit 8: <tt>nest</tt></li> 1081 <li>bit 9: <tt>readnone</tt></li> 1082 <li>bit 10: <tt>readonly</tt></li> 1083 <li>bit 11: <tt>noinline</tt></li> 1084 <li>bit 12: <tt>alwaysinline</tt></li> 1085 <li>bit 13: <tt>optsize</tt></li> 1086 <li>bit 14: <tt>ssp</tt></li> 1087 <li>bit 15: <tt>sspreq</tt></li> 1088 <li>bits 16–31: <tt>align <var>n</var></tt></li> 1089 <li>bit 32: <tt>nocapture</tt></li> 1090 <li>bit 33: <tt>noredzone</tt></li> 1091 <li>bit 34: <tt>noimplicitfloat</tt></li> 1092 <li>bit 35: <tt>naked</tt></li> 1093 <li>bit 36: <tt>inlinehint</tt></li> 1094 <li>bits 37–39: <tt>alignstack <var>n</var></tt>, represented as 1095 the logarithm base 2 of the requested alignment, plus 1</li> 1096 </ul> 1097 </div> 1098 1099 </div> 1100 1101 <!-- ======================================================================= --> 1102 <h3> 1103 <a name="TYPE_BLOCK">TYPE_BLOCK Contents</a> 1104 </h3> 1105 1106 <div> 1107 1108 <p>The <tt>TYPE_BLOCK</tt> block (id 10) contains records which 1109 constitute a table of type operator entries used to represent types 1110 referenced within an LLVM module. Each record (with the exception of 1111 <a href="#TYPE_CODE_NUMENTRY"><tt>NUMENTRY</tt></a>) generates a 1112 single type table entry, which may be referenced by 0-based index from 1113 instructions, constants, metadata, type symbol table entries, or other 1114 type operator records. 1115 </p> 1116 1117 <p>Entries within <tt>TYPE_BLOCK</tt> are constructed to ensure that 1118 each entry is unique (i.e., no two indicies represent structurally 1119 equivalent types). </p> 1120 1121 <!-- _______________________________________________________________________ --> 1122 <h4><a name="TYPE_CODE_NUMENTRY">TYPE_CODE_NUMENTRY Record</a></h4> 1123 1124 <div> 1125 1126 <p><tt>[NUMENTRY, numentries]</tt></p> 1127 1128 <p>The <tt>NUMENTRY</tt> record (code 1) contains a single value which 1129 indicates the total number of type code entries in the type table of 1130 the module. If present, <tt>NUMENTRY</tt> should be the first record 1131 in the block. 1132 </p> 1133 </div> 1134 1135 <!-- _______________________________________________________________________ --> 1136 <h4><a name="TYPE_CODE_VOID">TYPE_CODE_VOID Record</a></h4> 1137 1138 <div> 1139 1140 <p><tt>[VOID]</tt></p> 1141 1142 <p>The <tt>VOID</tt> record (code 2) adds a <tt>void</tt> type to the 1143 type table. 1144 </p> 1145 </div> 1146 1147 <!-- _______________________________________________________________________ --> 1148 <h4><a name="TYPE_CODE_FLOAT">TYPE_CODE_FLOAT Record</a></h4> 1149 1150 <div> 1151 1152 <p><tt>[FLOAT]</tt></p> 1153 1154 <p>The <tt>FLOAT</tt> record (code 3) adds a <tt>float</tt> (32-bit 1155 floating point) type to the type table. 1156 </p> 1157 </div> 1158 1159 <!-- _______________________________________________________________________ --> 1160 <h4><a name="TYPE_CODE_DOUBLE">TYPE_CODE_DOUBLE Record</a></h4> 1161 1162 <div> 1163 1164 <p><tt>[DOUBLE]</tt></p> 1165 1166 <p>The <tt>DOUBLE</tt> record (code 4) adds a <tt>double</tt> (64-bit 1167 floating point) type to the type table. 1168 </p> 1169 </div> 1170 1171 <!-- _______________________________________________________________________ --> 1172 <h4><a name="TYPE_CODE_LABEL">TYPE_CODE_LABEL Record</a></h4> 1173 1174 <div> 1175 1176 <p><tt>[LABEL]</tt></p> 1177 1178 <p>The <tt>LABEL</tt> record (code 5) adds a <tt>label</tt> type to 1179 the type table. 1180 </p> 1181 </div> 1182 1183 <!-- _______________________________________________________________________ --> 1184 <h4><a name="TYPE_CODE_OPAQUE">TYPE_CODE_OPAQUE Record</a></h4> 1185 1186 <div> 1187 1188 <p><tt>[OPAQUE]</tt></p> 1189 1190 <p>The <tt>OPAQUE</tt> record (code 6) adds an <tt>opaque</tt> type to 1191 the type table. Note that distinct <tt>opaque</tt> types are not 1192 unified. 1193 </p> 1194 </div> 1195 1196 <!-- _______________________________________________________________________ --> 1197 <h4><a name="TYPE_CODE_INTEGER">TYPE_CODE_INTEGER Record</a></h4> 1198 1199 <div> 1200 1201 <p><tt>[INTEGER, width]</tt></p> 1202 1203 <p>The <tt>INTEGER</tt> record (code 7) adds an integer type to the 1204 type table. The single <i>width</i> field indicates the width of the 1205 integer type. 1206 </p> 1207 </div> 1208 1209 <!-- _______________________________________________________________________ --> 1210 <h4><a name="TYPE_CODE_POINTER">TYPE_CODE_POINTER Record</a></h4> 1211 1212 <div> 1213 1214 <p><tt>[POINTER, pointee type, address space]</tt></p> 1215 1216 <p>The <tt>POINTER</tt> record (code 8) adds a pointer type to the 1217 type table. The operand fields are</p> 1218 1219 <ul> 1220 <li><i>pointee type</i>: The type index of the pointed-to type</li> 1221 1222 <li><i>address space</i>: If supplied, the target-specific numbered 1223 address space where the pointed-to object resides. Otherwise, the 1224 default address space is zero. 1225 </li> 1226 </ul> 1227 </div> 1228 1229 <!-- _______________________________________________________________________ --> 1230 <h4><a name="TYPE_CODE_FUNCTION">TYPE_CODE_FUNCTION Record</a></h4> 1231 1232 <div> 1233 1234 <p><tt>[FUNCTION, vararg, ignored, retty, ...paramty... ]</tt></p> 1235 1236 <p>The <tt>FUNCTION</tt> record (code 9) adds a function type to the 1237 type table. The operand fields are</p> 1238 1239 <ul> 1240 <li><i>vararg</i>: Non-zero if the type represents a varargs function</li> 1241 1242 <li><i>ignored</i>: This value field is present for backward 1243 compatibility only, and is ignored</li> 1244 1245 <li><i>retty</i>: The type index of the function's return type</li> 1246 1247 <li><i>paramty</i>: Zero or more type indices representing the 1248 parameter types of the function</li> 1249 </ul> 1250 1251 </div> 1252 1253 <!-- _______________________________________________________________________ --> 1254 <h4><a name="TYPE_CODE_STRUCT">TYPE_CODE_STRUCT Record</a></h4> 1255 1256 <div> 1257 1258 <p><tt>[STRUCT, ispacked, ...eltty...]</tt></p> 1259 1260 <p>The <tt>STRUCT </tt> record (code 10) adds a struct type to the 1261 type table. The operand fields are</p> 1262 1263 <ul> 1264 <li><i>ispacked</i>: Non-zero if the type represents a packed structure</li> 1265 1266 <li><i>eltty</i>: Zero or more type indices representing the element 1267 types of the structure</li> 1268 </ul> 1269 </div> 1270 1271 <!-- _______________________________________________________________________ --> 1272 <h4><a name="TYPE_CODE_ARRAY">TYPE_CODE_ARRAY Record</a></h4> 1273 1274 <div> 1275 1276 <p><tt>[ARRAY, numelts, eltty]</tt></p> 1277 1278 <p>The <tt>ARRAY</tt> record (code 11) adds an array type to the type 1279 table. The operand fields are</p> 1280 1281 <ul> 1282 <li><i>numelts</i>: The number of elements in arrays of this type</li> 1283 1284 <li><i>eltty</i>: The type index of the array element type</li> 1285 </ul> 1286 </div> 1287 1288 <!-- _______________________________________________________________________ --> 1289 <h4><a name="TYPE_CODE_VECTOR">TYPE_CODE_VECTOR Record</a></h4> 1290 1291 <div> 1292 1293 <p><tt>[VECTOR, numelts, eltty]</tt></p> 1294 1295 <p>The <tt>VECTOR</tt> record (code 12) adds a vector type to the type 1296 table. The operand fields are</p> 1297 1298 <ul> 1299 <li><i>numelts</i>: The number of elements in vectors of this type</li> 1300 1301 <li><i>eltty</i>: The type index of the vector element type</li> 1302 </ul> 1303 </div> 1304 1305 <!-- _______________________________________________________________________ --> 1306 <h4><a name="TYPE_CODE_X86_FP80">TYPE_CODE_X86_FP80 Record</a></h4> 1307 1308 <div> 1309 1310 <p><tt>[X86_FP80]</tt></p> 1311 1312 <p>The <tt>X86_FP80</tt> record (code 13) adds an <tt>x86_fp80</tt> (80-bit 1313 floating point) type to the type table. 1314 </p> 1315 </div> 1316 1317 <!-- _______________________________________________________________________ --> 1318 <h4><a name="TYPE_CODE_FP128">TYPE_CODE_FP128 Record</a></h4> 1319 1320 <div> 1321 1322 <p><tt>[FP128]</tt></p> 1323 1324 <p>The <tt>FP128</tt> record (code 14) adds an <tt>fp128</tt> (128-bit 1325 floating point) type to the type table. 1326 </p> 1327 </div> 1328 1329 <!-- _______________________________________________________________________ --> 1330 <h4><a name="TYPE_CODE_PPC_FP128">TYPE_CODE_PPC_FP128 Record</a></h4> 1331 1332 <div> 1333 1334 <p><tt>[PPC_FP128]</tt></p> 1335 1336 <p>The <tt>PPC_FP128</tt> record (code 15) adds a <tt>ppc_fp128</tt> 1337 (128-bit floating point) type to the type table. 1338 </p> 1339 </div> 1340 1341 <!-- _______________________________________________________________________ --> 1342 <h4><a name="TYPE_CODE_METADATA">TYPE_CODE_METADATA Record</a></h4> 1343 1344 <div> 1345 1346 <p><tt>[METADATA]</tt></p> 1347 1348 <p>The <tt>METADATA</tt> record (code 16) adds a <tt>metadata</tt> 1349 type to the type table. 1350 </p> 1351 </div> 1352 1353 </div> 1354 1355 <!-- ======================================================================= --> 1356 <h3> 1357 <a name="CONSTANTS_BLOCK">CONSTANTS_BLOCK Contents</a> 1358 </h3> 1359 1360 <div> 1361 1362 <p>The <tt>CONSTANTS_BLOCK</tt> block (id 11) ... 1363 </p> 1364 1365 </div> 1366 1367 1368 <!-- ======================================================================= --> 1369 <h3> 1370 <a name="FUNCTION_BLOCK">FUNCTION_BLOCK Contents</a> 1371 </h3> 1372 1373 <div> 1374 1375 <p>The <tt>FUNCTION_BLOCK</tt> block (id 12) ... 1376 </p> 1377 1378 <p>In addition to the record types described below, a 1379 <tt>FUNCTION_BLOCK</tt> block may contain the following sub-blocks: 1380 </p> 1381 1382 <ul> 1383 <li><a href="#CONSTANTS_BLOCK"><tt>CONSTANTS_BLOCK</tt></a></li> 1384 <li><a href="#VALUE_SYMTAB_BLOCK"><tt>VALUE_SYMTAB_BLOCK</tt></a></li> 1385 <li><a href="#METADATA_ATTACHMENT"><tt>METADATA_ATTACHMENT</tt></a></li> 1386 </ul> 1387 1388 </div> 1389 1390 1391 <!-- ======================================================================= --> 1392 <h3> 1393 <a name="TYPE_SYMTAB_BLOCK">TYPE_SYMTAB_BLOCK Contents</a> 1394 </h3> 1395 1396 <div> 1397 1398 <p>The <tt>TYPE_SYMTAB_BLOCK</tt> block (id 13) contains entries which 1399 map between module-level named types and their corresponding type 1400 indices. 1401 </p> 1402 1403 <!-- _______________________________________________________________________ --> 1404 <h4><a name="TST_CODE_ENTRY">TST_CODE_ENTRY Record</a></h4> 1405 1406 <div> 1407 1408 <p><tt>[ENTRY, typeid, ...string...]</tt></p> 1409 1410 <p>The <tt>ENTRY</tt> record (code 1) contains a variable number of 1411 values, with the first giving the type index of the designated type, 1412 and the remaining values giving the character codes of the type 1413 name. Each entry corresponds to a single named type. 1414 </p> 1415 </div> 1416 1417 </div> 1418 1419 <!-- ======================================================================= --> 1420 <h3> 1421 <a name="VALUE_SYMTAB_BLOCK">VALUE_SYMTAB_BLOCK Contents</a> 1422 </h3> 1423 1424 <div> 1425 1426 <p>The <tt>VALUE_SYMTAB_BLOCK</tt> block (id 14) ... 1427 </p> 1428 1429 </div> 1430 1431 1432 <!-- ======================================================================= --> 1433 <h3> 1434 <a name="METADATA_BLOCK">METADATA_BLOCK Contents</a> 1435 </h3> 1436 1437 <div> 1438 1439 <p>The <tt>METADATA_BLOCK</tt> block (id 15) ... 1440 </p> 1441 1442 </div> 1443 1444 1445 <!-- ======================================================================= --> 1446 <h3> 1447 <a name="METADATA_ATTACHMENT">METADATA_ATTACHMENT Contents</a> 1448 </h3> 1449 1450 <div> 1451 1452 <p>The <tt>METADATA_ATTACHMENT</tt> block (id 16) ... 1453 </p> 1454 1455 </div> 1456 1457 </div> 1458 1459 <!-- *********************************************************************** --> 1460 <hr> 1461 <address> <a href="http://jigsaw.w3.org/css-validator/check/referer"><img 1462 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a> 1463 <a href="http://validator.w3.org/check/referer"><img 1464 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a> 1465 <a href="mailto:sabre (a] nondot.org">Chris Lattner</a><br> 1466 <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br> 1467 Last modified: $Date: 2011-04-22 20:30:22 -0400 (Fri, 22 Apr 2011) $ 1468 </address> 1469 </body> 1470 </html> 1471