1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" 2 "http://www.w3.org/TR/html4/strict.dtd"> 3 <html> 4 <head> 5 <title>LLVM Link Time Optimization: Design and Implementation</title> 6 <link rel="stylesheet" href="llvm.css" type="text/css"> 7 </head> 8 9 <h1> 10 LLVM Link Time Optimization: Design and Implementation 11 </h1> 12 13 <ul> 14 <li><a href="#desc">Description</a></li> 15 <li><a href="#design">Design Philosophy</a> 16 <ul> 17 <li><a href="#example1">Example of link time optimization</a></li> 18 <li><a href="#alternative_approaches">Alternative Approaches</a></li> 19 </ul></li> 20 <li><a href="#multiphase">Multi-phase communication between LLVM and linker</a> 21 <ul> 22 <li><a href="#phase1">Phase 1 : Read LLVM Bitcode Files</a></li> 23 <li><a href="#phase2">Phase 2 : Symbol Resolution</a></li> 24 <li><a href="#phase3">Phase 3 : Optimize Bitcode Files</a></li> 25 <li><a href="#phase4">Phase 4 : Symbol Resolution after optimization</a></li> 26 </ul></li> 27 <li><a href="#lto">libLTO</a> 28 <ul> 29 <li><a href="#lto_module_t">lto_module_t</a></li> 30 <li><a href="#lto_code_gen_t">lto_code_gen_t</a></li> 31 </ul> 32 </ul> 33 34 <div class="doc_author"> 35 <p>Written by Devang Patel and Nick Kledzik</p> 36 </div> 37 38 <!-- *********************************************************************** --> 39 <h2> 40 <a name="desc">Description</a> 41 </h2> 42 <!-- *********************************************************************** --> 43 44 <div> 45 <p> 46 LLVM features powerful intermodular optimizations which can be used at link 47 time. Link Time Optimization (LTO) is another name for intermodular optimization 48 when performed during the link stage. This document describes the interface 49 and design between the LTO optimizer and the linker.</p> 50 </div> 51 52 <!-- *********************************************************************** --> 53 <h2> 54 <a name="design">Design Philosophy</a> 55 </h2> 56 <!-- *********************************************************************** --> 57 58 <div> 59 <p> 60 The LLVM Link Time Optimizer provides complete transparency, while doing 61 intermodular optimization, in the compiler tool chain. Its main goal is to let 62 the developer take advantage of intermodular optimizations without making any 63 significant changes to the developer's makefiles or build system. This is 64 achieved through tight integration with the linker. In this model, the linker 65 treates LLVM bitcode files like native object files and allows mixing and 66 matching among them. The linker uses <a href="#lto">libLTO</a>, a shared 67 object, to handle LLVM bitcode files. This tight integration between 68 the linker and LLVM optimizer helps to do optimizations that are not possible 69 in other models. The linker input allows the optimizer to avoid relying on 70 conservative escape analysis. 71 </p> 72 73 <!-- ======================================================================= --> 74 <h3> 75 <a name="example1">Example of link time optimization</a> 76 </h3> 77 78 <div> 79 <p>The following example illustrates the advantages of LTO's integrated 80 approach and clean interface. This example requires a system linker which 81 supports LTO through the interface described in this document. Here, 82 clang transparently invokes system linker. </p> 83 <ul> 84 <li> Input source file <tt>a.c</tt> is compiled into LLVM bitcode form. 85 <li> Input source file <tt>main.c</tt> is compiled into native object code. 86 </ul> 87 <pre class="doc_code"> 88 --- a.h --- 89 extern int foo1(void); 90 extern void foo2(void); 91 extern void foo4(void); 92 93 --- a.c --- 94 #include "a.h" 95 96 static signed int i = 0; 97 98 void foo2(void) { 99 i = -1; 100 } 101 102 static int foo3() { 103 foo4(); 104 return 10; 105 } 106 107 int foo1(void) { 108 int data = 0; 109 110 if (i < 0) 111 data = foo3(); 112 113 data = data + 42; 114 return data; 115 } 116 117 --- main.c --- 118 #include <stdio.h> 119 #include "a.h" 120 121 void foo4(void) { 122 printf("Hi\n"); 123 } 124 125 int main() { 126 return foo1(); 127 } 128 129 --- command lines --- 130 $ clang -emit-llvm -c a.c -o a.o # <-- a.o is LLVM bitcode file 131 $ clang -c main.c -o main.o # <-- main.o is native object file 132 $ clang a.o main.o -o main # <-- standard link command without any modifications 133 </pre> 134 135 <ul> 136 <li>In this example, the linker recognizes that <tt>foo2()</tt> is an 137 externally visible symbol defined in LLVM bitcode file. The linker 138 completes its usual symbol resolution pass and finds that <tt>foo2()</tt> 139 is not used anywhere. This information is used by the LLVM optimizer and 140 it removes <tt>foo2()</tt>.</li> 141 <li>As soon as <tt>foo2()</tt> is removed, the optimizer recognizes that condition 142 <tt>i < 0</tt> is always false, which means <tt>foo3()</tt> is never 143 used. Hence, the optimizer also removes <tt>foo3()</tt>.</li> 144 <li>And this in turn, enables linker to remove <tt>foo4()</tt>.</li> 145 </ul> 146 147 <p>This example illustrates the advantage of tight integration with the 148 linker. Here, the optimizer can not remove <tt>foo3()</tt> without the 149 linker's input.</p> 150 151 </div> 152 153 <!-- ======================================================================= --> 154 <h3> 155 <a name="alternative_approaches">Alternative Approaches</a> 156 </h3> 157 158 <div> 159 <dl> 160 <dt><b>Compiler driver invokes link time optimizer separately.</b></dt> 161 <dd>In this model the link time optimizer is not able to take advantage of 162 information collected during the linker's normal symbol resolution phase. 163 In the above example, the optimizer can not remove <tt>foo2()</tt> without 164 the linker's input because it is externally visible. This in turn prohibits 165 the optimizer from removing <tt>foo3()</tt>.</dd> 166 <dt><b>Use separate tool to collect symbol information from all object 167 files.</b></dt> 168 <dd>In this model, a new, separate, tool or library replicates the linker's 169 capability to collect information for link time optimization. Not only is 170 this code duplication difficult to justify, but it also has several other 171 disadvantages. For example, the linking semantics and the features 172 provided by the linker on various platform are not unique. This means, 173 this new tool needs to support all such features and platforms in one 174 super tool or a separate tool per platform is required. This increases 175 maintenance cost for link time optimizer significantly, which is not 176 necessary. This approach also requires staying synchronized with linker 177 developements on various platforms, which is not the main focus of the link 178 time optimizer. Finally, this approach increases end user's build time due 179 to the duplication of work done by this separate tool and the linker itself. 180 </dd> 181 </dl> 182 </div> 183 184 </div> 185 186 <!-- *********************************************************************** --> 187 <h2> 188 <a name="multiphase">Multi-phase communication between libLTO and linker</a> 189 </h2> 190 191 <div> 192 <p>The linker collects information about symbol defininitions and uses in 193 various link objects which is more accurate than any information collected 194 by other tools during typical build cycles. The linker collects this 195 information by looking at the definitions and uses of symbols in native .o 196 files and using symbol visibility information. The linker also uses 197 user-supplied information, such as a list of exported symbols. LLVM 198 optimizer collects control flow information, data flow information and knows 199 much more about program structure from the optimizer's point of view. 200 Our goal is to take advantage of tight integration between the linker and 201 the optimizer by sharing this information during various linking phases. 202 </p> 203 204 <!-- ======================================================================= --> 205 <h3> 206 <a name="phase1">Phase 1 : Read LLVM Bitcode Files</a> 207 </h3> 208 209 <div> 210 <p>The linker first reads all object files in natural order and collects 211 symbol information. This includes native object files as well as LLVM bitcode 212 files. To minimize the cost to the linker in the case that all .o files 213 are native object files, the linker only calls <tt>lto_module_create()</tt> 214 when a supplied object file is found to not be a native object file. If 215 <tt>lto_module_create()</tt> returns that the file is an LLVM bitcode file, 216 the linker 217 then iterates over the module using <tt>lto_module_get_symbol_name()</tt> and 218 <tt>lto_module_get_symbol_attribute()</tt> to get all symbols defined and 219 referenced. 220 This information is added to the linker's global symbol table. 221 </p> 222 <p>The lto* functions are all implemented in a shared object libLTO. This 223 allows the LLVM LTO code to be updated independently of the linker tool. 224 On platforms that support it, the shared object is lazily loaded. 225 </p> 226 </div> 227 228 <!-- ======================================================================= --> 229 <h3> 230 <a name="phase2">Phase 2 : Symbol Resolution</a> 231 </h3> 232 233 <div> 234 <p>In this stage, the linker resolves symbols using global symbol table. 235 It may report undefined symbol errors, read archive members, replace 236 weak symbols, etc. The linker is able to do this seamlessly even though it 237 does not know the exact content of input LLVM bitcode files. If dead code 238 stripping is enabled then the linker collects the list of live symbols. 239 </p> 240 </div> 241 242 <!-- ======================================================================= --> 243 <h3> 244 <a name="phase3">Phase 3 : Optimize Bitcode Files</a> 245 </h3> 246 <div> 247 <p>After symbol resolution, the linker tells the LTO shared object which 248 symbols are needed by native object files. In the example above, the linker 249 reports that only <tt>foo1()</tt> is used by native object files using 250 <tt>lto_codegen_add_must_preserve_symbol()</tt>. Next the linker invokes 251 the LLVM optimizer and code generators using <tt>lto_codegen_compile()</tt> 252 which returns a native object file creating by merging the LLVM bitcode files 253 and applying various optimization passes. 254 </p> 255 </div> 256 257 <!-- ======================================================================= --> 258 <h3> 259 <a name="phase4">Phase 4 : Symbol Resolution after optimization</a> 260 </h3> 261 262 <div> 263 <p>In this phase, the linker reads optimized a native object file and 264 updates the internal global symbol table to reflect any changes. The linker 265 also collects information about any changes in use of external symbols by 266 LLVM bitcode files. In the example above, the linker notes that 267 <tt>foo4()</tt> is not used any more. If dead code stripping is enabled then 268 the linker refreshes the live symbol information appropriately and performs 269 dead code stripping.</p> 270 <p>After this phase, the linker continues linking as if it never saw LLVM 271 bitcode files.</p> 272 </div> 273 274 </div> 275 276 <!-- *********************************************************************** --> 277 <h2> 278 <a name="lto">libLTO</a> 279 </h2> 280 281 <div> 282 <p><tt>libLTO</tt> is a shared object that is part of the LLVM tools, and 283 is intended for use by a linker. <tt>libLTO</tt> provides an abstract C 284 interface to use the LLVM interprocedural optimizer without exposing details 285 of LLVM's internals. The intention is to keep the interface as stable as 286 possible even when the LLVM optimizer continues to evolve. It should even 287 be possible for a completely different compilation technology to provide 288 a different libLTO that works with their object files and the standard 289 linker tool.</p> 290 291 <!-- ======================================================================= --> 292 <h3> 293 <a name="lto_module_t">lto_module_t</a> 294 </h3> 295 296 <div> 297 298 <p>A non-native object file is handled via an <tt>lto_module_t</tt>. 299 The following functions allow the linker to check if a file (on disk 300 or in a memory buffer) is a file which libLTO can process:</p> 301 302 <pre class="doc_code"> 303 lto_module_is_object_file(const char*) 304 lto_module_is_object_file_for_target(const char*, const char*) 305 lto_module_is_object_file_in_memory(const void*, size_t) 306 lto_module_is_object_file_in_memory_for_target(const void*, size_t, const char*) 307 </pre> 308 309 <p>If the object file can be processed by libLTO, the linker creates a 310 <tt>lto_module_t</tt> by using one of</p> 311 312 <pre class="doc_code"> 313 lto_module_create(const char*) 314 lto_module_create_from_memory(const void*, size_t) 315 </pre> 316 317 <p>and when done, the handle is released via</p> 318 319 <pre class="doc_code"> 320 lto_module_dispose(lto_module_t) 321 </pre> 322 323 <p>The linker can introspect the non-native object file by getting the number of 324 symbols and getting the name and attributes of each symbol via:</p> 325 326 <pre class="doc_code"> 327 lto_module_get_num_symbols(lto_module_t) 328 lto_module_get_symbol_name(lto_module_t, unsigned int) 329 lto_module_get_symbol_attribute(lto_module_t, unsigned int) 330 </pre> 331 332 <p>The attributes of a symbol include the alignment, visibility, and kind.</p> 333 </div> 334 335 <!-- ======================================================================= --> 336 <h3> 337 <a name="lto_code_gen_t">lto_code_gen_t</a> 338 </h3> 339 340 <div> 341 342 <p>Once the linker has loaded each non-native object files into an 343 <tt>lto_module_t</tt>, it can request libLTO to process them all and 344 generate a native object file. This is done in a couple of steps. 345 First, a code generator is created with:</p> 346 347 <pre class="doc_code">lto_codegen_create()</pre> 348 349 <p>Then, each non-native object file is added to the code generator with:</p> 350 351 <pre class="doc_code"> 352 lto_codegen_add_module(lto_code_gen_t, lto_module_t) 353 </pre> 354 355 <p>The linker then has the option of setting some codegen options. Whether or 356 not to generate DWARF debug info is set with:</p> 357 358 <pre class="doc_code">lto_codegen_set_debug_model(lto_code_gen_t)</pre> 359 360 <p>Which kind of position independence is set with:</p> 361 362 <pre class="doc_code">lto_codegen_set_pic_model(lto_code_gen_t) </pre> 363 364 <p>And each symbol that is referenced by a native object file or otherwise must 365 not be optimized away is set with:</p> 366 367 <pre class="doc_code"> 368 lto_codegen_add_must_preserve_symbol(lto_code_gen_t, const char*) 369 </pre> 370 371 <p>After all these settings are done, the linker requests that a native object 372 file be created from the modules with the settings using:</p> 373 374 <pre class="doc_code">lto_codegen_compile(lto_code_gen_t, size*)</pre> 375 376 <p>which returns a pointer to a buffer containing the generated native 377 object file. The linker then parses that and links it with the rest 378 of the native object files.</p> 379 380 </div> 381 382 </div> 383 384 <!-- *********************************************************************** --> 385 386 <hr> 387 <address> 388 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img 389 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a> 390 <a href="http://validator.w3.org/check/referer"><img 391 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a> 392 393 Devang Patel and Nick Kledzik<br> 394 <a href="http://llvm.org/">LLVM Compiler Infrastructure</a><br> 395 Last modified: $Date: 2011-09-18 08:51:05 -0400 (Sun, 18 Sep 2011) $ 396 </address> 397 398 </body> 399 </html> 400 401