Home | History | Annotate | Download | only in docs
      1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" 
      2                       "http://www.w3.org/TR/html4/strict.dtd">
      3 <html>
      4 <head>
      5  <title>LLVM Link Time Optimization: Design and Implementation</title>
      6   <link rel="stylesheet" href="llvm.css" type="text/css">
      7 </head>
      8 
      9 <h1>
     10   LLVM Link Time Optimization: Design and Implementation
     11 </h1>
     12 
     13 <ul>
     14   <li><a href="#desc">Description</a></li>
     15   <li><a href="#design">Design Philosophy</a>
     16   <ul>
     17     <li><a href="#example1">Example of link time optimization</a></li>
     18     <li><a href="#alternative_approaches">Alternative Approaches</a></li>
     19   </ul></li>
     20   <li><a href="#multiphase">Multi-phase communication between LLVM and linker</a>
     21   <ul>
     22     <li><a href="#phase1">Phase 1 : Read LLVM Bitcode Files</a></li>
     23     <li><a href="#phase2">Phase 2 : Symbol Resolution</a></li>
     24     <li><a href="#phase3">Phase 3 : Optimize Bitcode Files</a></li>
     25     <li><a href="#phase4">Phase 4 : Symbol Resolution after optimization</a></li>
     26   </ul></li>
     27   <li><a href="#lto">libLTO</a>
     28   <ul>
     29     <li><a href="#lto_module_t">lto_module_t</a></li>
     30     <li><a href="#lto_code_gen_t">lto_code_gen_t</a></li>
     31   </ul>
     32 </ul>
     33 
     34 <div class="doc_author">
     35 <p>Written by Devang Patel and Nick Kledzik</p>
     36 </div>
     37 
     38 <!-- *********************************************************************** -->
     39 <h2>
     40 <a name="desc">Description</a>
     41 </h2>
     42 <!-- *********************************************************************** -->
     43 
     44 <div>
     45 <p>
     46 LLVM features powerful intermodular optimizations which can be used at link 
     47 time.  Link Time Optimization (LTO) is another name for intermodular optimization 
     48 when performed during the link stage. This document describes the interface 
     49 and design between the LTO optimizer and the linker.</p>
     50 </div>
     51 
     52 <!-- *********************************************************************** -->
     53 <h2>
     54 <a name="design">Design Philosophy</a>
     55 </h2>
     56 <!-- *********************************************************************** -->
     57 
     58 <div>
     59 <p>
     60 The LLVM Link Time Optimizer provides complete transparency, while doing 
     61 intermodular optimization, in the compiler tool chain. Its main goal is to let 
     62 the developer take advantage of intermodular optimizations without making any 
     63 significant changes to the developer's makefiles or build system. This is 
     64 achieved through tight integration with the linker. In this model, the linker 
     65 treates LLVM bitcode files like native object files and allows mixing and 
     66 matching among them. The linker uses <a href="#lto">libLTO</a>, a shared
     67 object, to handle LLVM bitcode files. This tight integration between 
     68 the linker and LLVM optimizer helps to do optimizations that are not possible 
     69 in other models. The linker input allows the optimizer to avoid relying on 
     70 conservative escape analysis.
     71 </p>
     72 
     73 <!-- ======================================================================= -->
     74 <h3>
     75   <a name="example1">Example of link time optimization</a>
     76 </h3>
     77 
     78 <div>
     79   <p>The following example illustrates the advantages of LTO's integrated
     80   approach and clean interface. This example requires a system linker which
     81   supports LTO through the interface described in this document.  Here,
     82   clang transparently invokes system linker. </p>
     83   <ul>
     84     <li> Input source file <tt>a.c</tt> is compiled into LLVM bitcode form.
     85     <li> Input source file <tt>main.c</tt> is compiled into native object code.
     86   </ul>
     87 <pre class="doc_code">
     88 --- a.h ---
     89 extern int foo1(void);
     90 extern void foo2(void);
     91 extern void foo4(void);
     92 
     93 --- a.c ---
     94 #include "a.h"
     95 
     96 static signed int i = 0;
     97 
     98 void foo2(void) {
     99   i = -1;
    100 }
    101 
    102 static int foo3() {
    103   foo4();
    104   return 10;
    105 }
    106 
    107 int foo1(void) {
    108   int data = 0;
    109 
    110   if (i &lt; 0) 
    111     data = foo3();
    112 
    113   data = data + 42;
    114   return data;
    115 }
    116 
    117 --- main.c ---
    118 #include &lt;stdio.h&gt;
    119 #include "a.h"
    120 
    121 void foo4(void) {
    122   printf("Hi\n");
    123 }
    124 
    125 int main() {
    126   return foo1();
    127 }
    128 
    129 --- command lines ---
    130 $ clang -emit-llvm -c a.c -o a.o   # &lt;-- a.o is LLVM bitcode file
    131 $ clang -c main.c -o main.o        # &lt;-- main.o is native object file
    132 $ clang a.o main.o -o main         # &lt;-- standard link command without any modifications
    133 </pre>
    134 
    135 <ul>
    136   <li>In this example, the linker recognizes that <tt>foo2()</tt> is an
    137       externally visible symbol defined in LLVM bitcode file. The linker
    138       completes its usual symbol resolution pass and finds that <tt>foo2()</tt>
    139       is not used anywhere. This information is used by the LLVM optimizer and
    140       it removes <tt>foo2()</tt>.</li>
    141   <li>As soon as <tt>foo2()</tt> is removed, the optimizer recognizes that condition 
    142       <tt>i &lt; 0</tt> is always false, which means <tt>foo3()</tt> is never 
    143       used. Hence, the optimizer also removes <tt>foo3()</tt>.</li>
    144   <li>And this in turn, enables linker to remove <tt>foo4()</tt>.</li>
    145 </ul>
    146 
    147 <p>This example illustrates the advantage of tight integration with the
    148    linker. Here, the optimizer can not remove <tt>foo3()</tt> without the
    149    linker's input.</p>
    150 
    151 </div>
    152 
    153 <!-- ======================================================================= -->
    154 <h3>
    155   <a name="alternative_approaches">Alternative Approaches</a>
    156 </h3>
    157 
    158 <div>
    159   <dl>
    160     <dt><b>Compiler driver invokes link time optimizer separately.</b></dt>
    161     <dd>In this model the link time optimizer is not able to take advantage of 
    162     information collected during the linker's normal symbol resolution phase. 
    163     In the above example, the optimizer can not remove <tt>foo2()</tt> without 
    164     the linker's input because it is externally visible. This in turn prohibits
    165     the optimizer from removing <tt>foo3()</tt>.</dd>
    166     <dt><b>Use separate tool to collect symbol information from all object
    167     files.</b></dt>
    168     <dd>In this model, a new, separate, tool or library replicates the linker's
    169     capability to collect information for link time optimization. Not only is
    170     this code duplication difficult to justify, but it also has several other 
    171     disadvantages.  For example, the linking semantics and the features 
    172     provided by the linker on various platform are not unique. This means, 
    173     this new tool needs to support all such features and platforms in one 
    174     super tool or a separate tool per platform is required. This increases 
    175     maintenance cost for link time optimizer significantly, which is not 
    176     necessary. This approach also requires staying synchronized with linker 
    177     developements on various platforms, which is not the main focus of the link 
    178     time optimizer. Finally, this approach increases end user's build time due 
    179     to the duplication of work done by this separate tool and the linker itself.
    180     </dd>
    181   </dl>
    182 </div>
    183 
    184 </div>
    185 
    186 <!-- *********************************************************************** -->
    187 <h2>
    188   <a name="multiphase">Multi-phase communication between libLTO and linker</a>
    189 </h2>
    190 
    191 <div>
    192   <p>The linker collects information about symbol defininitions and uses in 
    193   various link objects which is more accurate than any information collected 
    194   by other tools during typical build cycles.  The linker collects this 
    195   information by looking at the definitions and uses of symbols in native .o 
    196   files and using symbol visibility information. The linker also uses 
    197   user-supplied information, such as a list of exported symbols. LLVM 
    198   optimizer collects control flow information, data flow information and knows 
    199   much more about program structure from the optimizer's point of view. 
    200   Our goal is to take advantage of tight integration between the linker and 
    201   the optimizer by sharing this information during various linking phases.
    202 </p>
    203 
    204 <!-- ======================================================================= -->
    205 <h3>
    206   <a name="phase1">Phase 1 : Read LLVM Bitcode Files</a>
    207 </h3>
    208 
    209 <div>
    210   <p>The linker first reads all object files in natural order and collects 
    211   symbol information. This includes native object files as well as LLVM bitcode 
    212   files.  To minimize the cost to the linker in the case that all .o files
    213   are native object files, the linker only calls <tt>lto_module_create()</tt> 
    214   when a supplied object file is found to not be a native object file.  If
    215   <tt>lto_module_create()</tt> returns that the file is an LLVM bitcode file, 
    216   the linker
    217   then iterates over the module using <tt>lto_module_get_symbol_name()</tt> and
    218   <tt>lto_module_get_symbol_attribute()</tt> to get all symbols defined and 
    219   referenced.
    220   This information is added to the linker's global symbol table.
    221 </p>
    222   <p>The lto* functions are all implemented in a shared object libLTO.  This
    223   allows the LLVM LTO code to be updated independently of the linker tool.
    224   On platforms that support it, the shared object is lazily loaded. 
    225 </p>
    226 </div>
    227 
    228 <!-- ======================================================================= -->
    229 <h3>
    230   <a name="phase2">Phase 2 : Symbol Resolution</a>
    231 </h3>
    232 
    233 <div>
    234   <p>In this stage, the linker resolves symbols using global symbol table. 
    235   It may report undefined symbol errors, read archive members, replace 
    236   weak symbols, etc.  The linker is able to do this seamlessly even though it 
    237   does not know the exact content of input LLVM bitcode files.  If dead code 
    238   stripping is enabled then the linker collects the list of live symbols.
    239   </p>
    240 </div>
    241 
    242 <!-- ======================================================================= -->
    243 <h3>
    244   <a name="phase3">Phase 3 : Optimize Bitcode Files</a>
    245 </h3>
    246 <div>
    247   <p>After symbol resolution, the linker tells the LTO shared object which
    248   symbols are needed by native object files.  In the example above, the linker 
    249   reports that only <tt>foo1()</tt> is used by native object files using 
    250   <tt>lto_codegen_add_must_preserve_symbol()</tt>.  Next the linker invokes
    251   the LLVM optimizer and code generators using <tt>lto_codegen_compile()</tt>
    252   which returns a native object file creating by merging the LLVM bitcode files 
    253   and applying various optimization passes.  
    254 </p>
    255 </div>
    256 
    257 <!-- ======================================================================= -->
    258 <h3>
    259   <a name="phase4">Phase 4 : Symbol Resolution after optimization</a>
    260 </h3>
    261 
    262 <div>
    263   <p>In this phase, the linker reads optimized a native object file and 
    264   updates the internal global symbol table to reflect any changes. The linker 
    265   also collects information about any changes in use of external symbols by 
    266   LLVM bitcode files. In the example above, the linker notes that 
    267   <tt>foo4()</tt> is not used any more. If dead code stripping is enabled then 
    268   the linker refreshes the live symbol information appropriately and performs 
    269   dead code stripping.</p>
    270   <p>After this phase, the linker continues linking as if it never saw LLVM 
    271   bitcode files.</p>
    272 </div>
    273 
    274 </div>
    275 
    276 <!-- *********************************************************************** -->
    277 <h2>
    278 <a name="lto">libLTO</a>
    279 </h2>
    280 
    281 <div>
    282   <p><tt>libLTO</tt> is a shared object that is part of the LLVM tools, and 
    283   is intended for use by a linker. <tt>libLTO</tt> provides an abstract C 
    284   interface to use the LLVM interprocedural optimizer without exposing details 
    285   of LLVM's internals. The intention is to keep the interface as stable as 
    286   possible even when the LLVM optimizer continues to evolve. It should even
    287   be possible for a completely different compilation technology to provide
    288   a different libLTO that works with their object files and the standard
    289   linker tool.</p>
    290 
    291 <!-- ======================================================================= -->
    292 <h3>
    293   <a name="lto_module_t">lto_module_t</a>
    294 </h3>
    295 
    296 <div>
    297 
    298 <p>A non-native object file is handled via an <tt>lto_module_t</tt>.  
    299 The following functions allow the linker to check if a file (on disk
    300 or in a memory buffer) is a file which libLTO can process:</p>
    301 
    302 <pre class="doc_code">
    303 lto_module_is_object_file(const char*)
    304 lto_module_is_object_file_for_target(const char*, const char*)
    305 lto_module_is_object_file_in_memory(const void*, size_t)
    306 lto_module_is_object_file_in_memory_for_target(const void*, size_t, const char*)
    307 </pre>
    308 
    309 <p>If the object file can be processed by libLTO, the linker creates a
    310 <tt>lto_module_t</tt> by using one of</p>
    311 
    312 <pre class="doc_code">
    313 lto_module_create(const char*)
    314 lto_module_create_from_memory(const void*, size_t)
    315 </pre>
    316 
    317 <p>and when done, the handle is released via</p>
    318 
    319 <pre class="doc_code">
    320 lto_module_dispose(lto_module_t)
    321 </pre>
    322 
    323 <p>The linker can introspect the non-native object file by getting the number of
    324 symbols and getting the name and attributes of each symbol via:</p>
    325 
    326 <pre class="doc_code">
    327 lto_module_get_num_symbols(lto_module_t)
    328 lto_module_get_symbol_name(lto_module_t, unsigned int)
    329 lto_module_get_symbol_attribute(lto_module_t, unsigned int)
    330 </pre>
    331 
    332 <p>The attributes of a symbol include the alignment, visibility, and kind.</p>
    333 </div>
    334 
    335 <!-- ======================================================================= -->
    336 <h3>
    337   <a name="lto_code_gen_t">lto_code_gen_t</a>
    338 </h3>
    339 
    340 <div>
    341 
    342 <p>Once the linker has loaded each non-native object files into an
    343 <tt>lto_module_t</tt>, it can request libLTO to process them all and
    344 generate a native object file.  This is done in a couple of steps.
    345 First, a code generator is created with:</p>
    346 
    347 <pre class="doc_code">lto_codegen_create()</pre>
    348 
    349 <p>Then, each non-native object file is added to the code generator with:</p>
    350 
    351 <pre class="doc_code">
    352 lto_codegen_add_module(lto_code_gen_t, lto_module_t)
    353 </pre>
    354 
    355 <p>The linker then has the option of setting some codegen options.  Whether or
    356 not to generate DWARF debug info is set with:</p>
    357   
    358 <pre class="doc_code">lto_codegen_set_debug_model(lto_code_gen_t)</pre>
    359 
    360 <p>Which kind of position independence is set with:</p>
    361 
    362 <pre class="doc_code">lto_codegen_set_pic_model(lto_code_gen_t) </pre>
    363   
    364 <p>And each symbol that is referenced by a native object file or otherwise must
    365 not be optimized away is set with:</p>
    366 
    367 <pre class="doc_code">
    368 lto_codegen_add_must_preserve_symbol(lto_code_gen_t, const char*)
    369 </pre>
    370 
    371 <p>After all these settings are done, the linker requests that a native object
    372 file be created from the modules with the settings using:</p>
    373 
    374 <pre class="doc_code">lto_codegen_compile(lto_code_gen_t, size*)</pre>
    375 
    376 <p>which returns a pointer to a buffer containing the generated native
    377 object file.  The linker then parses that and links it with the rest 
    378 of the native object files.</p>
    379 
    380 </div>
    381 
    382 </div>
    383 
    384 <!-- *********************************************************************** -->
    385 
    386 <hr>
    387 <address>
    388   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
    389   src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
    390   <a href="http://validator.w3.org/check/referer"><img
    391   src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
    392 
    393   Devang Patel and Nick Kledzik<br>
    394   <a href="http://llvm.org/">LLVM Compiler Infrastructure</a><br>
    395   Last modified: $Date: 2011-09-18 08:51:05 -0400 (Sun, 18 Sep 2011) $
    396 </address>
    397 
    398 </body>
    399 </html>
    400 
    401