Home | History | Annotate | Download | only in Mips
      1 //===- Mips64InstrInfo.td - Mips64 Instruction Information -*- tablegen -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file describes Mips64 instructions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 //===----------------------------------------------------------------------===//
     15 // Mips Operand, Complex Patterns and Transformations Definitions.
     16 //===----------------------------------------------------------------------===//
     17 
     18 // Instruction operand types
     19 def shamt_64       : Operand<i64>;
     20 
     21 // Unsigned Operand
     22 def uimm16_64      : Operand<i64> {
     23   let PrintMethod = "printUnsignedImm";
     24 }
     25 
     26 // Transformation Function - get Imm - 32.
     27 def Subtract32 : SDNodeXForm<imm, [{
     28   return getI32Imm((unsigned)N->getZExtValue() - 32);
     29 }]>;
     30 
     31 // imm32_63 predicate - True if imm is in range [32, 63].
     32 def imm32_63 : ImmLeaf<i64,
     33                        [{return (int32_t)Imm >= 32 && (int32_t)Imm < 64;}],
     34                        Subtract32>;
     35 
     36 //===----------------------------------------------------------------------===//
     37 // Instructions specific format
     38 //===----------------------------------------------------------------------===//
     39 // Shifts
     40 class LogicR_shift_rotate_imm64<bits<6> func, bits<5> _rs, string instr_asm,
     41                                 SDNode OpNode, PatFrag PF>:
     42   FR<0x00, func, (outs CPU64Regs:$rd), (ins CPU64Regs:$rt, shamt_64:$shamt),
     43      !strconcat(instr_asm, "\t$rd, $rt, $shamt"),
     44      [(set CPU64Regs:$rd, (OpNode CPU64Regs:$rt, (i64 PF:$shamt)))],
     45      IIAlu> {
     46   let rs = _rs;
     47 }
     48 
     49 class LogicR_shift_rotate_reg64<bits<6> func, bits<5> _shamt, string instr_asm,
     50                                 SDNode OpNode>:
     51   FR<0x00, func, (outs CPU64Regs:$rd), (ins CPU64Regs:$rs, CPU64Regs:$rt),
     52      !strconcat(instr_asm, "\t$rd, $rt, $rs"),
     53      [(set CPU64Regs:$rd, (OpNode CPU64Regs:$rt, CPU64Regs:$rs))], IIAlu> {
     54   let shamt = _shamt;
     55 }
     56 
     57 // Mul, Div
     58 let rd = 0, shamt = 0, Defs = [HI64, LO64] in {
     59   let isCommutable = 1 in
     60   class Mul64<bits<6> func, string instr_asm, InstrItinClass itin>:
     61     FR<0x00, func, (outs), (ins CPU64Regs:$rs, CPU64Regs:$rt),
     62        !strconcat(instr_asm, "\t$rs, $rt"), [], itin>;
     63 
     64   class Div64<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin>:
     65               FR<0x00, func, (outs), (ins CPU64Regs:$rs, CPU64Regs:$rt),
     66               !strconcat(instr_asm, "\t$$zero, $rs, $rt"),
     67               [(op CPU64Regs:$rs, CPU64Regs:$rt)], itin>;
     68 }
     69 
     70 // Move from Hi/Lo
     71 let shamt = 0 in {
     72 let rs = 0, rt = 0 in
     73 class MoveFromLOHI64<bits<6> func, string instr_asm>:
     74   FR<0x00, func, (outs CPU64Regs:$rd), (ins),
     75      !strconcat(instr_asm, "\t$rd"), [], IIHiLo>;
     76 
     77 let rt = 0, rd = 0 in
     78 class MoveToLOHI64<bits<6> func, string instr_asm>:
     79   FR<0x00, func, (outs), (ins CPU64Regs:$rs),
     80      !strconcat(instr_asm, "\t$rs"), [], IIHiLo>;
     81 }
     82 
     83 // Count Leading Ones/Zeros in Word
     84 class CountLeading64<bits<6> func, string instr_asm, list<dag> pattern>:
     85   FR<0x1c, func, (outs CPU64Regs:$rd), (ins CPU64Regs:$rs),
     86      !strconcat(instr_asm, "\t$rd, $rs"), pattern, IIAlu>,
     87      Requires<[HasBitCount]> {
     88   let shamt = 0;
     89   let rt = rd;
     90 }
     91 
     92 //===----------------------------------------------------------------------===//
     93 // Instruction definition
     94 //===----------------------------------------------------------------------===//
     95 
     96 /// Arithmetic Instructions (ALU Immediate)
     97 def DADDiu   : ArithLogicI<0x19, "daddiu", add, simm16_64, immSExt16,
     98                            CPU64Regs>;
     99 def DANDi    : ArithLogicI<0x0c, "andi", and, uimm16_64, immZExt16, CPU64Regs>;
    100 def SLTi64   : SetCC_I<0x0a, "slti", setlt, simm16_64, immSExt16, CPU64Regs>;
    101 def SLTiu64  : SetCC_I<0x0b, "sltiu", setult, simm16_64, immSExt16, CPU64Regs>;
    102 def ORi64    : ArithLogicI<0x0d, "ori", or, uimm16_64, immZExt16, CPU64Regs>;
    103 def XORi64   : ArithLogicI<0x0e, "xori", xor, uimm16_64, immZExt16, CPU64Regs>;
    104 
    105 /// Arithmetic Instructions (3-Operand, R-Type)
    106 def DADDu    : ArithLogicR<0x00, 0x2d, "daddu", add, IIAlu, CPU64Regs, 1>;
    107 def DSUBu    : ArithLogicR<0x00, 0x2f, "dsubu", sub, IIAlu, CPU64Regs>;
    108 def SLT64    : SetCC_R<0x00, 0x2a, "slt", setlt, CPU64Regs>;
    109 def SLTu64   : SetCC_R<0x00, 0x2b, "sltu", setult, CPU64Regs>;
    110 def AND64    : ArithLogicR<0x00, 0x24, "and", and, IIAlu, CPU64Regs, 1>;
    111 def OR64     : ArithLogicR<0x00, 0x25, "or", or, IIAlu, CPU64Regs, 1>;
    112 def XOR64    : ArithLogicR<0x00, 0x26, "xor", xor, IIAlu, CPU64Regs, 1>;
    113 def NOR64    : LogicNOR<0x00, 0x27, "nor", CPU64Regs>;
    114 
    115 /// Shift Instructions
    116 def DSLL     : LogicR_shift_rotate_imm64<0x38, 0x00, "dsll", shl, immZExt5>;
    117 def DSRL     : LogicR_shift_rotate_imm64<0x3a, 0x00, "dsrl", srl, immZExt5>;
    118 def DSRA     : LogicR_shift_rotate_imm64<0x3b, 0x00, "dsra", sra, immZExt5>;
    119 def DSLL32   : LogicR_shift_rotate_imm64<0x3c, 0x00, "dsll32", shl, imm32_63>;
    120 def DSRL32   : LogicR_shift_rotate_imm64<0x3e, 0x00, "dsrl32", srl, imm32_63>;
    121 def DSRA32   : LogicR_shift_rotate_imm64<0x3f, 0x00, "dsra32", sra, imm32_63>;
    122 def DSLLV    : LogicR_shift_rotate_reg64<0x24, 0x00, "dsllv", shl>;
    123 def DSRLV    : LogicR_shift_rotate_reg64<0x26, 0x00, "dsrlv", srl>;
    124 def DSRAV    : LogicR_shift_rotate_reg64<0x27, 0x00, "dsrav", sra>;
    125 
    126 // Rotate Instructions
    127 let Predicates = [HasMips64r2] in {
    128   def DROTR    : LogicR_shift_rotate_imm64<0x3a, 0x01, "drotr", rotr, immZExt5>;
    129   def DROTR32  : LogicR_shift_rotate_imm64<0x3e, 0x01, "drotr32", rotr,
    130                                            imm32_63>;
    131   def DROTRV   : LogicR_shift_rotate_reg64<0x16, 0x01, "drotrv", rotr>;
    132 }
    133 
    134 /// Load and Store Instructions
    135 ///  aligned 
    136 defm LB64    : LoadM64<0x20, "lb",  sextloadi8>;
    137 defm LBu64   : LoadM64<0x24, "lbu", zextloadi8>;
    138 defm LH64    : LoadM64<0x21, "lh",  sextloadi16_a>;
    139 defm LHu64   : LoadM64<0x25, "lhu", zextloadi16_a>;
    140 defm LW64    : LoadM64<0x23, "lw",  sextloadi32_a>;
    141 defm LWu64   : LoadM64<0x27, "lwu", zextloadi32_a>;
    142 defm SB64    : StoreM64<0x28, "sb", truncstorei8>;
    143 defm SH64    : StoreM64<0x29, "sh", truncstorei16_a>;
    144 defm SW64    : StoreM64<0x2b, "sw", truncstorei32_a>;
    145 defm LD      : LoadM64<0x37, "ld",  load_a>;
    146 defm SD      : StoreM64<0x3f, "sd", store_a>;
    147 
    148 ///  unaligned
    149 defm ULH64     : LoadM64<0x21, "ulh",  sextloadi16_u, 1>;
    150 defm ULHu64    : LoadM64<0x25, "ulhu", zextloadi16_u, 1>;
    151 defm ULW64     : LoadM64<0x23, "ulw",  sextloadi32_u, 1>;
    152 defm USH64     : StoreM64<0x29, "ush", truncstorei16_u, 1>;
    153 defm USW64     : StoreM64<0x2b, "usw", truncstorei32_u, 1>;
    154 defm ULD       : LoadM64<0x37, "uld",  load_u, 1>;
    155 defm USD       : StoreM64<0x3f, "usd", store_u, 1>;
    156 
    157 /// Jump and Branch Instructions
    158 def BEQ64  : CBranch<0x04, "beq", seteq, CPU64Regs>;
    159 def BNE64  : CBranch<0x05, "bne", setne, CPU64Regs>;
    160 def BGEZ64 : CBranchZero<0x01, 1, "bgez", setge, CPU64Regs>;
    161 def BGTZ64 : CBranchZero<0x07, 0, "bgtz", setgt, CPU64Regs>;
    162 def BLEZ64 : CBranchZero<0x07, 0, "blez", setle, CPU64Regs>;
    163 def BLTZ64 : CBranchZero<0x01, 0, "bltz", setlt, CPU64Regs>;
    164 
    165 /// Multiply and Divide Instructions.
    166 def DMULT    : Mul64<0x1c, "dmult", IIImul>;
    167 def DMULTu   : Mul64<0x1d, "dmultu", IIImul>;
    168 def DSDIV    : Div64<MipsDivRem, 0x1e, "ddiv", IIIdiv>;
    169 def DUDIV    : Div64<MipsDivRemU, 0x1f, "ddivu", IIIdiv>;
    170 
    171 let Defs = [HI64] in
    172   def MTHI64  : MoveToLOHI64<0x11, "mthi">;
    173 let Defs = [LO64] in
    174   def MTLO64  : MoveToLOHI64<0x13, "mtlo">;
    175 
    176 let Uses = [HI64] in
    177   def MFHI64  : MoveFromLOHI64<0x10, "mfhi">;
    178 let Uses = [LO64] in
    179   def MFLO64  : MoveFromLOHI64<0x12, "mflo">;
    180 
    181 /// Count Leading
    182 def DCLZ : CountLeading64<0x24, "dclz",
    183                           [(set CPU64Regs:$rd, (ctlz CPU64Regs:$rs))]>;
    184 def DCLO : CountLeading64<0x25, "dclo",
    185                           [(set CPU64Regs:$rd, (ctlz (not CPU64Regs:$rs)))]>;
    186 
    187 //===----------------------------------------------------------------------===//
    188 //  Arbitrary patterns that map to one or more instructions
    189 //===----------------------------------------------------------------------===//
    190 
    191 // Small immediates
    192 def : Pat<(i64 immSExt16:$in),
    193           (DADDiu ZERO_64, imm:$in)>;
    194 def : Pat<(i64 immZExt16:$in),
    195           (ORi64 ZERO_64, imm:$in)>;
    196 
    197 // zextloadi32_u
    198 def : Pat<(zextloadi32_u addr:$a), (DSRL (DSLL (ULW64_P8 addr:$a), 32), 32)>,
    199       Requires<[IsN64]>;
    200 def : Pat<(zextloadi32_u addr:$a), (DSRL (DSLL (ULW64 addr:$a), 32), 32)>,
    201       Requires<[NotN64]>;
    202 
    203 // hi/lo relocs
    204 def : Pat<(i64 (MipsLo tglobaladdr:$in)), (DADDiu ZERO_64, tglobaladdr:$in)>;
    205 
    206 defm : BrcondPats<CPU64Regs, BEQ64, BNE64, SLT64, SLTu64, SLTi64, SLTiu64,
    207                   ZERO_64>;
    208 
    209 // setcc patterns
    210 defm : SeteqPats<CPU64Regs, SLTiu64, XOR64, SLTu64, ZERO_64>;
    211 defm : SetlePats<CPU64Regs, SLT64, SLTu64>;
    212 defm : SetgtPats<CPU64Regs, SLT64, SLTu64>;
    213 defm : SetgePats<CPU64Regs, SLT64, SLTu64>;
    214 defm : SetgeImmPats<CPU64Regs, SLTi64, SLTiu64>;
    215