Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombine.h - Main InstCombine pass definition -------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #ifndef INSTCOMBINE_INSTCOMBINE_H
     11 #define INSTCOMBINE_INSTCOMBINE_H
     12 
     13 #include "InstCombineWorklist.h"
     14 #include "llvm/IntrinsicInst.h"
     15 #include "llvm/Operator.h"
     16 #include "llvm/Pass.h"
     17 #include "llvm/Analysis/ValueTracking.h"
     18 #include "llvm/Support/IRBuilder.h"
     19 #include "llvm/Support/InstVisitor.h"
     20 #include "llvm/Support/TargetFolder.h"
     21 
     22 namespace llvm {
     23   class CallSite;
     24   class TargetData;
     25   class DbgDeclareInst;
     26   class MemIntrinsic;
     27   class MemSetInst;
     28 
     29 /// SelectPatternFlavor - We can match a variety of different patterns for
     30 /// select operations.
     31 enum SelectPatternFlavor {
     32   SPF_UNKNOWN = 0,
     33   SPF_SMIN, SPF_UMIN,
     34   SPF_SMAX, SPF_UMAX
     35   //SPF_ABS - TODO.
     36 };
     37 
     38 /// getComplexity:  Assign a complexity or rank value to LLVM Values...
     39 ///   0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
     40 static inline unsigned getComplexity(Value *V) {
     41   if (isa<Instruction>(V)) {
     42     if (BinaryOperator::isNeg(V) ||
     43         BinaryOperator::isFNeg(V) ||
     44         BinaryOperator::isNot(V))
     45       return 3;
     46     return 4;
     47   }
     48   if (isa<Argument>(V)) return 3;
     49   return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
     50 }
     51 
     52 
     53 /// InstCombineIRInserter - This is an IRBuilder insertion helper that works
     54 /// just like the normal insertion helper, but also adds any new instructions
     55 /// to the instcombine worklist.
     56 class LLVM_LIBRARY_VISIBILITY InstCombineIRInserter
     57     : public IRBuilderDefaultInserter<true> {
     58   InstCombineWorklist &Worklist;
     59 public:
     60   InstCombineIRInserter(InstCombineWorklist &WL) : Worklist(WL) {}
     61 
     62   void InsertHelper(Instruction *I, const Twine &Name,
     63                     BasicBlock *BB, BasicBlock::iterator InsertPt) const {
     64     IRBuilderDefaultInserter<true>::InsertHelper(I, Name, BB, InsertPt);
     65     Worklist.Add(I);
     66   }
     67 };
     68 
     69 /// InstCombiner - The -instcombine pass.
     70 class LLVM_LIBRARY_VISIBILITY InstCombiner
     71                              : public FunctionPass,
     72                                public InstVisitor<InstCombiner, Instruction*> {
     73   TargetData *TD;
     74   bool MadeIRChange;
     75 public:
     76   /// Worklist - All of the instructions that need to be simplified.
     77   InstCombineWorklist Worklist;
     78 
     79   /// Builder - This is an IRBuilder that automatically inserts new
     80   /// instructions into the worklist when they are created.
     81   typedef IRBuilder<true, TargetFolder, InstCombineIRInserter> BuilderTy;
     82   BuilderTy *Builder;
     83 
     84   static char ID; // Pass identification, replacement for typeid
     85   InstCombiner() : FunctionPass(ID), TD(0), Builder(0) {
     86     initializeInstCombinerPass(*PassRegistry::getPassRegistry());
     87   }
     88 
     89 public:
     90   virtual bool runOnFunction(Function &F);
     91 
     92   bool DoOneIteration(Function &F, unsigned ItNum);
     93 
     94   virtual void getAnalysisUsage(AnalysisUsage &AU) const;
     95 
     96   TargetData *getTargetData() const { return TD; }
     97 
     98   // Visitation implementation - Implement instruction combining for different
     99   // instruction types.  The semantics are as follows:
    100   // Return Value:
    101   //    null        - No change was made
    102   //     I          - Change was made, I is still valid, I may be dead though
    103   //   otherwise    - Change was made, replace I with returned instruction
    104   //
    105   Instruction *visitAdd(BinaryOperator &I);
    106   Instruction *visitFAdd(BinaryOperator &I);
    107   Value *OptimizePointerDifference(Value *LHS, Value *RHS, Type *Ty);
    108   Instruction *visitSub(BinaryOperator &I);
    109   Instruction *visitFSub(BinaryOperator &I);
    110   Instruction *visitMul(BinaryOperator &I);
    111   Instruction *visitFMul(BinaryOperator &I);
    112   Instruction *visitURem(BinaryOperator &I);
    113   Instruction *visitSRem(BinaryOperator &I);
    114   Instruction *visitFRem(BinaryOperator &I);
    115   bool SimplifyDivRemOfSelect(BinaryOperator &I);
    116   Instruction *commonRemTransforms(BinaryOperator &I);
    117   Instruction *commonIRemTransforms(BinaryOperator &I);
    118   Instruction *commonDivTransforms(BinaryOperator &I);
    119   Instruction *commonIDivTransforms(BinaryOperator &I);
    120   Instruction *visitUDiv(BinaryOperator &I);
    121   Instruction *visitSDiv(BinaryOperator &I);
    122   Instruction *visitFDiv(BinaryOperator &I);
    123   Value *FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS);
    124   Value *FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS);
    125   Instruction *visitAnd(BinaryOperator &I);
    126   Value *FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS);
    127   Value *FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS);
    128   Instruction *FoldOrWithConstants(BinaryOperator &I, Value *Op,
    129                                    Value *A, Value *B, Value *C);
    130   Instruction *visitOr (BinaryOperator &I);
    131   Instruction *visitXor(BinaryOperator &I);
    132   Instruction *visitShl(BinaryOperator &I);
    133   Instruction *visitAShr(BinaryOperator &I);
    134   Instruction *visitLShr(BinaryOperator &I);
    135   Instruction *commonShiftTransforms(BinaryOperator &I);
    136   Instruction *FoldFCmp_IntToFP_Cst(FCmpInst &I, Instruction *LHSI,
    137                                     Constant *RHSC);
    138   Instruction *FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
    139                                             GlobalVariable *GV, CmpInst &ICI,
    140                                             ConstantInt *AndCst = 0);
    141   Instruction *visitFCmpInst(FCmpInst &I);
    142   Instruction *visitICmpInst(ICmpInst &I);
    143   Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI);
    144   Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
    145                                               Instruction *LHS,
    146                                               ConstantInt *RHS);
    147   Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
    148                               ConstantInt *DivRHS);
    149   Instruction *FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *DivI,
    150                               ConstantInt *DivRHS);
    151   Instruction *FoldICmpAddOpCst(ICmpInst &ICI, Value *X, ConstantInt *CI,
    152                                 ICmpInst::Predicate Pred, Value *TheAdd);
    153   Instruction *FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
    154                            ICmpInst::Predicate Cond, Instruction &I);
    155   Instruction *FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
    156                                    BinaryOperator &I);
    157   Instruction *commonCastTransforms(CastInst &CI);
    158   Instruction *commonPointerCastTransforms(CastInst &CI);
    159   Instruction *visitTrunc(TruncInst &CI);
    160   Instruction *visitZExt(ZExtInst &CI);
    161   Instruction *visitSExt(SExtInst &CI);
    162   Instruction *visitFPTrunc(FPTruncInst &CI);
    163   Instruction *visitFPExt(CastInst &CI);
    164   Instruction *visitFPToUI(FPToUIInst &FI);
    165   Instruction *visitFPToSI(FPToSIInst &FI);
    166   Instruction *visitUIToFP(CastInst &CI);
    167   Instruction *visitSIToFP(CastInst &CI);
    168   Instruction *visitPtrToInt(PtrToIntInst &CI);
    169   Instruction *visitIntToPtr(IntToPtrInst &CI);
    170   Instruction *visitBitCast(BitCastInst &CI);
    171   Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI,
    172                               Instruction *FI);
    173   Instruction *FoldSelectIntoOp(SelectInst &SI, Value*, Value*);
    174   Instruction *FoldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1,
    175                             Value *A, Value *B, Instruction &Outer,
    176                             SelectPatternFlavor SPF2, Value *C);
    177   Instruction *visitSelectInst(SelectInst &SI);
    178   Instruction *visitSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
    179   Instruction *visitCallInst(CallInst &CI);
    180   Instruction *visitInvokeInst(InvokeInst &II);
    181 
    182   Instruction *SliceUpIllegalIntegerPHI(PHINode &PN);
    183   Instruction *visitPHINode(PHINode &PN);
    184   Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
    185   Instruction *visitAllocaInst(AllocaInst &AI);
    186   Instruction *visitMalloc(Instruction &FI);
    187   Instruction *visitFree(CallInst &FI);
    188   Instruction *visitLoadInst(LoadInst &LI);
    189   Instruction *visitStoreInst(StoreInst &SI);
    190   Instruction *visitBranchInst(BranchInst &BI);
    191   Instruction *visitSwitchInst(SwitchInst &SI);
    192   Instruction *visitInsertElementInst(InsertElementInst &IE);
    193   Instruction *visitExtractElementInst(ExtractElementInst &EI);
    194   Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
    195   Instruction *visitExtractValueInst(ExtractValueInst &EV);
    196   Instruction *visitLandingPadInst(LandingPadInst &LI);
    197 
    198   // visitInstruction - Specify what to return for unhandled instructions...
    199   Instruction *visitInstruction(Instruction &I) { return 0; }
    200 
    201 private:
    202   bool ShouldChangeType(Type *From, Type *To) const;
    203   Value *dyn_castNegVal(Value *V) const;
    204   Value *dyn_castFNegVal(Value *V) const;
    205   Type *FindElementAtOffset(Type *Ty, int64_t Offset,
    206                                   SmallVectorImpl<Value*> &NewIndices);
    207   Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI);
    208 
    209   /// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually
    210   /// results in any code being generated and is interesting to optimize out. If
    211   /// the cast can be eliminated by some other simple transformation, we prefer
    212   /// to do the simplification first.
    213   bool ShouldOptimizeCast(Instruction::CastOps opcode,const Value *V,
    214                           Type *Ty);
    215 
    216   Instruction *visitCallSite(CallSite CS);
    217   Instruction *tryOptimizeCall(CallInst *CI, const TargetData *TD);
    218   bool transformConstExprCastCall(CallSite CS);
    219   Instruction *transformCallThroughTrampoline(CallSite CS,
    220                                               IntrinsicInst *Tramp);
    221   Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI,
    222                                  bool DoXform = true);
    223   Instruction *transformSExtICmp(ICmpInst *ICI, Instruction &CI);
    224   bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS);
    225   Value *EmitGEPOffset(User *GEP);
    226 
    227 public:
    228   // InsertNewInstBefore - insert an instruction New before instruction Old
    229   // in the program.  Add the new instruction to the worklist.
    230   //
    231   Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
    232     assert(New && New->getParent() == 0 &&
    233            "New instruction already inserted into a basic block!");
    234     BasicBlock *BB = Old.getParent();
    235     BB->getInstList().insert(&Old, New);  // Insert inst
    236     Worklist.Add(New);
    237     return New;
    238   }
    239 
    240   // InsertNewInstWith - same as InsertNewInstBefore, but also sets the
    241   // debug loc.
    242   //
    243   Instruction *InsertNewInstWith(Instruction *New, Instruction &Old) {
    244     New->setDebugLoc(Old.getDebugLoc());
    245     return InsertNewInstBefore(New, Old);
    246   }
    247 
    248   // ReplaceInstUsesWith - This method is to be used when an instruction is
    249   // found to be dead, replacable with another preexisting expression.  Here
    250   // we add all uses of I to the worklist, replace all uses of I with the new
    251   // value, then return I, so that the inst combiner will know that I was
    252   // modified.
    253   //
    254   Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
    255     Worklist.AddUsersToWorkList(I);   // Add all modified instrs to worklist.
    256 
    257     // If we are replacing the instruction with itself, this must be in a
    258     // segment of unreachable code, so just clobber the instruction.
    259     if (&I == V)
    260       V = UndefValue::get(I.getType());
    261 
    262     DEBUG(errs() << "IC: Replacing " << I << "\n"
    263                     "    with " << *V << '\n');
    264 
    265     I.replaceAllUsesWith(V);
    266     return &I;
    267   }
    268 
    269   // EraseInstFromFunction - When dealing with an instruction that has side
    270   // effects or produces a void value, we can't rely on DCE to delete the
    271   // instruction.  Instead, visit methods should return the value returned by
    272   // this function.
    273   Instruction *EraseInstFromFunction(Instruction &I) {
    274     DEBUG(errs() << "IC: ERASE " << I << '\n');
    275 
    276     assert(I.use_empty() && "Cannot erase instruction that is used!");
    277     // Make sure that we reprocess all operands now that we reduced their
    278     // use counts.
    279     if (I.getNumOperands() < 8) {
    280       for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
    281         if (Instruction *Op = dyn_cast<Instruction>(*i))
    282           Worklist.Add(Op);
    283     }
    284     Worklist.Remove(&I);
    285     I.eraseFromParent();
    286     MadeIRChange = true;
    287     return 0;  // Don't do anything with FI
    288   }
    289 
    290   void ComputeMaskedBits(Value *V, const APInt &Mask, APInt &KnownZero,
    291                          APInt &KnownOne, unsigned Depth = 0) const {
    292     return llvm::ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
    293   }
    294 
    295   bool MaskedValueIsZero(Value *V, const APInt &Mask,
    296                          unsigned Depth = 0) const {
    297     return llvm::MaskedValueIsZero(V, Mask, TD, Depth);
    298   }
    299   unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0) const {
    300     return llvm::ComputeNumSignBits(Op, TD, Depth);
    301   }
    302 
    303 private:
    304 
    305   /// SimplifyAssociativeOrCommutative - This performs a few simplifications for
    306   /// operators which are associative or commutative.
    307   bool SimplifyAssociativeOrCommutative(BinaryOperator &I);
    308 
    309   /// SimplifyUsingDistributiveLaws - This tries to simplify binary operations
    310   /// which some other binary operation distributes over either by factorizing
    311   /// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this
    312   /// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is
    313   /// a win).  Returns the simplified value, or null if it didn't simplify.
    314   Value *SimplifyUsingDistributiveLaws(BinaryOperator &I);
    315 
    316   /// SimplifyDemandedUseBits - Attempts to replace V with a simpler value
    317   /// based on the demanded bits.
    318   Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
    319                                  APInt& KnownZero, APInt& KnownOne,
    320                                  unsigned Depth);
    321   bool SimplifyDemandedBits(Use &U, APInt DemandedMask,
    322                             APInt& KnownZero, APInt& KnownOne,
    323                             unsigned Depth=0);
    324 
    325   /// SimplifyDemandedInstructionBits - Inst is an integer instruction that
    326   /// SimplifyDemandedBits knows about.  See if the instruction has any
    327   /// properties that allow us to simplify its operands.
    328   bool SimplifyDemandedInstructionBits(Instruction &Inst);
    329 
    330   Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
    331                                     APInt& UndefElts, unsigned Depth = 0);
    332 
    333   // FoldOpIntoPhi - Given a binary operator, cast instruction, or select
    334   // which has a PHI node as operand #0, see if we can fold the instruction
    335   // into the PHI (which is only possible if all operands to the PHI are
    336   // constants).
    337   //
    338   Instruction *FoldOpIntoPhi(Instruction &I);
    339 
    340   // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
    341   // operator and they all are only used by the PHI, PHI together their
    342   // inputs, and do the operation once, to the result of the PHI.
    343   Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
    344   Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
    345   Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN);
    346   Instruction *FoldPHIArgLoadIntoPHI(PHINode &PN);
    347 
    348 
    349   Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
    350                         ConstantInt *AndRHS, BinaryOperator &TheAnd);
    351 
    352   Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
    353                             bool isSub, Instruction &I);
    354   Value *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
    355                          bool isSigned, bool Inside);
    356   Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI);
    357   Instruction *MatchBSwap(BinaryOperator &I);
    358   bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
    359   Instruction *SimplifyMemTransfer(MemIntrinsic *MI);
    360   Instruction *SimplifyMemSet(MemSetInst *MI);
    361 
    362 
    363   Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned);
    364 };
    365 
    366 
    367 
    368 } // end namespace llvm.
    369 
    370 #endif
    371