Home | History | Annotate | Download | only in Scalar
      1 //===- LoopDeletion.cpp - Dead Loop Deletion Pass ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the Dead Loop Deletion Pass. This pass is responsible
     11 // for eliminating loops with non-infinite computable trip counts that have no
     12 // side effects or volatile instructions, and do not contribute to the
     13 // computation of the function's return value.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #define DEBUG_TYPE "loop-delete"
     18 #include "llvm/Transforms/Scalar.h"
     19 #include "llvm/Analysis/LoopPass.h"
     20 #include "llvm/Analysis/Dominators.h"
     21 #include "llvm/Analysis/ScalarEvolution.h"
     22 #include "llvm/ADT/Statistic.h"
     23 #include "llvm/ADT/SmallVector.h"
     24 using namespace llvm;
     25 
     26 STATISTIC(NumDeleted, "Number of loops deleted");
     27 
     28 namespace {
     29   class LoopDeletion : public LoopPass {
     30   public:
     31     static char ID; // Pass ID, replacement for typeid
     32     LoopDeletion() : LoopPass(ID) {
     33       initializeLoopDeletionPass(*PassRegistry::getPassRegistry());
     34     }
     35 
     36     // Possibly eliminate loop L if it is dead.
     37     bool runOnLoop(Loop* L, LPPassManager& LPM);
     38 
     39     bool IsLoopDead(Loop* L, SmallVector<BasicBlock*, 4>& exitingBlocks,
     40                     SmallVector<BasicBlock*, 4>& exitBlocks,
     41                     bool &Changed, BasicBlock *Preheader);
     42 
     43     virtual void getAnalysisUsage(AnalysisUsage& AU) const {
     44       AU.addRequired<DominatorTree>();
     45       AU.addRequired<LoopInfo>();
     46       AU.addRequired<ScalarEvolution>();
     47       AU.addRequiredID(LoopSimplifyID);
     48       AU.addRequiredID(LCSSAID);
     49 
     50       AU.addPreserved<ScalarEvolution>();
     51       AU.addPreserved<DominatorTree>();
     52       AU.addPreserved<LoopInfo>();
     53       AU.addPreservedID(LoopSimplifyID);
     54       AU.addPreservedID(LCSSAID);
     55     }
     56   };
     57 }
     58 
     59 char LoopDeletion::ID = 0;
     60 INITIALIZE_PASS_BEGIN(LoopDeletion, "loop-deletion",
     61                 "Delete dead loops", false, false)
     62 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
     63 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
     64 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
     65 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
     66 INITIALIZE_PASS_DEPENDENCY(LCSSA)
     67 INITIALIZE_PASS_END(LoopDeletion, "loop-deletion",
     68                 "Delete dead loops", false, false)
     69 
     70 Pass* llvm::createLoopDeletionPass() {
     71   return new LoopDeletion();
     72 }
     73 
     74 /// IsLoopDead - Determined if a loop is dead.  This assumes that we've already
     75 /// checked for unique exit and exiting blocks, and that the code is in LCSSA
     76 /// form.
     77 bool LoopDeletion::IsLoopDead(Loop* L,
     78                               SmallVector<BasicBlock*, 4>& exitingBlocks,
     79                               SmallVector<BasicBlock*, 4>& exitBlocks,
     80                               bool &Changed, BasicBlock *Preheader) {
     81   BasicBlock* exitBlock = exitBlocks[0];
     82 
     83   // Make sure that all PHI entries coming from the loop are loop invariant.
     84   // Because the code is in LCSSA form, any values used outside of the loop
     85   // must pass through a PHI in the exit block, meaning that this check is
     86   // sufficient to guarantee that no loop-variant values are used outside
     87   // of the loop.
     88   BasicBlock::iterator BI = exitBlock->begin();
     89   while (PHINode* P = dyn_cast<PHINode>(BI)) {
     90     Value* incoming = P->getIncomingValueForBlock(exitingBlocks[0]);
     91 
     92     // Make sure all exiting blocks produce the same incoming value for the exit
     93     // block.  If there are different incoming values for different exiting
     94     // blocks, then it is impossible to statically determine which value should
     95     // be used.
     96     for (unsigned i = 1; i < exitingBlocks.size(); ++i) {
     97       if (incoming != P->getIncomingValueForBlock(exitingBlocks[i]))
     98         return false;
     99     }
    100 
    101     if (Instruction* I = dyn_cast<Instruction>(incoming))
    102       if (!L->makeLoopInvariant(I, Changed, Preheader->getTerminator()))
    103         return false;
    104 
    105     ++BI;
    106   }
    107 
    108   // Make sure that no instructions in the block have potential side-effects.
    109   // This includes instructions that could write to memory, and loads that are
    110   // marked volatile.  This could be made more aggressive by using aliasing
    111   // information to identify readonly and readnone calls.
    112   for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
    113        LI != LE; ++LI) {
    114     for (BasicBlock::iterator BI = (*LI)->begin(), BE = (*LI)->end();
    115          BI != BE; ++BI) {
    116       if (BI->mayHaveSideEffects())
    117         return false;
    118     }
    119   }
    120 
    121   return true;
    122 }
    123 
    124 /// runOnLoop - Remove dead loops, by which we mean loops that do not impact the
    125 /// observable behavior of the program other than finite running time.  Note
    126 /// we do ensure that this never remove a loop that might be infinite, as doing
    127 /// so could change the halting/non-halting nature of a program.
    128 /// NOTE: This entire process relies pretty heavily on LoopSimplify and LCSSA
    129 /// in order to make various safety checks work.
    130 bool LoopDeletion::runOnLoop(Loop* L, LPPassManager& LPM) {
    131   // We can only remove the loop if there is a preheader that we can
    132   // branch from after removing it.
    133   BasicBlock* preheader = L->getLoopPreheader();
    134   if (!preheader)
    135     return false;
    136 
    137   // If LoopSimplify form is not available, stay out of trouble.
    138   if (!L->hasDedicatedExits())
    139     return false;
    140 
    141   // We can't remove loops that contain subloops.  If the subloops were dead,
    142   // they would already have been removed in earlier executions of this pass.
    143   if (L->begin() != L->end())
    144     return false;
    145 
    146   SmallVector<BasicBlock*, 4> exitingBlocks;
    147   L->getExitingBlocks(exitingBlocks);
    148 
    149   SmallVector<BasicBlock*, 4> exitBlocks;
    150   L->getUniqueExitBlocks(exitBlocks);
    151 
    152   // We require that the loop only have a single exit block.  Otherwise, we'd
    153   // be in the situation of needing to be able to solve statically which exit
    154   // block will be branched to, or trying to preserve the branching logic in
    155   // a loop invariant manner.
    156   if (exitBlocks.size() != 1)
    157     return false;
    158 
    159   // Finally, we have to check that the loop really is dead.
    160   bool Changed = false;
    161   if (!IsLoopDead(L, exitingBlocks, exitBlocks, Changed, preheader))
    162     return Changed;
    163 
    164   // Don't remove loops for which we can't solve the trip count.
    165   // They could be infinite, in which case we'd be changing program behavior.
    166   ScalarEvolution& SE = getAnalysis<ScalarEvolution>();
    167   const SCEV *S = SE.getMaxBackedgeTakenCount(L);
    168   if (isa<SCEVCouldNotCompute>(S))
    169     return Changed;
    170 
    171   // Now that we know the removal is safe, remove the loop by changing the
    172   // branch from the preheader to go to the single exit block.
    173   BasicBlock* exitBlock = exitBlocks[0];
    174 
    175   // Because we're deleting a large chunk of code at once, the sequence in which
    176   // we remove things is very important to avoid invalidation issues.  Don't
    177   // mess with this unless you have good reason and know what you're doing.
    178 
    179   // Tell ScalarEvolution that the loop is deleted. Do this before
    180   // deleting the loop so that ScalarEvolution can look at the loop
    181   // to determine what it needs to clean up.
    182   SE.forgetLoop(L);
    183 
    184   // Connect the preheader directly to the exit block.
    185   TerminatorInst* TI = preheader->getTerminator();
    186   TI->replaceUsesOfWith(L->getHeader(), exitBlock);
    187 
    188   // Rewrite phis in the exit block to get their inputs from
    189   // the preheader instead of the exiting block.
    190   BasicBlock* exitingBlock = exitingBlocks[0];
    191   BasicBlock::iterator BI = exitBlock->begin();
    192   while (PHINode* P = dyn_cast<PHINode>(BI)) {
    193     int j = P->getBasicBlockIndex(exitingBlock);
    194     assert(j >= 0 && "Can't find exiting block in exit block's phi node!");
    195     P->setIncomingBlock(j, preheader);
    196     for (unsigned i = 1; i < exitingBlocks.size(); ++i)
    197       P->removeIncomingValue(exitingBlocks[i]);
    198     ++BI;
    199   }
    200 
    201   // Update the dominator tree and remove the instructions and blocks that will
    202   // be deleted from the reference counting scheme.
    203   DominatorTree& DT = getAnalysis<DominatorTree>();
    204   SmallVector<DomTreeNode*, 8> ChildNodes;
    205   for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
    206        LI != LE; ++LI) {
    207     // Move all of the block's children to be children of the preheader, which
    208     // allows us to remove the domtree entry for the block.
    209     ChildNodes.insert(ChildNodes.begin(), DT[*LI]->begin(), DT[*LI]->end());
    210     for (SmallVector<DomTreeNode*, 8>::iterator DI = ChildNodes.begin(),
    211          DE = ChildNodes.end(); DI != DE; ++DI) {
    212       DT.changeImmediateDominator(*DI, DT[preheader]);
    213     }
    214 
    215     ChildNodes.clear();
    216     DT.eraseNode(*LI);
    217 
    218     // Remove the block from the reference counting scheme, so that we can
    219     // delete it freely later.
    220     (*LI)->dropAllReferences();
    221   }
    222 
    223   // Erase the instructions and the blocks without having to worry
    224   // about ordering because we already dropped the references.
    225   // NOTE: This iteration is safe because erasing the block does not remove its
    226   // entry from the loop's block list.  We do that in the next section.
    227   for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
    228        LI != LE; ++LI)
    229     (*LI)->eraseFromParent();
    230 
    231   // Finally, the blocks from loopinfo.  This has to happen late because
    232   // otherwise our loop iterators won't work.
    233   LoopInfo& loopInfo = getAnalysis<LoopInfo>();
    234   SmallPtrSet<BasicBlock*, 8> blocks;
    235   blocks.insert(L->block_begin(), L->block_end());
    236   for (SmallPtrSet<BasicBlock*,8>::iterator I = blocks.begin(),
    237        E = blocks.end(); I != E; ++I)
    238     loopInfo.removeBlock(*I);
    239 
    240   // The last step is to inform the loop pass manager that we've
    241   // eliminated this loop.
    242   LPM.deleteLoopFromQueue(L);
    243   Changed = true;
    244 
    245   ++NumDeleted;
    246 
    247   return Changed;
    248 }
    249