1 //===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions perform manipulations on basic blocks, and 11 // instructions contained within basic blocks. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 16 #include "llvm/Function.h" 17 #include "llvm/Instructions.h" 18 #include "llvm/IntrinsicInst.h" 19 #include "llvm/Constant.h" 20 #include "llvm/Type.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/Dominators.h" 23 #include "llvm/Analysis/LoopInfo.h" 24 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 25 #include "llvm/Target/TargetData.h" 26 #include "llvm/Transforms/Utils/Local.h" 27 #include "llvm/Transforms/Scalar.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/ValueHandle.h" 30 #include <algorithm> 31 using namespace llvm; 32 33 /// DeleteDeadBlock - Delete the specified block, which must have no 34 /// predecessors. 35 void llvm::DeleteDeadBlock(BasicBlock *BB) { 36 assert((pred_begin(BB) == pred_end(BB) || 37 // Can delete self loop. 38 BB->getSinglePredecessor() == BB) && "Block is not dead!"); 39 TerminatorInst *BBTerm = BB->getTerminator(); 40 41 // Loop through all of our successors and make sure they know that one 42 // of their predecessors is going away. 43 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) 44 BBTerm->getSuccessor(i)->removePredecessor(BB); 45 46 // Zap all the instructions in the block. 47 while (!BB->empty()) { 48 Instruction &I = BB->back(); 49 // If this instruction is used, replace uses with an arbitrary value. 50 // Because control flow can't get here, we don't care what we replace the 51 // value with. Note that since this block is unreachable, and all values 52 // contained within it must dominate their uses, that all uses will 53 // eventually be removed (they are themselves dead). 54 if (!I.use_empty()) 55 I.replaceAllUsesWith(UndefValue::get(I.getType())); 56 BB->getInstList().pop_back(); 57 } 58 59 // Zap the block! 60 BB->eraseFromParent(); 61 } 62 63 /// FoldSingleEntryPHINodes - We know that BB has one predecessor. If there are 64 /// any single-entry PHI nodes in it, fold them away. This handles the case 65 /// when all entries to the PHI nodes in a block are guaranteed equal, such as 66 /// when the block has exactly one predecessor. 67 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB, Pass *P) { 68 if (!isa<PHINode>(BB->begin())) return; 69 70 AliasAnalysis *AA = 0; 71 MemoryDependenceAnalysis *MemDep = 0; 72 if (P) { 73 AA = P->getAnalysisIfAvailable<AliasAnalysis>(); 74 MemDep = P->getAnalysisIfAvailable<MemoryDependenceAnalysis>(); 75 } 76 77 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 78 if (PN->getIncomingValue(0) != PN) 79 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 80 else 81 PN->replaceAllUsesWith(UndefValue::get(PN->getType())); 82 83 if (MemDep) 84 MemDep->removeInstruction(PN); // Memdep updates AA itself. 85 else if (AA && isa<PointerType>(PN->getType())) 86 AA->deleteValue(PN); 87 88 PN->eraseFromParent(); 89 } 90 } 91 92 93 /// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it 94 /// is dead. Also recursively delete any operands that become dead as 95 /// a result. This includes tracing the def-use list from the PHI to see if 96 /// it is ultimately unused or if it reaches an unused cycle. 97 bool llvm::DeleteDeadPHIs(BasicBlock *BB) { 98 // Recursively deleting a PHI may cause multiple PHIs to be deleted 99 // or RAUW'd undef, so use an array of WeakVH for the PHIs to delete. 100 SmallVector<WeakVH, 8> PHIs; 101 for (BasicBlock::iterator I = BB->begin(); 102 PHINode *PN = dyn_cast<PHINode>(I); ++I) 103 PHIs.push_back(PN); 104 105 bool Changed = false; 106 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 107 if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*())) 108 Changed |= RecursivelyDeleteDeadPHINode(PN); 109 110 return Changed; 111 } 112 113 /// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor, 114 /// if possible. The return value indicates success or failure. 115 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, Pass *P) { 116 // Don't merge away blocks who have their address taken. 117 if (BB->hasAddressTaken()) return false; 118 119 // Can't merge if there are multiple predecessors, or no predecessors. 120 BasicBlock *PredBB = BB->getUniquePredecessor(); 121 if (!PredBB) return false; 122 123 // Don't break self-loops. 124 if (PredBB == BB) return false; 125 // Don't break invokes. 126 if (isa<InvokeInst>(PredBB->getTerminator())) return false; 127 128 succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB)); 129 BasicBlock *OnlySucc = BB; 130 for (; SI != SE; ++SI) 131 if (*SI != OnlySucc) { 132 OnlySucc = 0; // There are multiple distinct successors! 133 break; 134 } 135 136 // Can't merge if there are multiple successors. 137 if (!OnlySucc) return false; 138 139 // Can't merge if there is PHI loop. 140 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) { 141 if (PHINode *PN = dyn_cast<PHINode>(BI)) { 142 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 143 if (PN->getIncomingValue(i) == PN) 144 return false; 145 } else 146 break; 147 } 148 149 // Begin by getting rid of unneeded PHIs. 150 if (isa<PHINode>(BB->front())) 151 FoldSingleEntryPHINodes(BB, P); 152 153 // Delete the unconditional branch from the predecessor... 154 PredBB->getInstList().pop_back(); 155 156 // Make all PHI nodes that referred to BB now refer to Pred as their 157 // source... 158 BB->replaceAllUsesWith(PredBB); 159 160 // Move all definitions in the successor to the predecessor... 161 PredBB->getInstList().splice(PredBB->end(), BB->getInstList()); 162 163 // Inherit predecessors name if it exists. 164 if (!PredBB->hasName()) 165 PredBB->takeName(BB); 166 167 // Finally, erase the old block and update dominator info. 168 if (P) { 169 if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>()) { 170 if (DomTreeNode *DTN = DT->getNode(BB)) { 171 DomTreeNode *PredDTN = DT->getNode(PredBB); 172 SmallVector<DomTreeNode*, 8> Children(DTN->begin(), DTN->end()); 173 for (SmallVector<DomTreeNode*, 8>::iterator DI = Children.begin(), 174 DE = Children.end(); DI != DE; ++DI) 175 DT->changeImmediateDominator(*DI, PredDTN); 176 177 DT->eraseNode(BB); 178 } 179 180 if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>()) 181 LI->removeBlock(BB); 182 183 if (MemoryDependenceAnalysis *MD = 184 P->getAnalysisIfAvailable<MemoryDependenceAnalysis>()) 185 MD->invalidateCachedPredecessors(); 186 } 187 } 188 189 BB->eraseFromParent(); 190 return true; 191 } 192 193 /// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI) 194 /// with a value, then remove and delete the original instruction. 195 /// 196 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL, 197 BasicBlock::iterator &BI, Value *V) { 198 Instruction &I = *BI; 199 // Replaces all of the uses of the instruction with uses of the value 200 I.replaceAllUsesWith(V); 201 202 // Make sure to propagate a name if there is one already. 203 if (I.hasName() && !V->hasName()) 204 V->takeName(&I); 205 206 // Delete the unnecessary instruction now... 207 BI = BIL.erase(BI); 208 } 209 210 211 /// ReplaceInstWithInst - Replace the instruction specified by BI with the 212 /// instruction specified by I. The original instruction is deleted and BI is 213 /// updated to point to the new instruction. 214 /// 215 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL, 216 BasicBlock::iterator &BI, Instruction *I) { 217 assert(I->getParent() == 0 && 218 "ReplaceInstWithInst: Instruction already inserted into basic block!"); 219 220 // Insert the new instruction into the basic block... 221 BasicBlock::iterator New = BIL.insert(BI, I); 222 223 // Replace all uses of the old instruction, and delete it. 224 ReplaceInstWithValue(BIL, BI, I); 225 226 // Move BI back to point to the newly inserted instruction 227 BI = New; 228 } 229 230 /// ReplaceInstWithInst - Replace the instruction specified by From with the 231 /// instruction specified by To. 232 /// 233 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) { 234 BasicBlock::iterator BI(From); 235 ReplaceInstWithInst(From->getParent()->getInstList(), BI, To); 236 } 237 238 /// GetSuccessorNumber - Search for the specified successor of basic block BB 239 /// and return its position in the terminator instruction's list of 240 /// successors. It is an error to call this with a block that is not a 241 /// successor. 242 unsigned llvm::GetSuccessorNumber(BasicBlock *BB, BasicBlock *Succ) { 243 TerminatorInst *Term = BB->getTerminator(); 244 #ifndef NDEBUG 245 unsigned e = Term->getNumSuccessors(); 246 #endif 247 for (unsigned i = 0; ; ++i) { 248 assert(i != e && "Didn't find edge?"); 249 if (Term->getSuccessor(i) == Succ) 250 return i; 251 } 252 return 0; 253 } 254 255 /// SplitEdge - Split the edge connecting specified block. Pass P must 256 /// not be NULL. 257 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, Pass *P) { 258 unsigned SuccNum = GetSuccessorNumber(BB, Succ); 259 260 // If this is a critical edge, let SplitCriticalEdge do it. 261 TerminatorInst *LatchTerm = BB->getTerminator(); 262 if (SplitCriticalEdge(LatchTerm, SuccNum, P)) 263 return LatchTerm->getSuccessor(SuccNum); 264 265 // If the edge isn't critical, then BB has a single successor or Succ has a 266 // single pred. Split the block. 267 BasicBlock::iterator SplitPoint; 268 if (BasicBlock *SP = Succ->getSinglePredecessor()) { 269 // If the successor only has a single pred, split the top of the successor 270 // block. 271 assert(SP == BB && "CFG broken"); 272 SP = NULL; 273 return SplitBlock(Succ, Succ->begin(), P); 274 } 275 276 // Otherwise, if BB has a single successor, split it at the bottom of the 277 // block. 278 assert(BB->getTerminator()->getNumSuccessors() == 1 && 279 "Should have a single succ!"); 280 return SplitBlock(BB, BB->getTerminator(), P); 281 } 282 283 /// SplitBlock - Split the specified block at the specified instruction - every 284 /// thing before SplitPt stays in Old and everything starting with SplitPt moves 285 /// to a new block. The two blocks are joined by an unconditional branch and 286 /// the loop info is updated. 287 /// 288 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) { 289 BasicBlock::iterator SplitIt = SplitPt; 290 while (isa<PHINode>(SplitIt) || isa<LandingPadInst>(SplitIt)) 291 ++SplitIt; 292 BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split"); 293 294 // The new block lives in whichever loop the old one did. This preserves 295 // LCSSA as well, because we force the split point to be after any PHI nodes. 296 if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>()) 297 if (Loop *L = LI->getLoopFor(Old)) 298 L->addBasicBlockToLoop(New, LI->getBase()); 299 300 if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>()) { 301 // Old dominates New. New node dominates all other nodes dominated by Old. 302 if (DomTreeNode *OldNode = DT->getNode(Old)) { 303 std::vector<DomTreeNode *> Children; 304 for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end(); 305 I != E; ++I) 306 Children.push_back(*I); 307 308 DomTreeNode *NewNode = DT->addNewBlock(New,Old); 309 for (std::vector<DomTreeNode *>::iterator I = Children.begin(), 310 E = Children.end(); I != E; ++I) 311 DT->changeImmediateDominator(*I, NewNode); 312 } 313 } 314 315 return New; 316 } 317 318 /// UpdateAnalysisInformation - Update DominatorTree, LoopInfo, and LCCSA 319 /// analysis information. 320 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB, 321 ArrayRef<BasicBlock *> Preds, 322 Pass *P, bool &HasLoopExit) { 323 if (!P) return; 324 325 LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>(); 326 Loop *L = LI ? LI->getLoopFor(OldBB) : 0; 327 328 // If we need to preserve loop analyses, collect some information about how 329 // this split will affect loops. 330 bool IsLoopEntry = !!L; 331 bool SplitMakesNewLoopHeader = false; 332 if (LI) { 333 bool PreserveLCSSA = P->mustPreserveAnalysisID(LCSSAID); 334 for (ArrayRef<BasicBlock*>::iterator 335 i = Preds.begin(), e = Preds.end(); i != e; ++i) { 336 BasicBlock *Pred = *i; 337 338 // If we need to preserve LCSSA, determine if any of the preds is a loop 339 // exit. 340 if (PreserveLCSSA) 341 if (Loop *PL = LI->getLoopFor(Pred)) 342 if (!PL->contains(OldBB)) 343 HasLoopExit = true; 344 345 // If we need to preserve LoopInfo, note whether any of the preds crosses 346 // an interesting loop boundary. 347 if (!L) continue; 348 if (L->contains(Pred)) 349 IsLoopEntry = false; 350 else 351 SplitMakesNewLoopHeader = true; 352 } 353 } 354 355 // Update dominator tree if available. 356 DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>(); 357 if (DT) 358 DT->splitBlock(NewBB); 359 360 if (!L) return; 361 362 if (IsLoopEntry) { 363 // Add the new block to the nearest enclosing loop (and not an adjacent 364 // loop). To find this, examine each of the predecessors and determine which 365 // loops enclose them, and select the most-nested loop which contains the 366 // loop containing the block being split. 367 Loop *InnermostPredLoop = 0; 368 for (ArrayRef<BasicBlock*>::iterator 369 i = Preds.begin(), e = Preds.end(); i != e; ++i) { 370 BasicBlock *Pred = *i; 371 if (Loop *PredLoop = LI->getLoopFor(Pred)) { 372 // Seek a loop which actually contains the block being split (to avoid 373 // adjacent loops). 374 while (PredLoop && !PredLoop->contains(OldBB)) 375 PredLoop = PredLoop->getParentLoop(); 376 377 // Select the most-nested of these loops which contains the block. 378 if (PredLoop && PredLoop->contains(OldBB) && 379 (!InnermostPredLoop || 380 InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth())) 381 InnermostPredLoop = PredLoop; 382 } 383 } 384 385 if (InnermostPredLoop) 386 InnermostPredLoop->addBasicBlockToLoop(NewBB, LI->getBase()); 387 } else { 388 L->addBasicBlockToLoop(NewBB, LI->getBase()); 389 if (SplitMakesNewLoopHeader) 390 L->moveToHeader(NewBB); 391 } 392 } 393 394 /// UpdatePHINodes - Update the PHI nodes in OrigBB to include the values coming 395 /// from NewBB. This also updates AliasAnalysis, if available. 396 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB, 397 ArrayRef<BasicBlock*> Preds, BranchInst *BI, 398 Pass *P, bool HasLoopExit) { 399 // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB. 400 AliasAnalysis *AA = P ? P->getAnalysisIfAvailable<AliasAnalysis>() : 0; 401 for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) { 402 PHINode *PN = cast<PHINode>(I++); 403 404 // Check to see if all of the values coming in are the same. If so, we 405 // don't need to create a new PHI node, unless it's needed for LCSSA. 406 Value *InVal = 0; 407 if (!HasLoopExit) { 408 InVal = PN->getIncomingValueForBlock(Preds[0]); 409 for (unsigned i = 1, e = Preds.size(); i != e; ++i) 410 if (InVal != PN->getIncomingValueForBlock(Preds[i])) { 411 InVal = 0; 412 break; 413 } 414 } 415 416 if (InVal) { 417 // If all incoming values for the new PHI would be the same, just don't 418 // make a new PHI. Instead, just remove the incoming values from the old 419 // PHI. 420 for (unsigned i = 0, e = Preds.size(); i != e; ++i) 421 PN->removeIncomingValue(Preds[i], false); 422 } else { 423 // If the values coming into the block are not the same, we need a PHI. 424 // Create the new PHI node, insert it into NewBB at the end of the block 425 PHINode *NewPHI = 426 PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI); 427 if (AA) AA->copyValue(PN, NewPHI); 428 429 // Move all of the PHI values for 'Preds' to the new PHI. 430 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 431 Value *V = PN->removeIncomingValue(Preds[i], false); 432 NewPHI->addIncoming(V, Preds[i]); 433 } 434 435 InVal = NewPHI; 436 } 437 438 // Add an incoming value to the PHI node in the loop for the preheader 439 // edge. 440 PN->addIncoming(InVal, NewBB); 441 } 442 } 443 444 /// SplitBlockPredecessors - This method transforms BB by introducing a new 445 /// basic block into the function, and moving some of the predecessors of BB to 446 /// be predecessors of the new block. The new predecessors are indicated by the 447 /// Preds array, which has NumPreds elements in it. The new block is given a 448 /// suffix of 'Suffix'. 449 /// 450 /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree, 451 /// LoopInfo, and LCCSA but no other analyses. In particular, it does not 452 /// preserve LoopSimplify (because it's complicated to handle the case where one 453 /// of the edges being split is an exit of a loop with other exits). 454 /// 455 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 456 BasicBlock *const *Preds, 457 unsigned NumPreds, const char *Suffix, 458 Pass *P) { 459 // Create new basic block, insert right before the original block. 460 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), BB->getName()+Suffix, 461 BB->getParent(), BB); 462 463 // The new block unconditionally branches to the old block. 464 BranchInst *BI = BranchInst::Create(BB, NewBB); 465 466 // Move the edges from Preds to point to NewBB instead of BB. 467 for (unsigned i = 0; i != NumPreds; ++i) { 468 // This is slightly more strict than necessary; the minimum requirement 469 // is that there be no more than one indirectbr branching to BB. And 470 // all BlockAddress uses would need to be updated. 471 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 472 "Cannot split an edge from an IndirectBrInst"); 473 Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB); 474 } 475 476 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI 477 // node becomes an incoming value for BB's phi node. However, if the Preds 478 // list is empty, we need to insert dummy entries into the PHI nodes in BB to 479 // account for the newly created predecessor. 480 if (NumPreds == 0) { 481 // Insert dummy values as the incoming value. 482 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) 483 cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB); 484 return NewBB; 485 } 486 487 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 488 bool HasLoopExit = false; 489 UpdateAnalysisInformation(BB, NewBB, ArrayRef<BasicBlock*>(Preds, NumPreds), 490 P, HasLoopExit); 491 492 // Update the PHI nodes in BB with the values coming from NewBB. 493 UpdatePHINodes(BB, NewBB, ArrayRef<BasicBlock*>(Preds, NumPreds), BI, 494 P, HasLoopExit); 495 return NewBB; 496 } 497 498 /// SplitLandingPadPredecessors - This method transforms the landing pad, 499 /// OrigBB, by introducing two new basic blocks into the function. One of those 500 /// new basic blocks gets the predecessors listed in Preds. The other basic 501 /// block gets the remaining predecessors of OrigBB. The landingpad instruction 502 /// OrigBB is clone into both of the new basic blocks. The new blocks are given 503 /// the suffixes 'Suffix1' and 'Suffix2', and are returned in the NewBBs vector. 504 /// 505 /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree, 506 /// DominanceFrontier, LoopInfo, and LCCSA but no other analyses. In particular, 507 /// it does not preserve LoopSimplify (because it's complicated to handle the 508 /// case where one of the edges being split is an exit of a loop with other 509 /// exits). 510 /// 511 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB, 512 ArrayRef<BasicBlock*> Preds, 513 const char *Suffix1, const char *Suffix2, 514 Pass *P, 515 SmallVectorImpl<BasicBlock*> &NewBBs) { 516 assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!"); 517 518 // Create a new basic block for OrigBB's predecessors listed in Preds. Insert 519 // it right before the original block. 520 BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(), 521 OrigBB->getName() + Suffix1, 522 OrigBB->getParent(), OrigBB); 523 NewBBs.push_back(NewBB1); 524 525 // The new block unconditionally branches to the old block. 526 BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1); 527 528 // Move the edges from Preds to point to NewBB1 instead of OrigBB. 529 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 530 // This is slightly more strict than necessary; the minimum requirement 531 // is that there be no more than one indirectbr branching to BB. And 532 // all BlockAddress uses would need to be updated. 533 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 534 "Cannot split an edge from an IndirectBrInst"); 535 Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1); 536 } 537 538 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 539 bool HasLoopExit = false; 540 UpdateAnalysisInformation(OrigBB, NewBB1, Preds, P, HasLoopExit); 541 542 // Update the PHI nodes in OrigBB with the values coming from NewBB1. 543 UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, P, HasLoopExit); 544 545 // Move the remaining edges from OrigBB to point to NewBB2. 546 SmallVector<BasicBlock*, 8> NewBB2Preds; 547 for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB); 548 i != e; ) { 549 BasicBlock *Pred = *i++; 550 if (Pred == NewBB1) continue; 551 assert(!isa<IndirectBrInst>(Pred->getTerminator()) && 552 "Cannot split an edge from an IndirectBrInst"); 553 NewBB2Preds.push_back(Pred); 554 e = pred_end(OrigBB); 555 } 556 557 BasicBlock *NewBB2 = 0; 558 if (!NewBB2Preds.empty()) { 559 // Create another basic block for the rest of OrigBB's predecessors. 560 NewBB2 = BasicBlock::Create(OrigBB->getContext(), 561 OrigBB->getName() + Suffix2, 562 OrigBB->getParent(), OrigBB); 563 NewBBs.push_back(NewBB2); 564 565 // The new block unconditionally branches to the old block. 566 BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2); 567 568 // Move the remaining edges from OrigBB to point to NewBB2. 569 for (SmallVectorImpl<BasicBlock*>::iterator 570 i = NewBB2Preds.begin(), e = NewBB2Preds.end(); i != e; ++i) 571 (*i)->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2); 572 573 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 574 HasLoopExit = false; 575 UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, P, HasLoopExit); 576 577 // Update the PHI nodes in OrigBB with the values coming from NewBB2. 578 UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, P, HasLoopExit); 579 } 580 581 LandingPadInst *LPad = OrigBB->getLandingPadInst(); 582 Instruction *Clone1 = LPad->clone(); 583 Clone1->setName(Twine("lpad") + Suffix1); 584 NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1); 585 586 if (NewBB2) { 587 Instruction *Clone2 = LPad->clone(); 588 Clone2->setName(Twine("lpad") + Suffix2); 589 NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2); 590 591 // Create a PHI node for the two cloned landingpad instructions. 592 PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad); 593 PN->addIncoming(Clone1, NewBB1); 594 PN->addIncoming(Clone2, NewBB2); 595 LPad->replaceAllUsesWith(PN); 596 LPad->eraseFromParent(); 597 } else { 598 // There is no second clone. Just replace the landing pad with the first 599 // clone. 600 LPad->replaceAllUsesWith(Clone1); 601 LPad->eraseFromParent(); 602 } 603 } 604 605 /// FindFunctionBackedges - Analyze the specified function to find all of the 606 /// loop backedges in the function and return them. This is a relatively cheap 607 /// (compared to computing dominators and loop info) analysis. 608 /// 609 /// The output is added to Result, as pairs of <from,to> edge info. 610 void llvm::FindFunctionBackedges(const Function &F, 611 SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) { 612 const BasicBlock *BB = &F.getEntryBlock(); 613 if (succ_begin(BB) == succ_end(BB)) 614 return; 615 616 SmallPtrSet<const BasicBlock*, 8> Visited; 617 SmallVector<std::pair<const BasicBlock*, succ_const_iterator>, 8> VisitStack; 618 SmallPtrSet<const BasicBlock*, 8> InStack; 619 620 Visited.insert(BB); 621 VisitStack.push_back(std::make_pair(BB, succ_begin(BB))); 622 InStack.insert(BB); 623 do { 624 std::pair<const BasicBlock*, succ_const_iterator> &Top = VisitStack.back(); 625 const BasicBlock *ParentBB = Top.first; 626 succ_const_iterator &I = Top.second; 627 628 bool FoundNew = false; 629 while (I != succ_end(ParentBB)) { 630 BB = *I++; 631 if (Visited.insert(BB)) { 632 FoundNew = true; 633 break; 634 } 635 // Successor is in VisitStack, it's a back edge. 636 if (InStack.count(BB)) 637 Result.push_back(std::make_pair(ParentBB, BB)); 638 } 639 640 if (FoundNew) { 641 // Go down one level if there is a unvisited successor. 642 InStack.insert(BB); 643 VisitStack.push_back(std::make_pair(BB, succ_begin(BB))); 644 } else { 645 // Go up one level. 646 InStack.erase(VisitStack.pop_back_val().first); 647 } 648 } while (!VisitStack.empty()); 649 } 650 651 /// FoldReturnIntoUncondBranch - This method duplicates the specified return 652 /// instruction into a predecessor which ends in an unconditional branch. If 653 /// the return instruction returns a value defined by a PHI, propagate the 654 /// right value into the return. It returns the new return instruction in the 655 /// predecessor. 656 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB, 657 BasicBlock *Pred) { 658 Instruction *UncondBranch = Pred->getTerminator(); 659 // Clone the return and add it to the end of the predecessor. 660 Instruction *NewRet = RI->clone(); 661 Pred->getInstList().push_back(NewRet); 662 663 // If the return instruction returns a value, and if the value was a 664 // PHI node in "BB", propagate the right value into the return. 665 for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end(); 666 i != e; ++i) 667 if (PHINode *PN = dyn_cast<PHINode>(*i)) 668 if (PN->getParent() == BB) 669 *i = PN->getIncomingValueForBlock(Pred); 670 671 // Update any PHI nodes in the returning block to realize that we no 672 // longer branch to them. 673 BB->removePredecessor(Pred); 674 UncondBranch->eraseFromParent(); 675 return cast<ReturnInst>(NewRet); 676 } 677 678 /// GetFirstDebugLocInBasicBlock - Return first valid DebugLoc entry in a 679 /// given basic block. 680 DebugLoc llvm::GetFirstDebugLocInBasicBlock(const BasicBlock *BB) { 681 if (const Instruction *I = BB->getFirstNonPHI()) 682 return I->getDebugLoc(); 683 // Scanning entire block may be too expensive, if the first instruction 684 // does not have valid location info. 685 return DebugLoc(); 686 } 687