Home | History | Annotate | Download | only in Utils
      1 //===- InlineFunction.cpp - Code to perform function inlining -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements inlining of a function into a call site, resolving
     11 // parameters and the return value as appropriate.
     12 //
     13 // The code in this file for handling inlines through invoke
     14 // instructions preserves semantics only under some assumptions about
     15 // the behavior of unwinders which correspond to gcc-style libUnwind
     16 // exception personality functions.  Eventually the IR will be
     17 // improved to make this unnecessary, but until then, this code is
     18 // marked [LIBUNWIND].
     19 //
     20 //===----------------------------------------------------------------------===//
     21 
     22 #include "llvm/Transforms/Utils/Cloning.h"
     23 #include "llvm/Constants.h"
     24 #include "llvm/DerivedTypes.h"
     25 #include "llvm/Module.h"
     26 #include "llvm/Instructions.h"
     27 #include "llvm/IntrinsicInst.h"
     28 #include "llvm/Intrinsics.h"
     29 #include "llvm/Attributes.h"
     30 #include "llvm/Analysis/CallGraph.h"
     31 #include "llvm/Analysis/DebugInfo.h"
     32 #include "llvm/Analysis/InstructionSimplify.h"
     33 #include "llvm/Target/TargetData.h"
     34 #include "llvm/Transforms/Utils/Local.h"
     35 #include "llvm/ADT/SmallVector.h"
     36 #include "llvm/ADT/StringExtras.h"
     37 #include "llvm/Support/CallSite.h"
     38 #include "llvm/Support/IRBuilder.h"
     39 using namespace llvm;
     40 
     41 bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI) {
     42   return InlineFunction(CallSite(CI), IFI);
     43 }
     44 bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI) {
     45   return InlineFunction(CallSite(II), IFI);
     46 }
     47 
     48 // FIXME: New EH - Remove the functions marked [LIBUNWIND] when new EH is
     49 // turned on.
     50 
     51 /// [LIBUNWIND] Look for an llvm.eh.exception call in the given block.
     52 static EHExceptionInst *findExceptionInBlock(BasicBlock *bb) {
     53   for (BasicBlock::iterator i = bb->begin(), e = bb->end(); i != e; i++) {
     54     EHExceptionInst *exn = dyn_cast<EHExceptionInst>(i);
     55     if (exn) return exn;
     56   }
     57 
     58   return 0;
     59 }
     60 
     61 /// [LIBUNWIND] Look for the 'best' llvm.eh.selector instruction for
     62 /// the given llvm.eh.exception call.
     63 static EHSelectorInst *findSelectorForException(EHExceptionInst *exn) {
     64   BasicBlock *exnBlock = exn->getParent();
     65 
     66   EHSelectorInst *outOfBlockSelector = 0;
     67   for (Instruction::use_iterator
     68          ui = exn->use_begin(), ue = exn->use_end(); ui != ue; ++ui) {
     69     EHSelectorInst *sel = dyn_cast<EHSelectorInst>(*ui);
     70     if (!sel) continue;
     71 
     72     // Immediately accept an eh.selector in the same block as the
     73     // excepton call.
     74     if (sel->getParent() == exnBlock) return sel;
     75 
     76     // Otherwise, use the first selector we see.
     77     if (!outOfBlockSelector) outOfBlockSelector = sel;
     78   }
     79 
     80   return outOfBlockSelector;
     81 }
     82 
     83 /// [LIBUNWIND] Find the (possibly absent) call to @llvm.eh.selector
     84 /// in the given landing pad.  In principle, llvm.eh.exception is
     85 /// required to be in the landing pad; in practice, SplitCriticalEdge
     86 /// can break that invariant, and then inlining can break it further.
     87 /// There's a real need for a reliable solution here, but until that
     88 /// happens, we have some fragile workarounds here.
     89 static EHSelectorInst *findSelectorForLandingPad(BasicBlock *lpad) {
     90   // Look for an exception call in the actual landing pad.
     91   EHExceptionInst *exn = findExceptionInBlock(lpad);
     92   if (exn) return findSelectorForException(exn);
     93 
     94   // Okay, if that failed, look for one in an obvious successor.  If
     95   // we find one, we'll fix the IR by moving things back to the
     96   // landing pad.
     97 
     98   bool dominates = true; // does the lpad dominate the exn call
     99   BasicBlock *nonDominated = 0; // if not, the first non-dominated block
    100   BasicBlock *lastDominated = 0; // and the block which branched to it
    101 
    102   BasicBlock *exnBlock = lpad;
    103 
    104   // We need to protect against lpads that lead into infinite loops.
    105   SmallPtrSet<BasicBlock*,4> visited;
    106   visited.insert(exnBlock);
    107 
    108   do {
    109     // We're not going to apply this hack to anything more complicated
    110     // than a series of unconditional branches, so if the block
    111     // doesn't terminate in an unconditional branch, just fail.  More
    112     // complicated cases can arise when, say, sinking a call into a
    113     // split unwind edge and then inlining it; but that can do almost
    114     // *anything* to the CFG, including leaving the selector
    115     // completely unreachable.  The only way to fix that properly is
    116     // to (1) prohibit transforms which move the exception or selector
    117     // values away from the landing pad, e.g. by producing them with
    118     // instructions that are pinned to an edge like a phi, or
    119     // producing them with not-really-instructions, and (2) making
    120     // transforms which split edges deal with that.
    121     BranchInst *branch = dyn_cast<BranchInst>(&exnBlock->back());
    122     if (!branch || branch->isConditional()) return 0;
    123 
    124     BasicBlock *successor = branch->getSuccessor(0);
    125 
    126     // Fail if we found an infinite loop.
    127     if (!visited.insert(successor)) return 0;
    128 
    129     // If the successor isn't dominated by exnBlock:
    130     if (!successor->getSinglePredecessor()) {
    131       // We don't want to have to deal with threading the exception
    132       // through multiple levels of phi, so give up if we've already
    133       // followed a non-dominating edge.
    134       if (!dominates) return 0;
    135 
    136       // Otherwise, remember this as a non-dominating edge.
    137       dominates = false;
    138       nonDominated = successor;
    139       lastDominated = exnBlock;
    140     }
    141 
    142     exnBlock = successor;
    143 
    144     // Can we stop here?
    145     exn = findExceptionInBlock(exnBlock);
    146   } while (!exn);
    147 
    148   // Look for a selector call for the exception we found.
    149   EHSelectorInst *selector = findSelectorForException(exn);
    150   if (!selector) return 0;
    151 
    152   // The easy case is when the landing pad still dominates the
    153   // exception call, in which case we can just move both calls back to
    154   // the landing pad.
    155   if (dominates) {
    156     selector->moveBefore(lpad->getFirstNonPHI());
    157     exn->moveBefore(selector);
    158     return selector;
    159   }
    160 
    161   // Otherwise, we have to split at the first non-dominating block.
    162   // The CFG looks basically like this:
    163   //    lpad:
    164   //      phis_0
    165   //      insnsAndBranches_1
    166   //      br label %nonDominated
    167   //    nonDominated:
    168   //      phis_2
    169   //      insns_3
    170   //      %exn = call i8* @llvm.eh.exception()
    171   //      insnsAndBranches_4
    172   //      %selector = call @llvm.eh.selector(i8* %exn, ...
    173   // We need to turn this into:
    174   //    lpad:
    175   //      phis_0
    176   //      %exn0 = call i8* @llvm.eh.exception()
    177   //      %selector0 = call @llvm.eh.selector(i8* %exn0, ...
    178   //      insnsAndBranches_1
    179   //      br label %split // from lastDominated
    180   //    nonDominated:
    181   //      phis_2 (without edge from lastDominated)
    182   //      %exn1 = call i8* @llvm.eh.exception()
    183   //      %selector1 = call i8* @llvm.eh.selector(i8* %exn1, ...
    184   //      br label %split
    185   //    split:
    186   //      phis_2 (edge from lastDominated, edge from split)
    187   //      %exn = phi ...
    188   //      %selector = phi ...
    189   //      insns_3
    190   //      insnsAndBranches_4
    191 
    192   assert(nonDominated);
    193   assert(lastDominated);
    194 
    195   // First, make clones of the intrinsics to go in lpad.
    196   EHExceptionInst *lpadExn = cast<EHExceptionInst>(exn->clone());
    197   EHSelectorInst *lpadSelector = cast<EHSelectorInst>(selector->clone());
    198   lpadSelector->setArgOperand(0, lpadExn);
    199   lpadSelector->insertBefore(lpad->getFirstNonPHI());
    200   lpadExn->insertBefore(lpadSelector);
    201 
    202   // Split the non-dominated block.
    203   BasicBlock *split =
    204     nonDominated->splitBasicBlock(nonDominated->getFirstNonPHI(),
    205                                   nonDominated->getName() + ".lpad-fix");
    206 
    207   // Redirect the last dominated branch there.
    208   cast<BranchInst>(lastDominated->back()).setSuccessor(0, split);
    209 
    210   // Move the existing intrinsics to the end of the old block.
    211   selector->moveBefore(&nonDominated->back());
    212   exn->moveBefore(selector);
    213 
    214   Instruction *splitIP = &split->front();
    215 
    216   // For all the phis in nonDominated, make a new phi in split to join
    217   // that phi with the edge from lastDominated.
    218   for (BasicBlock::iterator
    219          i = nonDominated->begin(), e = nonDominated->end(); i != e; ++i) {
    220     PHINode *phi = dyn_cast<PHINode>(i);
    221     if (!phi) break;
    222 
    223     PHINode *splitPhi = PHINode::Create(phi->getType(), 2, phi->getName(),
    224                                         splitIP);
    225     phi->replaceAllUsesWith(splitPhi);
    226     splitPhi->addIncoming(phi, nonDominated);
    227     splitPhi->addIncoming(phi->removeIncomingValue(lastDominated),
    228                           lastDominated);
    229   }
    230 
    231   // Make new phis for the exception and selector.
    232   PHINode *exnPhi = PHINode::Create(exn->getType(), 2, "", splitIP);
    233   exn->replaceAllUsesWith(exnPhi);
    234   selector->setArgOperand(0, exn); // except for this use
    235   exnPhi->addIncoming(exn, nonDominated);
    236   exnPhi->addIncoming(lpadExn, lastDominated);
    237 
    238   PHINode *selectorPhi = PHINode::Create(selector->getType(), 2, "", splitIP);
    239   selector->replaceAllUsesWith(selectorPhi);
    240   selectorPhi->addIncoming(selector, nonDominated);
    241   selectorPhi->addIncoming(lpadSelector, lastDominated);
    242 
    243   return lpadSelector;
    244 }
    245 
    246 namespace {
    247   /// A class for recording information about inlining through an invoke.
    248   class InvokeInliningInfo {
    249     BasicBlock *OuterUnwindDest;
    250     EHSelectorInst *OuterSelector;
    251     BasicBlock *InnerUnwindDest;
    252     PHINode *InnerExceptionPHI;
    253     PHINode *InnerSelectorPHI;
    254     SmallVector<Value*, 8> UnwindDestPHIValues;
    255 
    256     // FIXME: New EH - These will replace the analogous ones above.
    257     BasicBlock *OuterResumeDest; //< Destination of the invoke's unwind.
    258     BasicBlock *InnerResumeDest; //< Destination for the callee's resume.
    259     LandingPadInst *CallerLPad;  //< LandingPadInst associated with the invoke.
    260     PHINode *InnerEHValuesPHI;   //< PHI for EH values from landingpad insts.
    261 
    262   public:
    263     InvokeInliningInfo(InvokeInst *II)
    264       : OuterUnwindDest(II->getUnwindDest()), OuterSelector(0),
    265         InnerUnwindDest(0), InnerExceptionPHI(0), InnerSelectorPHI(0),
    266         OuterResumeDest(II->getUnwindDest()), InnerResumeDest(0),
    267         CallerLPad(0), InnerEHValuesPHI(0) {
    268       // If there are PHI nodes in the unwind destination block, we need to keep
    269       // track of which values came into them from the invoke before removing
    270       // the edge from this block.
    271       llvm::BasicBlock *InvokeBB = II->getParent();
    272       BasicBlock::iterator I = OuterUnwindDest->begin();
    273       for (; isa<PHINode>(I); ++I) {
    274         // Save the value to use for this edge.
    275         PHINode *PHI = cast<PHINode>(I);
    276         UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
    277       }
    278 
    279       // FIXME: With the new EH, this if/dyn_cast should be a 'cast'.
    280       if (LandingPadInst *LPI = dyn_cast<LandingPadInst>(I)) {
    281         CallerLPad = LPI;
    282       }
    283     }
    284 
    285     /// The outer unwind destination is the target of unwind edges
    286     /// introduced for calls within the inlined function.
    287     BasicBlock *getOuterUnwindDest() const {
    288       return OuterUnwindDest;
    289     }
    290 
    291     EHSelectorInst *getOuterSelector() {
    292       if (!OuterSelector)
    293         OuterSelector = findSelectorForLandingPad(OuterUnwindDest);
    294       return OuterSelector;
    295     }
    296 
    297     BasicBlock *getInnerUnwindDest();
    298 
    299     // FIXME: New EH - Rename when new EH is turned on.
    300     BasicBlock *getInnerUnwindDestNewEH();
    301 
    302     LandingPadInst *getLandingPadInst() const { return CallerLPad; }
    303 
    304     bool forwardEHResume(CallInst *call, BasicBlock *src);
    305 
    306     /// forwardResume - Forward the 'resume' instruction to the caller's landing
    307     /// pad block. When the landing pad block has only one predecessor, this is
    308     /// a simple branch. When there is more than one predecessor, we need to
    309     /// split the landing pad block after the landingpad instruction and jump
    310     /// to there.
    311     void forwardResume(ResumeInst *RI);
    312 
    313     /// addIncomingPHIValuesFor - Add incoming-PHI values to the unwind
    314     /// destination block for the given basic block, using the values for the
    315     /// original invoke's source block.
    316     void addIncomingPHIValuesFor(BasicBlock *BB) const {
    317       addIncomingPHIValuesForInto(BB, OuterUnwindDest);
    318     }
    319 
    320     void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
    321       BasicBlock::iterator I = dest->begin();
    322       for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
    323         PHINode *phi = cast<PHINode>(I);
    324         phi->addIncoming(UnwindDestPHIValues[i], src);
    325       }
    326     }
    327   };
    328 }
    329 
    330 /// [LIBUNWIND] Get or create a target for the branch out of rewritten calls to
    331 /// llvm.eh.resume.
    332 BasicBlock *InvokeInliningInfo::getInnerUnwindDest() {
    333   if (InnerUnwindDest) return InnerUnwindDest;
    334 
    335   // Find and hoist the llvm.eh.exception and llvm.eh.selector calls
    336   // in the outer landing pad to immediately following the phis.
    337   EHSelectorInst *selector = getOuterSelector();
    338   if (!selector) return 0;
    339 
    340   // The call to llvm.eh.exception *must* be in the landing pad.
    341   Instruction *exn = cast<Instruction>(selector->getArgOperand(0));
    342   assert(exn->getParent() == OuterUnwindDest);
    343 
    344   // TODO: recognize when we've already done this, so that we don't
    345   // get a linear number of these when inlining calls into lots of
    346   // invokes with the same landing pad.
    347 
    348   // Do the hoisting.
    349   Instruction *splitPoint = exn->getParent()->getFirstNonPHI();
    350   assert(splitPoint != selector && "selector-on-exception dominance broken!");
    351   if (splitPoint == exn) {
    352     selector->removeFromParent();
    353     selector->insertAfter(exn);
    354     splitPoint = selector->getNextNode();
    355   } else {
    356     exn->moveBefore(splitPoint);
    357     selector->moveBefore(splitPoint);
    358   }
    359 
    360   // Split the landing pad.
    361   InnerUnwindDest = OuterUnwindDest->splitBasicBlock(splitPoint,
    362                                         OuterUnwindDest->getName() + ".body");
    363 
    364   // The number of incoming edges we expect to the inner landing pad.
    365   const unsigned phiCapacity = 2;
    366 
    367   // Create corresponding new phis for all the phis in the outer landing pad.
    368   BasicBlock::iterator insertPoint = InnerUnwindDest->begin();
    369   BasicBlock::iterator I = OuterUnwindDest->begin();
    370   for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
    371     PHINode *outerPhi = cast<PHINode>(I);
    372     PHINode *innerPhi = PHINode::Create(outerPhi->getType(), phiCapacity,
    373                                         outerPhi->getName() + ".lpad-body",
    374                                         insertPoint);
    375     outerPhi->replaceAllUsesWith(innerPhi);
    376     innerPhi->addIncoming(outerPhi, OuterUnwindDest);
    377   }
    378 
    379   // Create a phi for the exception value...
    380   InnerExceptionPHI = PHINode::Create(exn->getType(), phiCapacity,
    381                                       "exn.lpad-body", insertPoint);
    382   exn->replaceAllUsesWith(InnerExceptionPHI);
    383   selector->setArgOperand(0, exn); // restore this use
    384   InnerExceptionPHI->addIncoming(exn, OuterUnwindDest);
    385 
    386   // ...and the selector.
    387   InnerSelectorPHI = PHINode::Create(selector->getType(), phiCapacity,
    388                                      "selector.lpad-body", insertPoint);
    389   selector->replaceAllUsesWith(InnerSelectorPHI);
    390   InnerSelectorPHI->addIncoming(selector, OuterUnwindDest);
    391 
    392   // All done.
    393   return InnerUnwindDest;
    394 }
    395 
    396 /// [LIBUNWIND] Try to forward the given call, which logically occurs
    397 /// at the end of the given block, as a branch to the inner unwind
    398 /// block.  Returns true if the call was forwarded.
    399 bool InvokeInliningInfo::forwardEHResume(CallInst *call, BasicBlock *src) {
    400   // First, check whether this is a call to the intrinsic.
    401   Function *fn = dyn_cast<Function>(call->getCalledValue());
    402   if (!fn || fn->getName() != "llvm.eh.resume")
    403     return false;
    404 
    405   // At this point, we need to return true on all paths, because
    406   // otherwise we'll construct an invoke of the intrinsic, which is
    407   // not well-formed.
    408 
    409   // Try to find or make an inner unwind dest, which will fail if we
    410   // can't find a selector call for the outer unwind dest.
    411   BasicBlock *dest = getInnerUnwindDest();
    412   bool hasSelector = (dest != 0);
    413 
    414   // If we failed, just use the outer unwind dest, dropping the
    415   // exception and selector on the floor.
    416   if (!hasSelector)
    417     dest = OuterUnwindDest;
    418 
    419   // Make a branch.
    420   BranchInst::Create(dest, src);
    421 
    422   // Update the phis in the destination.  They were inserted in an
    423   // order which makes this work.
    424   addIncomingPHIValuesForInto(src, dest);
    425 
    426   if (hasSelector) {
    427     InnerExceptionPHI->addIncoming(call->getArgOperand(0), src);
    428     InnerSelectorPHI->addIncoming(call->getArgOperand(1), src);
    429   }
    430 
    431   return true;
    432 }
    433 
    434 /// Get or create a target for the branch from ResumeInsts.
    435 BasicBlock *InvokeInliningInfo::getInnerUnwindDestNewEH() {
    436   // FIXME: New EH - rename this function when new EH is turned on.
    437   if (InnerResumeDest) return InnerResumeDest;
    438 
    439   // Split the landing pad.
    440   BasicBlock::iterator SplitPoint = CallerLPad; ++SplitPoint;
    441   InnerResumeDest =
    442     OuterResumeDest->splitBasicBlock(SplitPoint,
    443                                      OuterResumeDest->getName() + ".body");
    444 
    445   // The number of incoming edges we expect to the inner landing pad.
    446   const unsigned PHICapacity = 2;
    447 
    448   // Create corresponding new PHIs for all the PHIs in the outer landing pad.
    449   BasicBlock::iterator InsertPoint = InnerResumeDest->begin();
    450   BasicBlock::iterator I = OuterResumeDest->begin();
    451   for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
    452     PHINode *OuterPHI = cast<PHINode>(I);
    453     PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
    454                                         OuterPHI->getName() + ".lpad-body",
    455                                         InsertPoint);
    456     OuterPHI->replaceAllUsesWith(InnerPHI);
    457     InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
    458   }
    459 
    460   // Create a PHI for the exception values.
    461   InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
    462                                      "eh.lpad-body", InsertPoint);
    463   CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
    464   InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
    465 
    466   // All done.
    467   return InnerResumeDest;
    468 }
    469 
    470 /// forwardResume - Forward the 'resume' instruction to the caller's landing pad
    471 /// block. When the landing pad block has only one predecessor, this is a simple
    472 /// branch. When there is more than one predecessor, we need to split the
    473 /// landing pad block after the landingpad instruction and jump to there.
    474 void InvokeInliningInfo::forwardResume(ResumeInst *RI) {
    475   BasicBlock *Dest = getInnerUnwindDestNewEH();
    476   BasicBlock *Src = RI->getParent();
    477 
    478   BranchInst::Create(Dest, Src);
    479 
    480   // Update the PHIs in the destination. They were inserted in an order which
    481   // makes this work.
    482   addIncomingPHIValuesForInto(Src, Dest);
    483 
    484   InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
    485   RI->eraseFromParent();
    486 }
    487 
    488 /// [LIBUNWIND] Check whether this selector is "only cleanups":
    489 ///   call i32 @llvm.eh.selector(blah, blah, i32 0)
    490 static bool isCleanupOnlySelector(EHSelectorInst *selector) {
    491   if (selector->getNumArgOperands() != 3) return false;
    492   ConstantInt *val = dyn_cast<ConstantInt>(selector->getArgOperand(2));
    493   return (val && val->isZero());
    494 }
    495 
    496 /// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into
    497 /// an invoke, we have to turn all of the calls that can throw into
    498 /// invokes.  This function analyze BB to see if there are any calls, and if so,
    499 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
    500 /// nodes in that block with the values specified in InvokeDestPHIValues.
    501 ///
    502 /// Returns true to indicate that the next block should be skipped.
    503 static bool HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB,
    504                                                    InvokeInliningInfo &Invoke) {
    505   LandingPadInst *LPI = Invoke.getLandingPadInst();
    506 
    507   for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
    508     Instruction *I = BBI++;
    509 
    510     if (LPI) // FIXME: New EH - This won't be NULL in the new EH.
    511       if (LandingPadInst *L = dyn_cast<LandingPadInst>(I)) {
    512         unsigned NumClauses = LPI->getNumClauses();
    513         L->reserveClauses(NumClauses);
    514         for (unsigned i = 0; i != NumClauses; ++i)
    515           L->addClause(LPI->getClause(i));
    516       }
    517 
    518     // We only need to check for function calls: inlined invoke
    519     // instructions require no special handling.
    520     CallInst *CI = dyn_cast<CallInst>(I);
    521     if (CI == 0) continue;
    522 
    523     // LIBUNWIND: merge selector instructions.
    524     if (EHSelectorInst *Inner = dyn_cast<EHSelectorInst>(CI)) {
    525       EHSelectorInst *Outer = Invoke.getOuterSelector();
    526       if (!Outer) continue;
    527 
    528       bool innerIsOnlyCleanup = isCleanupOnlySelector(Inner);
    529       bool outerIsOnlyCleanup = isCleanupOnlySelector(Outer);
    530 
    531       // If both selectors contain only cleanups, we don't need to do
    532       // anything.  TODO: this is really just a very specific instance
    533       // of a much more general optimization.
    534       if (innerIsOnlyCleanup && outerIsOnlyCleanup) continue;
    535 
    536       // Otherwise, we just append the outer selector to the inner selector.
    537       SmallVector<Value*, 16> NewSelector;
    538       for (unsigned i = 0, e = Inner->getNumArgOperands(); i != e; ++i)
    539         NewSelector.push_back(Inner->getArgOperand(i));
    540       for (unsigned i = 2, e = Outer->getNumArgOperands(); i != e; ++i)
    541         NewSelector.push_back(Outer->getArgOperand(i));
    542 
    543       CallInst *NewInner =
    544         IRBuilder<>(Inner).CreateCall(Inner->getCalledValue(), NewSelector);
    545       // No need to copy attributes, calling convention, etc.
    546       NewInner->takeName(Inner);
    547       Inner->replaceAllUsesWith(NewInner);
    548       Inner->eraseFromParent();
    549       continue;
    550     }
    551 
    552     // If this call cannot unwind, don't convert it to an invoke.
    553     if (CI->doesNotThrow())
    554       continue;
    555 
    556     // Convert this function call into an invoke instruction.
    557     // First, split the basic block.
    558     BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
    559 
    560     // Delete the unconditional branch inserted by splitBasicBlock
    561     BB->getInstList().pop_back();
    562 
    563     // LIBUNWIND: If this is a call to @llvm.eh.resume, just branch
    564     // directly to the new landing pad.
    565     if (Invoke.forwardEHResume(CI, BB)) {
    566       // TODO: 'Split' is now unreachable; clean it up.
    567 
    568       // We want to leave the original call intact so that the call
    569       // graph and other structures won't get misled.  We also have to
    570       // avoid processing the next block, or we'll iterate here forever.
    571       return true;
    572     }
    573 
    574     // Otherwise, create the new invoke instruction.
    575     ImmutableCallSite CS(CI);
    576     SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end());
    577     InvokeInst *II =
    578       InvokeInst::Create(CI->getCalledValue(), Split,
    579                          Invoke.getOuterUnwindDest(),
    580                          InvokeArgs, CI->getName(), BB);
    581     II->setCallingConv(CI->getCallingConv());
    582     II->setAttributes(CI->getAttributes());
    583 
    584     // Make sure that anything using the call now uses the invoke!  This also
    585     // updates the CallGraph if present, because it uses a WeakVH.
    586     CI->replaceAllUsesWith(II);
    587 
    588     Split->getInstList().pop_front();  // Delete the original call
    589 
    590     // Update any PHI nodes in the exceptional block to indicate that
    591     // there is now a new entry in them.
    592     Invoke.addIncomingPHIValuesFor(BB);
    593     return false;
    594   }
    595 
    596   return false;
    597 }
    598 
    599 
    600 /// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
    601 /// in the body of the inlined function into invokes and turn unwind
    602 /// instructions into branches to the invoke unwind dest.
    603 ///
    604 /// II is the invoke instruction being inlined.  FirstNewBlock is the first
    605 /// block of the inlined code (the last block is the end of the function),
    606 /// and InlineCodeInfo is information about the code that got inlined.
    607 static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
    608                                 ClonedCodeInfo &InlinedCodeInfo) {
    609   BasicBlock *InvokeDest = II->getUnwindDest();
    610 
    611   Function *Caller = FirstNewBlock->getParent();
    612 
    613   // The inlined code is currently at the end of the function, scan from the
    614   // start of the inlined code to its end, checking for stuff we need to
    615   // rewrite.  If the code doesn't have calls or unwinds, we know there is
    616   // nothing to rewrite.
    617   if (!InlinedCodeInfo.ContainsCalls && !InlinedCodeInfo.ContainsUnwinds) {
    618     // Now that everything is happy, we have one final detail.  The PHI nodes in
    619     // the exception destination block still have entries due to the original
    620     // invoke instruction.  Eliminate these entries (which might even delete the
    621     // PHI node) now.
    622     InvokeDest->removePredecessor(II->getParent());
    623     return;
    624   }
    625 
    626   InvokeInliningInfo Invoke(II);
    627 
    628   for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){
    629     if (InlinedCodeInfo.ContainsCalls)
    630       if (HandleCallsInBlockInlinedThroughInvoke(BB, Invoke)) {
    631         // Honor a request to skip the next block.  We don't need to
    632         // consider UnwindInsts in this case either.
    633         ++BB;
    634         continue;
    635       }
    636 
    637     if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
    638       // An UnwindInst requires special handling when it gets inlined into an
    639       // invoke site.  Once this happens, we know that the unwind would cause
    640       // a control transfer to the invoke exception destination, so we can
    641       // transform it into a direct branch to the exception destination.
    642       BranchInst::Create(InvokeDest, UI);
    643 
    644       // Delete the unwind instruction!
    645       UI->eraseFromParent();
    646 
    647       // Update any PHI nodes in the exceptional block to indicate that
    648       // there is now a new entry in them.
    649       Invoke.addIncomingPHIValuesFor(BB);
    650     }
    651 
    652     if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
    653       Invoke.forwardResume(RI);
    654     }
    655   }
    656 
    657   // Now that everything is happy, we have one final detail.  The PHI nodes in
    658   // the exception destination block still have entries due to the original
    659   // invoke instruction.  Eliminate these entries (which might even delete the
    660   // PHI node) now.
    661   InvokeDest->removePredecessor(II->getParent());
    662 }
    663 
    664 /// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
    665 /// into the caller, update the specified callgraph to reflect the changes we
    666 /// made.  Note that it's possible that not all code was copied over, so only
    667 /// some edges of the callgraph may remain.
    668 static void UpdateCallGraphAfterInlining(CallSite CS,
    669                                          Function::iterator FirstNewBlock,
    670                                          ValueToValueMapTy &VMap,
    671                                          InlineFunctionInfo &IFI) {
    672   CallGraph &CG = *IFI.CG;
    673   const Function *Caller = CS.getInstruction()->getParent()->getParent();
    674   const Function *Callee = CS.getCalledFunction();
    675   CallGraphNode *CalleeNode = CG[Callee];
    676   CallGraphNode *CallerNode = CG[Caller];
    677 
    678   // Since we inlined some uninlined call sites in the callee into the caller,
    679   // add edges from the caller to all of the callees of the callee.
    680   CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
    681 
    682   // Consider the case where CalleeNode == CallerNode.
    683   CallGraphNode::CalledFunctionsVector CallCache;
    684   if (CalleeNode == CallerNode) {
    685     CallCache.assign(I, E);
    686     I = CallCache.begin();
    687     E = CallCache.end();
    688   }
    689 
    690   for (; I != E; ++I) {
    691     const Value *OrigCall = I->first;
    692 
    693     ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
    694     // Only copy the edge if the call was inlined!
    695     if (VMI == VMap.end() || VMI->second == 0)
    696       continue;
    697 
    698     // If the call was inlined, but then constant folded, there is no edge to
    699     // add.  Check for this case.
    700     Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
    701     if (NewCall == 0) continue;
    702 
    703     // Remember that this call site got inlined for the client of
    704     // InlineFunction.
    705     IFI.InlinedCalls.push_back(NewCall);
    706 
    707     // It's possible that inlining the callsite will cause it to go from an
    708     // indirect to a direct call by resolving a function pointer.  If this
    709     // happens, set the callee of the new call site to a more precise
    710     // destination.  This can also happen if the call graph node of the caller
    711     // was just unnecessarily imprecise.
    712     if (I->second->getFunction() == 0)
    713       if (Function *F = CallSite(NewCall).getCalledFunction()) {
    714         // Indirect call site resolved to direct call.
    715         CallerNode->addCalledFunction(CallSite(NewCall), CG[F]);
    716 
    717         continue;
    718       }
    719 
    720     CallerNode->addCalledFunction(CallSite(NewCall), I->second);
    721   }
    722 
    723   // Update the call graph by deleting the edge from Callee to Caller.  We must
    724   // do this after the loop above in case Caller and Callee are the same.
    725   CallerNode->removeCallEdgeFor(CS);
    726 }
    727 
    728 /// HandleByValArgument - When inlining a call site that has a byval argument,
    729 /// we have to make the implicit memcpy explicit by adding it.
    730 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
    731                                   const Function *CalledFunc,
    732                                   InlineFunctionInfo &IFI,
    733                                   unsigned ByValAlignment) {
    734   Type *AggTy = cast<PointerType>(Arg->getType())->getElementType();
    735 
    736   // If the called function is readonly, then it could not mutate the caller's
    737   // copy of the byval'd memory.  In this case, it is safe to elide the copy and
    738   // temporary.
    739   if (CalledFunc->onlyReadsMemory()) {
    740     // If the byval argument has a specified alignment that is greater than the
    741     // passed in pointer, then we either have to round up the input pointer or
    742     // give up on this transformation.
    743     if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment.
    744       return Arg;
    745 
    746     // If the pointer is already known to be sufficiently aligned, or if we can
    747     // round it up to a larger alignment, then we don't need a temporary.
    748     if (getOrEnforceKnownAlignment(Arg, ByValAlignment,
    749                                    IFI.TD) >= ByValAlignment)
    750       return Arg;
    751 
    752     // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad
    753     // for code quality, but rarely happens and is required for correctness.
    754   }
    755 
    756   LLVMContext &Context = Arg->getContext();
    757 
    758   Type *VoidPtrTy = Type::getInt8PtrTy(Context);
    759 
    760   // Create the alloca.  If we have TargetData, use nice alignment.
    761   unsigned Align = 1;
    762   if (IFI.TD)
    763     Align = IFI.TD->getPrefTypeAlignment(AggTy);
    764 
    765   // If the byval had an alignment specified, we *must* use at least that
    766   // alignment, as it is required by the byval argument (and uses of the
    767   // pointer inside the callee).
    768   Align = std::max(Align, ByValAlignment);
    769 
    770   Function *Caller = TheCall->getParent()->getParent();
    771 
    772   Value *NewAlloca = new AllocaInst(AggTy, 0, Align, Arg->getName(),
    773                                     &*Caller->begin()->begin());
    774   // Emit a memcpy.
    775   Type *Tys[3] = {VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context)};
    776   Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(),
    777                                                  Intrinsic::memcpy,
    778                                                  Tys);
    779   Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall);
    780   Value *SrcCast = new BitCastInst(Arg, VoidPtrTy, "tmp", TheCall);
    781 
    782   Value *Size;
    783   if (IFI.TD == 0)
    784     Size = ConstantExpr::getSizeOf(AggTy);
    785   else
    786     Size = ConstantInt::get(Type::getInt64Ty(Context),
    787                             IFI.TD->getTypeStoreSize(AggTy));
    788 
    789   // Always generate a memcpy of alignment 1 here because we don't know
    790   // the alignment of the src pointer.  Other optimizations can infer
    791   // better alignment.
    792   Value *CallArgs[] = {
    793     DestCast, SrcCast, Size,
    794     ConstantInt::get(Type::getInt32Ty(Context), 1),
    795     ConstantInt::getFalse(Context) // isVolatile
    796   };
    797   IRBuilder<>(TheCall).CreateCall(MemCpyFn, CallArgs);
    798 
    799   // Uses of the argument in the function should use our new alloca
    800   // instead.
    801   return NewAlloca;
    802 }
    803 
    804 // isUsedByLifetimeMarker - Check whether this Value is used by a lifetime
    805 // intrinsic.
    806 static bool isUsedByLifetimeMarker(Value *V) {
    807   for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); UI != UE;
    808        ++UI) {
    809     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI)) {
    810       switch (II->getIntrinsicID()) {
    811       default: break;
    812       case Intrinsic::lifetime_start:
    813       case Intrinsic::lifetime_end:
    814         return true;
    815       }
    816     }
    817   }
    818   return false;
    819 }
    820 
    821 // hasLifetimeMarkers - Check whether the given alloca already has
    822 // lifetime.start or lifetime.end intrinsics.
    823 static bool hasLifetimeMarkers(AllocaInst *AI) {
    824   Type *Int8PtrTy = Type::getInt8PtrTy(AI->getType()->getContext());
    825   if (AI->getType() == Int8PtrTy)
    826     return isUsedByLifetimeMarker(AI);
    827 
    828   // Do a scan to find all the casts to i8*.
    829   for (Value::use_iterator I = AI->use_begin(), E = AI->use_end(); I != E;
    830        ++I) {
    831     if (I->getType() != Int8PtrTy) continue;
    832     if (I->stripPointerCasts() != AI) continue;
    833     if (isUsedByLifetimeMarker(*I))
    834       return true;
    835   }
    836   return false;
    837 }
    838 
    839 /// updateInlinedAtInfo - Helper function used by fixupLineNumbers to recursively
    840 /// update InlinedAtEntry of a DebugLoc.
    841 static DebugLoc updateInlinedAtInfo(const DebugLoc &DL,
    842                                     const DebugLoc &InlinedAtDL,
    843                                     LLVMContext &Ctx) {
    844   if (MDNode *IA = DL.getInlinedAt(Ctx)) {
    845     DebugLoc NewInlinedAtDL
    846       = updateInlinedAtInfo(DebugLoc::getFromDILocation(IA), InlinedAtDL, Ctx);
    847     return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
    848                          NewInlinedAtDL.getAsMDNode(Ctx));
    849   }
    850 
    851   return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
    852                        InlinedAtDL.getAsMDNode(Ctx));
    853 }
    854 
    855 
    856 /// fixupLineNumbers - Update inlined instructions' line numbers to
    857 /// to encode location where these instructions are inlined.
    858 static void fixupLineNumbers(Function *Fn, Function::iterator FI,
    859                               Instruction *TheCall) {
    860   DebugLoc TheCallDL = TheCall->getDebugLoc();
    861   if (TheCallDL.isUnknown())
    862     return;
    863 
    864   for (; FI != Fn->end(); ++FI) {
    865     for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
    866          BI != BE; ++BI) {
    867       DebugLoc DL = BI->getDebugLoc();
    868       if (!DL.isUnknown()) {
    869         BI->setDebugLoc(updateInlinedAtInfo(DL, TheCallDL, BI->getContext()));
    870         if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(BI)) {
    871           LLVMContext &Ctx = BI->getContext();
    872           MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx);
    873           DVI->setOperand(2, createInlinedVariable(DVI->getVariable(),
    874                                                    InlinedAt, Ctx));
    875         }
    876       }
    877     }
    878   }
    879 }
    880 
    881 // InlineFunction - This function inlines the called function into the basic
    882 // block of the caller.  This returns false if it is not possible to inline this
    883 // call.  The program is still in a well defined state if this occurs though.
    884 //
    885 // Note that this only does one level of inlining.  For example, if the
    886 // instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
    887 // exists in the instruction stream.  Similarly this will inline a recursive
    888 // function by one level.
    889 //
    890 bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI) {
    891   Instruction *TheCall = CS.getInstruction();
    892   LLVMContext &Context = TheCall->getContext();
    893   assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
    894          "Instruction not in function!");
    895 
    896   // If IFI has any state in it, zap it before we fill it in.
    897   IFI.reset();
    898 
    899   const Function *CalledFunc = CS.getCalledFunction();
    900   if (CalledFunc == 0 ||          // Can't inline external function or indirect
    901       CalledFunc->isDeclaration() || // call, or call to a vararg function!
    902       CalledFunc->getFunctionType()->isVarArg()) return false;
    903 
    904   // If the call to the callee is not a tail call, we must clear the 'tail'
    905   // flags on any calls that we inline.
    906   bool MustClearTailCallFlags =
    907     !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall());
    908 
    909   // If the call to the callee cannot throw, set the 'nounwind' flag on any
    910   // calls that we inline.
    911   bool MarkNoUnwind = CS.doesNotThrow();
    912 
    913   BasicBlock *OrigBB = TheCall->getParent();
    914   Function *Caller = OrigBB->getParent();
    915 
    916   // GC poses two hazards to inlining, which only occur when the callee has GC:
    917   //  1. If the caller has no GC, then the callee's GC must be propagated to the
    918   //     caller.
    919   //  2. If the caller has a differing GC, it is invalid to inline.
    920   if (CalledFunc->hasGC()) {
    921     if (!Caller->hasGC())
    922       Caller->setGC(CalledFunc->getGC());
    923     else if (CalledFunc->getGC() != Caller->getGC())
    924       return false;
    925   }
    926 
    927   // Find the personality function used by the landing pads of the caller. If it
    928   // exists, then check to see that it matches the personality function used in
    929   // the callee.
    930   for (Function::const_iterator
    931          I = Caller->begin(), E = Caller->end(); I != E; ++I)
    932     if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
    933       const BasicBlock *BB = II->getUnwindDest();
    934       // FIXME: This 'isa' here should become go away once the new EH system is
    935       // in place.
    936       if (!isa<LandingPadInst>(BB->getFirstNonPHI()))
    937         continue;
    938       const LandingPadInst *LP = cast<LandingPadInst>(BB->getFirstNonPHI());
    939       const Value *CallerPersFn = LP->getPersonalityFn();
    940 
    941       // If the personality functions match, then we can perform the
    942       // inlining. Otherwise, we can't inline.
    943       // TODO: This isn't 100% true. Some personality functions are proper
    944       //       supersets of others and can be used in place of the other.
    945       for (Function::const_iterator
    946              I = CalledFunc->begin(), E = CalledFunc->end(); I != E; ++I)
    947         if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
    948           const BasicBlock *BB = II->getUnwindDest();
    949           // FIXME: This 'if/dyn_cast' here should become a normal 'cast' once
    950           // the new EH system is in place.
    951           if (const LandingPadInst *LP =
    952               dyn_cast<LandingPadInst>(BB->getFirstNonPHI()))
    953             if (CallerPersFn != LP->getPersonalityFn())
    954               return false;
    955           break;
    956         }
    957 
    958       break;
    959     }
    960 
    961   // Get an iterator to the last basic block in the function, which will have
    962   // the new function inlined after it.
    963   //
    964   Function::iterator LastBlock = &Caller->back();
    965 
    966   // Make sure to capture all of the return instructions from the cloned
    967   // function.
    968   SmallVector<ReturnInst*, 8> Returns;
    969   ClonedCodeInfo InlinedFunctionInfo;
    970   Function::iterator FirstNewBlock;
    971 
    972   { // Scope to destroy VMap after cloning.
    973     ValueToValueMapTy VMap;
    974 
    975     assert(CalledFunc->arg_size() == CS.arg_size() &&
    976            "No varargs calls can be inlined!");
    977 
    978     // Calculate the vector of arguments to pass into the function cloner, which
    979     // matches up the formal to the actual argument values.
    980     CallSite::arg_iterator AI = CS.arg_begin();
    981     unsigned ArgNo = 0;
    982     for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
    983          E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
    984       Value *ActualArg = *AI;
    985 
    986       // When byval arguments actually inlined, we need to make the copy implied
    987       // by them explicit.  However, we don't do this if the callee is readonly
    988       // or readnone, because the copy would be unneeded: the callee doesn't
    989       // modify the struct.
    990       if (CalledFunc->paramHasAttr(ArgNo+1, Attribute::ByVal)) {
    991         ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
    992                                         CalledFunc->getParamAlignment(ArgNo+1));
    993 
    994         // Calls that we inline may use the new alloca, so we need to clear
    995         // their 'tail' flags if HandleByValArgument introduced a new alloca and
    996         // the callee has calls.
    997         MustClearTailCallFlags |= ActualArg != *AI;
    998       }
    999 
   1000       VMap[I] = ActualArg;
   1001     }
   1002 
   1003     // We want the inliner to prune the code as it copies.  We would LOVE to
   1004     // have no dead or constant instructions leftover after inlining occurs
   1005     // (which can happen, e.g., because an argument was constant), but we'll be
   1006     // happy with whatever the cloner can do.
   1007     CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
   1008                               /*ModuleLevelChanges=*/false, Returns, ".i",
   1009                               &InlinedFunctionInfo, IFI.TD, TheCall);
   1010 
   1011     // Remember the first block that is newly cloned over.
   1012     FirstNewBlock = LastBlock; ++FirstNewBlock;
   1013 
   1014     // Update the callgraph if requested.
   1015     if (IFI.CG)
   1016       UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
   1017 
   1018     // Update inlined instructions' line number information.
   1019     fixupLineNumbers(Caller, FirstNewBlock, TheCall);
   1020   }
   1021 
   1022   // If there are any alloca instructions in the block that used to be the entry
   1023   // block for the callee, move them to the entry block of the caller.  First
   1024   // calculate which instruction they should be inserted before.  We insert the
   1025   // instructions at the end of the current alloca list.
   1026   //
   1027   {
   1028     BasicBlock::iterator InsertPoint = Caller->begin()->begin();
   1029     for (BasicBlock::iterator I = FirstNewBlock->begin(),
   1030          E = FirstNewBlock->end(); I != E; ) {
   1031       AllocaInst *AI = dyn_cast<AllocaInst>(I++);
   1032       if (AI == 0) continue;
   1033 
   1034       // If the alloca is now dead, remove it.  This often occurs due to code
   1035       // specialization.
   1036       if (AI->use_empty()) {
   1037         AI->eraseFromParent();
   1038         continue;
   1039       }
   1040 
   1041       if (!isa<Constant>(AI->getArraySize()))
   1042         continue;
   1043 
   1044       // Keep track of the static allocas that we inline into the caller.
   1045       IFI.StaticAllocas.push_back(AI);
   1046 
   1047       // Scan for the block of allocas that we can move over, and move them
   1048       // all at once.
   1049       while (isa<AllocaInst>(I) &&
   1050              isa<Constant>(cast<AllocaInst>(I)->getArraySize())) {
   1051         IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
   1052         ++I;
   1053       }
   1054 
   1055       // Transfer all of the allocas over in a block.  Using splice means
   1056       // that the instructions aren't removed from the symbol table, then
   1057       // reinserted.
   1058       Caller->getEntryBlock().getInstList().splice(InsertPoint,
   1059                                                    FirstNewBlock->getInstList(),
   1060                                                    AI, I);
   1061     }
   1062   }
   1063 
   1064   // Leave lifetime markers for the static alloca's, scoping them to the
   1065   // function we just inlined.
   1066   if (!IFI.StaticAllocas.empty()) {
   1067     IRBuilder<> builder(FirstNewBlock->begin());
   1068     for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
   1069       AllocaInst *AI = IFI.StaticAllocas[ai];
   1070 
   1071       // If the alloca is already scoped to something smaller than the whole
   1072       // function then there's no need to add redundant, less accurate markers.
   1073       if (hasLifetimeMarkers(AI))
   1074         continue;
   1075 
   1076       builder.CreateLifetimeStart(AI);
   1077       for (unsigned ri = 0, re = Returns.size(); ri != re; ++ri) {
   1078         IRBuilder<> builder(Returns[ri]);
   1079         builder.CreateLifetimeEnd(AI);
   1080       }
   1081     }
   1082   }
   1083 
   1084   // If the inlined code contained dynamic alloca instructions, wrap the inlined
   1085   // code with llvm.stacksave/llvm.stackrestore intrinsics.
   1086   if (InlinedFunctionInfo.ContainsDynamicAllocas) {
   1087     Module *M = Caller->getParent();
   1088     // Get the two intrinsics we care about.
   1089     Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
   1090     Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
   1091 
   1092     // Insert the llvm.stacksave.
   1093     CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin())
   1094       .CreateCall(StackSave, "savedstack");
   1095 
   1096     // Insert a call to llvm.stackrestore before any return instructions in the
   1097     // inlined function.
   1098     for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
   1099       IRBuilder<>(Returns[i]).CreateCall(StackRestore, SavedPtr);
   1100     }
   1101 
   1102     // Count the number of StackRestore calls we insert.
   1103     unsigned NumStackRestores = Returns.size();
   1104 
   1105     // If we are inlining an invoke instruction, insert restores before each
   1106     // unwind.  These unwinds will be rewritten into branches later.
   1107     if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) {
   1108       for (Function::iterator BB = FirstNewBlock, E = Caller->end();
   1109            BB != E; ++BB)
   1110         if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
   1111           IRBuilder<>(UI).CreateCall(StackRestore, SavedPtr);
   1112           ++NumStackRestores;
   1113         }
   1114     }
   1115   }
   1116 
   1117   // If we are inlining tail call instruction through a call site that isn't
   1118   // marked 'tail', we must remove the tail marker for any calls in the inlined
   1119   // code.  Also, calls inlined through a 'nounwind' call site should be marked
   1120   // 'nounwind'.
   1121   if (InlinedFunctionInfo.ContainsCalls &&
   1122       (MustClearTailCallFlags || MarkNoUnwind)) {
   1123     for (Function::iterator BB = FirstNewBlock, E = Caller->end();
   1124          BB != E; ++BB)
   1125       for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
   1126         if (CallInst *CI = dyn_cast<CallInst>(I)) {
   1127           if (MustClearTailCallFlags)
   1128             CI->setTailCall(false);
   1129           if (MarkNoUnwind)
   1130             CI->setDoesNotThrow();
   1131         }
   1132   }
   1133 
   1134   // If we are inlining through a 'nounwind' call site then any inlined 'unwind'
   1135   // instructions are unreachable.
   1136   if (InlinedFunctionInfo.ContainsUnwinds && MarkNoUnwind)
   1137     for (Function::iterator BB = FirstNewBlock, E = Caller->end();
   1138          BB != E; ++BB) {
   1139       TerminatorInst *Term = BB->getTerminator();
   1140       if (isa<UnwindInst>(Term)) {
   1141         new UnreachableInst(Context, Term);
   1142         BB->getInstList().erase(Term);
   1143       }
   1144     }
   1145 
   1146   // If we are inlining for an invoke instruction, we must make sure to rewrite
   1147   // any inlined 'unwind' instructions into branches to the invoke exception
   1148   // destination, and call instructions into invoke instructions.
   1149   if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
   1150     HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
   1151 
   1152   // If we cloned in _exactly one_ basic block, and if that block ends in a
   1153   // return instruction, we splice the body of the inlined callee directly into
   1154   // the calling basic block.
   1155   if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
   1156     // Move all of the instructions right before the call.
   1157     OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
   1158                                  FirstNewBlock->begin(), FirstNewBlock->end());
   1159     // Remove the cloned basic block.
   1160     Caller->getBasicBlockList().pop_back();
   1161 
   1162     // If the call site was an invoke instruction, add a branch to the normal
   1163     // destination.
   1164     if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
   1165       BranchInst::Create(II->getNormalDest(), TheCall);
   1166 
   1167     // If the return instruction returned a value, replace uses of the call with
   1168     // uses of the returned value.
   1169     if (!TheCall->use_empty()) {
   1170       ReturnInst *R = Returns[0];
   1171       if (TheCall == R->getReturnValue())
   1172         TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
   1173       else
   1174         TheCall->replaceAllUsesWith(R->getReturnValue());
   1175     }
   1176     // Since we are now done with the Call/Invoke, we can delete it.
   1177     TheCall->eraseFromParent();
   1178 
   1179     // Since we are now done with the return instruction, delete it also.
   1180     Returns[0]->eraseFromParent();
   1181 
   1182     // We are now done with the inlining.
   1183     return true;
   1184   }
   1185 
   1186   // Otherwise, we have the normal case, of more than one block to inline or
   1187   // multiple return sites.
   1188 
   1189   // We want to clone the entire callee function into the hole between the
   1190   // "starter" and "ender" blocks.  How we accomplish this depends on whether
   1191   // this is an invoke instruction or a call instruction.
   1192   BasicBlock *AfterCallBB;
   1193   if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
   1194 
   1195     // Add an unconditional branch to make this look like the CallInst case...
   1196     BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
   1197 
   1198     // Split the basic block.  This guarantees that no PHI nodes will have to be
   1199     // updated due to new incoming edges, and make the invoke case more
   1200     // symmetric to the call case.
   1201     AfterCallBB = OrigBB->splitBasicBlock(NewBr,
   1202                                           CalledFunc->getName()+".exit");
   1203 
   1204   } else {  // It's a call
   1205     // If this is a call instruction, we need to split the basic block that
   1206     // the call lives in.
   1207     //
   1208     AfterCallBB = OrigBB->splitBasicBlock(TheCall,
   1209                                           CalledFunc->getName()+".exit");
   1210   }
   1211 
   1212   // Change the branch that used to go to AfterCallBB to branch to the first
   1213   // basic block of the inlined function.
   1214   //
   1215   TerminatorInst *Br = OrigBB->getTerminator();
   1216   assert(Br && Br->getOpcode() == Instruction::Br &&
   1217          "splitBasicBlock broken!");
   1218   Br->setOperand(0, FirstNewBlock);
   1219 
   1220 
   1221   // Now that the function is correct, make it a little bit nicer.  In
   1222   // particular, move the basic blocks inserted from the end of the function
   1223   // into the space made by splitting the source basic block.
   1224   Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
   1225                                      FirstNewBlock, Caller->end());
   1226 
   1227   // Handle all of the return instructions that we just cloned in, and eliminate
   1228   // any users of the original call/invoke instruction.
   1229   Type *RTy = CalledFunc->getReturnType();
   1230 
   1231   PHINode *PHI = 0;
   1232   if (Returns.size() > 1) {
   1233     // The PHI node should go at the front of the new basic block to merge all
   1234     // possible incoming values.
   1235     if (!TheCall->use_empty()) {
   1236       PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
   1237                             AfterCallBB->begin());
   1238       // Anything that used the result of the function call should now use the
   1239       // PHI node as their operand.
   1240       TheCall->replaceAllUsesWith(PHI);
   1241     }
   1242 
   1243     // Loop over all of the return instructions adding entries to the PHI node
   1244     // as appropriate.
   1245     if (PHI) {
   1246       for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
   1247         ReturnInst *RI = Returns[i];
   1248         assert(RI->getReturnValue()->getType() == PHI->getType() &&
   1249                "Ret value not consistent in function!");
   1250         PHI->addIncoming(RI->getReturnValue(), RI->getParent());
   1251       }
   1252     }
   1253 
   1254 
   1255     // Add a branch to the merge points and remove return instructions.
   1256     for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
   1257       ReturnInst *RI = Returns[i];
   1258       BranchInst::Create(AfterCallBB, RI);
   1259       RI->eraseFromParent();
   1260     }
   1261   } else if (!Returns.empty()) {
   1262     // Otherwise, if there is exactly one return value, just replace anything
   1263     // using the return value of the call with the computed value.
   1264     if (!TheCall->use_empty()) {
   1265       if (TheCall == Returns[0]->getReturnValue())
   1266         TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
   1267       else
   1268         TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
   1269     }
   1270 
   1271     // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
   1272     BasicBlock *ReturnBB = Returns[0]->getParent();
   1273     ReturnBB->replaceAllUsesWith(AfterCallBB);
   1274 
   1275     // Splice the code from the return block into the block that it will return
   1276     // to, which contains the code that was after the call.
   1277     AfterCallBB->getInstList().splice(AfterCallBB->begin(),
   1278                                       ReturnBB->getInstList());
   1279 
   1280     // Delete the return instruction now and empty ReturnBB now.
   1281     Returns[0]->eraseFromParent();
   1282     ReturnBB->eraseFromParent();
   1283   } else if (!TheCall->use_empty()) {
   1284     // No returns, but something is using the return value of the call.  Just
   1285     // nuke the result.
   1286     TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
   1287   }
   1288 
   1289   // Since we are now done with the Call/Invoke, we can delete it.
   1290   TheCall->eraseFromParent();
   1291 
   1292   // We should always be able to fold the entry block of the function into the
   1293   // single predecessor of the block...
   1294   assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
   1295   BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
   1296 
   1297   // Splice the code entry block into calling block, right before the
   1298   // unconditional branch.
   1299   CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
   1300   OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
   1301 
   1302   // Remove the unconditional branch.
   1303   OrigBB->getInstList().erase(Br);
   1304 
   1305   // Now we can remove the CalleeEntry block, which is now empty.
   1306   Caller->getBasicBlockList().erase(CalleeEntry);
   1307 
   1308   // If we inserted a phi node, check to see if it has a single value (e.g. all
   1309   // the entries are the same or undef).  If so, remove the PHI so it doesn't
   1310   // block other optimizations.
   1311   if (PHI)
   1312     if (Value *V = SimplifyInstruction(PHI, IFI.TD)) {
   1313       PHI->replaceAllUsesWith(V);
   1314       PHI->eraseFromParent();
   1315     }
   1316 
   1317   return true;
   1318 }
   1319