Home | History | Annotate | Download | only in TableGen
      1 //===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "DAGISelMatcher.h"
     11 #include "CodeGenDAGPatterns.h"
     12 #include "CodeGenRegisters.h"
     13 #include "llvm/TableGen/Record.h"
     14 #include "llvm/ADT/DenseMap.h"
     15 #include "llvm/ADT/SmallVector.h"
     16 #include "llvm/ADT/StringMap.h"
     17 #include <utility>
     18 using namespace llvm;
     19 
     20 
     21 /// getRegisterValueType - Look up and return the ValueType of the specified
     22 /// register. If the register is a member of multiple register classes which
     23 /// have different associated types, return MVT::Other.
     24 static MVT::SimpleValueType getRegisterValueType(Record *R,
     25                                                  const CodeGenTarget &T) {
     26   bool FoundRC = false;
     27   MVT::SimpleValueType VT = MVT::Other;
     28   const CodeGenRegister *Reg = T.getRegBank().getReg(R);
     29   ArrayRef<CodeGenRegisterClass*> RCs = T.getRegBank().getRegClasses();
     30 
     31   for (unsigned rc = 0, e = RCs.size(); rc != e; ++rc) {
     32     const CodeGenRegisterClass &RC = *RCs[rc];
     33     if (!RC.contains(Reg))
     34       continue;
     35 
     36     if (!FoundRC) {
     37       FoundRC = true;
     38       VT = RC.getValueTypeNum(0);
     39       continue;
     40     }
     41 
     42     // If this occurs in multiple register classes, they all have to agree.
     43     assert(VT == RC.getValueTypeNum(0));
     44   }
     45   return VT;
     46 }
     47 
     48 
     49 namespace {
     50   class MatcherGen {
     51     const PatternToMatch &Pattern;
     52     const CodeGenDAGPatterns &CGP;
     53 
     54     /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts
     55     /// out with all of the types removed.  This allows us to insert type checks
     56     /// as we scan the tree.
     57     TreePatternNode *PatWithNoTypes;
     58 
     59     /// VariableMap - A map from variable names ('$dst') to the recorded operand
     60     /// number that they were captured as.  These are biased by 1 to make
     61     /// insertion easier.
     62     StringMap<unsigned> VariableMap;
     63 
     64     /// NextRecordedOperandNo - As we emit opcodes to record matched values in
     65     /// the RecordedNodes array, this keeps track of which slot will be next to
     66     /// record into.
     67     unsigned NextRecordedOperandNo;
     68 
     69     /// MatchedChainNodes - This maintains the position in the recorded nodes
     70     /// array of all of the recorded input nodes that have chains.
     71     SmallVector<unsigned, 2> MatchedChainNodes;
     72 
     73     /// MatchedGlueResultNodes - This maintains the position in the recorded
     74     /// nodes array of all of the recorded input nodes that have glue results.
     75     SmallVector<unsigned, 2> MatchedGlueResultNodes;
     76 
     77     /// MatchedComplexPatterns - This maintains a list of all of the
     78     /// ComplexPatterns that we need to check.  The patterns are known to have
     79     /// names which were recorded.  The second element of each pair is the first
     80     /// slot number that the OPC_CheckComplexPat opcode drops the matched
     81     /// results into.
     82     SmallVector<std::pair<const TreePatternNode*,
     83                           unsigned>, 2> MatchedComplexPatterns;
     84 
     85     /// PhysRegInputs - List list has an entry for each explicitly specified
     86     /// physreg input to the pattern.  The first elt is the Register node, the
     87     /// second is the recorded slot number the input pattern match saved it in.
     88     SmallVector<std::pair<Record*, unsigned>, 2> PhysRegInputs;
     89 
     90     /// Matcher - This is the top level of the generated matcher, the result.
     91     Matcher *TheMatcher;
     92 
     93     /// CurPredicate - As we emit matcher nodes, this points to the latest check
     94     /// which should have future checks stuck into its Next position.
     95     Matcher *CurPredicate;
     96   public:
     97     MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp);
     98 
     99     ~MatcherGen() {
    100       delete PatWithNoTypes;
    101     }
    102 
    103     bool EmitMatcherCode(unsigned Variant);
    104     void EmitResultCode();
    105 
    106     Matcher *GetMatcher() const { return TheMatcher; }
    107   private:
    108     void AddMatcher(Matcher *NewNode);
    109     void InferPossibleTypes();
    110 
    111     // Matcher Generation.
    112     void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes);
    113     void EmitLeafMatchCode(const TreePatternNode *N);
    114     void EmitOperatorMatchCode(const TreePatternNode *N,
    115                                TreePatternNode *NodeNoTypes);
    116 
    117     // Result Code Generation.
    118     unsigned getNamedArgumentSlot(StringRef Name) {
    119       unsigned VarMapEntry = VariableMap[Name];
    120       assert(VarMapEntry != 0 &&
    121              "Variable referenced but not defined and not caught earlier!");
    122       return VarMapEntry-1;
    123     }
    124 
    125     /// GetInstPatternNode - Get the pattern for an instruction.
    126     const TreePatternNode *GetInstPatternNode(const DAGInstruction &Ins,
    127                                               const TreePatternNode *N);
    128 
    129     void EmitResultOperand(const TreePatternNode *N,
    130                            SmallVectorImpl<unsigned> &ResultOps);
    131     void EmitResultOfNamedOperand(const TreePatternNode *N,
    132                                   SmallVectorImpl<unsigned> &ResultOps);
    133     void EmitResultLeafAsOperand(const TreePatternNode *N,
    134                                  SmallVectorImpl<unsigned> &ResultOps);
    135     void EmitResultInstructionAsOperand(const TreePatternNode *N,
    136                                         SmallVectorImpl<unsigned> &ResultOps);
    137     void EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
    138                                         SmallVectorImpl<unsigned> &ResultOps);
    139     };
    140 
    141 } // end anon namespace.
    142 
    143 MatcherGen::MatcherGen(const PatternToMatch &pattern,
    144                        const CodeGenDAGPatterns &cgp)
    145 : Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0),
    146   TheMatcher(0), CurPredicate(0) {
    147   // We need to produce the matcher tree for the patterns source pattern.  To do
    148   // this we need to match the structure as well as the types.  To do the type
    149   // matching, we want to figure out the fewest number of type checks we need to
    150   // emit.  For example, if there is only one integer type supported by a
    151   // target, there should be no type comparisons at all for integer patterns!
    152   //
    153   // To figure out the fewest number of type checks needed, clone the pattern,
    154   // remove the types, then perform type inference on the pattern as a whole.
    155   // If there are unresolved types, emit an explicit check for those types,
    156   // apply the type to the tree, then rerun type inference.  Iterate until all
    157   // types are resolved.
    158   //
    159   PatWithNoTypes = Pattern.getSrcPattern()->clone();
    160   PatWithNoTypes->RemoveAllTypes();
    161 
    162   // If there are types that are manifestly known, infer them.
    163   InferPossibleTypes();
    164 }
    165 
    166 /// InferPossibleTypes - As we emit the pattern, we end up generating type
    167 /// checks and applying them to the 'PatWithNoTypes' tree.  As we do this, we
    168 /// want to propagate implied types as far throughout the tree as possible so
    169 /// that we avoid doing redundant type checks.  This does the type propagation.
    170 void MatcherGen::InferPossibleTypes() {
    171   // TP - Get *SOME* tree pattern, we don't care which.  It is only used for
    172   // diagnostics, which we know are impossible at this point.
    173   TreePattern &TP = *CGP.pf_begin()->second;
    174 
    175   try {
    176     bool MadeChange = true;
    177     while (MadeChange)
    178       MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP,
    179                                                 true/*Ignore reg constraints*/);
    180   } catch (...) {
    181     errs() << "Type constraint application shouldn't fail!";
    182     abort();
    183   }
    184 }
    185 
    186 
    187 /// AddMatcher - Add a matcher node to the current graph we're building.
    188 void MatcherGen::AddMatcher(Matcher *NewNode) {
    189   if (CurPredicate != 0)
    190     CurPredicate->setNext(NewNode);
    191   else
    192     TheMatcher = NewNode;
    193   CurPredicate = NewNode;
    194 }
    195 
    196 
    197 //===----------------------------------------------------------------------===//
    198 // Pattern Match Generation
    199 //===----------------------------------------------------------------------===//
    200 
    201 /// EmitLeafMatchCode - Generate matching code for leaf nodes.
    202 void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) {
    203   assert(N->isLeaf() && "Not a leaf?");
    204 
    205   // Direct match against an integer constant.
    206   if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
    207     // If this is the root of the dag we're matching, we emit a redundant opcode
    208     // check to ensure that this gets folded into the normal top-level
    209     // OpcodeSwitch.
    210     if (N == Pattern.getSrcPattern()) {
    211       const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm"));
    212       AddMatcher(new CheckOpcodeMatcher(NI));
    213     }
    214 
    215     return AddMatcher(new CheckIntegerMatcher(II->getValue()));
    216   }
    217 
    218   DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue());
    219   if (DI == 0) {
    220     errs() << "Unknown leaf kind: " << *DI << "\n";
    221     abort();
    222   }
    223 
    224   Record *LeafRec = DI->getDef();
    225   if (// Handle register references.  Nothing to do here, they always match.
    226       LeafRec->isSubClassOf("RegisterClass") ||
    227       LeafRec->isSubClassOf("RegisterOperand") ||
    228       LeafRec->isSubClassOf("PointerLikeRegClass") ||
    229       LeafRec->isSubClassOf("SubRegIndex") ||
    230       // Place holder for SRCVALUE nodes. Nothing to do here.
    231       LeafRec->getName() == "srcvalue")
    232     return;
    233 
    234   // If we have a physreg reference like (mul gpr:$src, EAX) then we need to
    235   // record the register
    236   if (LeafRec->isSubClassOf("Register")) {
    237     AddMatcher(new RecordMatcher("physreg input "+LeafRec->getName(),
    238                                  NextRecordedOperandNo));
    239     PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++));
    240     return;
    241   }
    242 
    243   if (LeafRec->isSubClassOf("ValueType"))
    244     return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName()));
    245 
    246   if (LeafRec->isSubClassOf("CondCode"))
    247     return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName()));
    248 
    249   if (LeafRec->isSubClassOf("ComplexPattern")) {
    250     // We can't model ComplexPattern uses that don't have their name taken yet.
    251     // The OPC_CheckComplexPattern operation implicitly records the results.
    252     if (N->getName().empty()) {
    253       errs() << "We expect complex pattern uses to have names: " << *N << "\n";
    254       exit(1);
    255     }
    256 
    257     // Remember this ComplexPattern so that we can emit it after all the other
    258     // structural matches are done.
    259     MatchedComplexPatterns.push_back(std::make_pair(N, 0));
    260     return;
    261   }
    262 
    263   errs() << "Unknown leaf kind: " << *N << "\n";
    264   abort();
    265 }
    266 
    267 void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N,
    268                                        TreePatternNode *NodeNoTypes) {
    269   assert(!N->isLeaf() && "Not an operator?");
    270   const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator());
    271 
    272   // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
    273   // a constant without a predicate fn that has more that one bit set, handle
    274   // this as a special case.  This is usually for targets that have special
    275   // handling of certain large constants (e.g. alpha with it's 8/16/32-bit
    276   // handling stuff).  Using these instructions is often far more efficient
    277   // than materializing the constant.  Unfortunately, both the instcombiner
    278   // and the dag combiner can often infer that bits are dead, and thus drop
    279   // them from the mask in the dag.  For example, it might turn 'AND X, 255'
    280   // into 'AND X, 254' if it knows the low bit is set.  Emit code that checks
    281   // to handle this.
    282   if ((N->getOperator()->getName() == "and" ||
    283        N->getOperator()->getName() == "or") &&
    284       N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateFns().empty() &&
    285       N->getPredicateFns().empty()) {
    286     if (IntInit *II = dynamic_cast<IntInit*>(N->getChild(1)->getLeafValue())) {
    287       if (!isPowerOf2_32(II->getValue())) {  // Don't bother with single bits.
    288         // If this is at the root of the pattern, we emit a redundant
    289         // CheckOpcode so that the following checks get factored properly under
    290         // a single opcode check.
    291         if (N == Pattern.getSrcPattern())
    292           AddMatcher(new CheckOpcodeMatcher(CInfo));
    293 
    294         // Emit the CheckAndImm/CheckOrImm node.
    295         if (N->getOperator()->getName() == "and")
    296           AddMatcher(new CheckAndImmMatcher(II->getValue()));
    297         else
    298           AddMatcher(new CheckOrImmMatcher(II->getValue()));
    299 
    300         // Match the LHS of the AND as appropriate.
    301         AddMatcher(new MoveChildMatcher(0));
    302         EmitMatchCode(N->getChild(0), NodeNoTypes->getChild(0));
    303         AddMatcher(new MoveParentMatcher());
    304         return;
    305       }
    306     }
    307   }
    308 
    309   // Check that the current opcode lines up.
    310   AddMatcher(new CheckOpcodeMatcher(CInfo));
    311 
    312   // If this node has memory references (i.e. is a load or store), tell the
    313   // interpreter to capture them in the memref array.
    314   if (N->NodeHasProperty(SDNPMemOperand, CGP))
    315     AddMatcher(new RecordMemRefMatcher());
    316 
    317   // If this node has a chain, then the chain is operand #0 is the SDNode, and
    318   // the child numbers of the node are all offset by one.
    319   unsigned OpNo = 0;
    320   if (N->NodeHasProperty(SDNPHasChain, CGP)) {
    321     // Record the node and remember it in our chained nodes list.
    322     AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() +
    323                                          "' chained node",
    324                                  NextRecordedOperandNo));
    325     // Remember all of the input chains our pattern will match.
    326     MatchedChainNodes.push_back(NextRecordedOperandNo++);
    327 
    328     // Don't look at the input chain when matching the tree pattern to the
    329     // SDNode.
    330     OpNo = 1;
    331 
    332     // If this node is not the root and the subtree underneath it produces a
    333     // chain, then the result of matching the node is also produce a chain.
    334     // Beyond that, this means that we're also folding (at least) the root node
    335     // into the node that produce the chain (for example, matching
    336     // "(add reg, (load ptr))" as a add_with_memory on X86).  This is
    337     // problematic, if the 'reg' node also uses the load (say, its chain).
    338     // Graphically:
    339     //
    340     //         [LD]
    341     //         ^  ^
    342     //         |  \                              DAG's like cheese.
    343     //        /    |
    344     //       /    [YY]
    345     //       |     ^
    346     //      [XX]--/
    347     //
    348     // It would be invalid to fold XX and LD.  In this case, folding the two
    349     // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG'
    350     // To prevent this, we emit a dynamic check for legality before allowing
    351     // this to be folded.
    352     //
    353     const TreePatternNode *Root = Pattern.getSrcPattern();
    354     if (N != Root) {                             // Not the root of the pattern.
    355       // If there is a node between the root and this node, then we definitely
    356       // need to emit the check.
    357       bool NeedCheck = !Root->hasChild(N);
    358 
    359       // If it *is* an immediate child of the root, we can still need a check if
    360       // the root SDNode has multiple inputs.  For us, this means that it is an
    361       // intrinsic, has multiple operands, or has other inputs like chain or
    362       // glue).
    363       if (!NeedCheck) {
    364         const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root->getOperator());
    365         NeedCheck =
    366           Root->getOperator() == CGP.get_intrinsic_void_sdnode() ||
    367           Root->getOperator() == CGP.get_intrinsic_w_chain_sdnode() ||
    368           Root->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() ||
    369           PInfo.getNumOperands() > 1 ||
    370           PInfo.hasProperty(SDNPHasChain) ||
    371           PInfo.hasProperty(SDNPInGlue) ||
    372           PInfo.hasProperty(SDNPOptInGlue);
    373       }
    374 
    375       if (NeedCheck)
    376         AddMatcher(new CheckFoldableChainNodeMatcher());
    377     }
    378   }
    379 
    380   // If this node has an output glue and isn't the root, remember it.
    381   if (N->NodeHasProperty(SDNPOutGlue, CGP) &&
    382       N != Pattern.getSrcPattern()) {
    383     // TODO: This redundantly records nodes with both glues and chains.
    384 
    385     // Record the node and remember it in our chained nodes list.
    386     AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() +
    387                                          "' glue output node",
    388                                  NextRecordedOperandNo));
    389     // Remember all of the nodes with output glue our pattern will match.
    390     MatchedGlueResultNodes.push_back(NextRecordedOperandNo++);
    391   }
    392 
    393   // If this node is known to have an input glue or if it *might* have an input
    394   // glue, capture it as the glue input of the pattern.
    395   if (N->NodeHasProperty(SDNPOptInGlue, CGP) ||
    396       N->NodeHasProperty(SDNPInGlue, CGP))
    397     AddMatcher(new CaptureGlueInputMatcher());
    398 
    399   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
    400     // Get the code suitable for matching this child.  Move to the child, check
    401     // it then move back to the parent.
    402     AddMatcher(new MoveChildMatcher(OpNo));
    403     EmitMatchCode(N->getChild(i), NodeNoTypes->getChild(i));
    404     AddMatcher(new MoveParentMatcher());
    405   }
    406 }
    407 
    408 
    409 void MatcherGen::EmitMatchCode(const TreePatternNode *N,
    410                                TreePatternNode *NodeNoTypes) {
    411   // If N and NodeNoTypes don't agree on a type, then this is a case where we
    412   // need to do a type check.  Emit the check, apply the tyep to NodeNoTypes and
    413   // reinfer any correlated types.
    414   SmallVector<unsigned, 2> ResultsToTypeCheck;
    415 
    416   for (unsigned i = 0, e = NodeNoTypes->getNumTypes(); i != e; ++i) {
    417     if (NodeNoTypes->getExtType(i) == N->getExtType(i)) continue;
    418     NodeNoTypes->setType(i, N->getExtType(i));
    419     InferPossibleTypes();
    420     ResultsToTypeCheck.push_back(i);
    421   }
    422 
    423   // If this node has a name associated with it, capture it in VariableMap. If
    424   // we already saw this in the pattern, emit code to verify dagness.
    425   if (!N->getName().empty()) {
    426     unsigned &VarMapEntry = VariableMap[N->getName()];
    427     if (VarMapEntry == 0) {
    428       // If it is a named node, we must emit a 'Record' opcode.
    429       AddMatcher(new RecordMatcher("$" + N->getName(), NextRecordedOperandNo));
    430       VarMapEntry = ++NextRecordedOperandNo;
    431     } else {
    432       // If we get here, this is a second reference to a specific name.  Since
    433       // we already have checked that the first reference is valid, we don't
    434       // have to recursively match it, just check that it's the same as the
    435       // previously named thing.
    436       AddMatcher(new CheckSameMatcher(VarMapEntry-1));
    437       return;
    438     }
    439   }
    440 
    441   if (N->isLeaf())
    442     EmitLeafMatchCode(N);
    443   else
    444     EmitOperatorMatchCode(N, NodeNoTypes);
    445 
    446   // If there are node predicates for this node, generate their checks.
    447   for (unsigned i = 0, e = N->getPredicateFns().size(); i != e; ++i)
    448     AddMatcher(new CheckPredicateMatcher(N->getPredicateFns()[i]));
    449 
    450   for (unsigned i = 0, e = ResultsToTypeCheck.size(); i != e; ++i)
    451     AddMatcher(new CheckTypeMatcher(N->getType(ResultsToTypeCheck[i]),
    452                                     ResultsToTypeCheck[i]));
    453 }
    454 
    455 /// EmitMatcherCode - Generate the code that matches the predicate of this
    456 /// pattern for the specified Variant.  If the variant is invalid this returns
    457 /// true and does not generate code, if it is valid, it returns false.
    458 bool MatcherGen::EmitMatcherCode(unsigned Variant) {
    459   // If the root of the pattern is a ComplexPattern and if it is specified to
    460   // match some number of root opcodes, these are considered to be our variants.
    461   // Depending on which variant we're generating code for, emit the root opcode
    462   // check.
    463   if (const ComplexPattern *CP =
    464                    Pattern.getSrcPattern()->getComplexPatternInfo(CGP)) {
    465     const std::vector<Record*> &OpNodes = CP->getRootNodes();
    466     assert(!OpNodes.empty() &&"Complex Pattern must specify what it can match");
    467     if (Variant >= OpNodes.size()) return true;
    468 
    469     AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant])));
    470   } else {
    471     if (Variant != 0) return true;
    472   }
    473 
    474   // Emit the matcher for the pattern structure and types.
    475   EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes);
    476 
    477   // If the pattern has a predicate on it (e.g. only enabled when a subtarget
    478   // feature is around, do the check).
    479   if (!Pattern.getPredicateCheck().empty())
    480     AddMatcher(new CheckPatternPredicateMatcher(Pattern.getPredicateCheck()));
    481 
    482   // Now that we've completed the structural type match, emit any ComplexPattern
    483   // checks (e.g. addrmode matches).  We emit this after the structural match
    484   // because they are generally more expensive to evaluate and more difficult to
    485   // factor.
    486   for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) {
    487     const TreePatternNode *N = MatchedComplexPatterns[i].first;
    488 
    489     // Remember where the results of this match get stuck.
    490     MatchedComplexPatterns[i].second = NextRecordedOperandNo;
    491 
    492     // Get the slot we recorded the value in from the name on the node.
    493     unsigned RecNodeEntry = VariableMap[N->getName()];
    494     assert(!N->getName().empty() && RecNodeEntry &&
    495            "Complex pattern should have a name and slot");
    496     --RecNodeEntry;  // Entries in VariableMap are biased.
    497 
    498     const ComplexPattern &CP =
    499       CGP.getComplexPattern(((DefInit*)N->getLeafValue())->getDef());
    500 
    501     // Emit a CheckComplexPat operation, which does the match (aborting if it
    502     // fails) and pushes the matched operands onto the recorded nodes list.
    503     AddMatcher(new CheckComplexPatMatcher(CP, RecNodeEntry,
    504                                           N->getName(), NextRecordedOperandNo));
    505 
    506     // Record the right number of operands.
    507     NextRecordedOperandNo += CP.getNumOperands();
    508     if (CP.hasProperty(SDNPHasChain)) {
    509       // If the complex pattern has a chain, then we need to keep track of the
    510       // fact that we just recorded a chain input.  The chain input will be
    511       // matched as the last operand of the predicate if it was successful.
    512       ++NextRecordedOperandNo; // Chained node operand.
    513 
    514       // It is the last operand recorded.
    515       assert(NextRecordedOperandNo > 1 &&
    516              "Should have recorded input/result chains at least!");
    517       MatchedChainNodes.push_back(NextRecordedOperandNo-1);
    518     }
    519 
    520     // TODO: Complex patterns can't have output glues, if they did, we'd want
    521     // to record them.
    522   }
    523 
    524   return false;
    525 }
    526 
    527 
    528 //===----------------------------------------------------------------------===//
    529 // Node Result Generation
    530 //===----------------------------------------------------------------------===//
    531 
    532 void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N,
    533                                           SmallVectorImpl<unsigned> &ResultOps){
    534   assert(!N->getName().empty() && "Operand not named!");
    535 
    536   // A reference to a complex pattern gets all of the results of the complex
    537   // pattern's match.
    538   if (const ComplexPattern *CP = N->getComplexPatternInfo(CGP)) {
    539     unsigned SlotNo = 0;
    540     for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i)
    541       if (MatchedComplexPatterns[i].first->getName() == N->getName()) {
    542         SlotNo = MatchedComplexPatterns[i].second;
    543         break;
    544       }
    545     assert(SlotNo != 0 && "Didn't get a slot number assigned?");
    546 
    547     // The first slot entry is the node itself, the subsequent entries are the
    548     // matched values.
    549     for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
    550       ResultOps.push_back(SlotNo+i);
    551     return;
    552   }
    553 
    554   unsigned SlotNo = getNamedArgumentSlot(N->getName());
    555 
    556   // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target
    557   // version of the immediate so that it doesn't get selected due to some other
    558   // node use.
    559   if (!N->isLeaf()) {
    560     StringRef OperatorName = N->getOperator()->getName();
    561     if (OperatorName == "imm" || OperatorName == "fpimm") {
    562       AddMatcher(new EmitConvertToTargetMatcher(SlotNo));
    563       ResultOps.push_back(NextRecordedOperandNo++);
    564       return;
    565     }
    566   }
    567 
    568   ResultOps.push_back(SlotNo);
    569 }
    570 
    571 void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N,
    572                                          SmallVectorImpl<unsigned> &ResultOps) {
    573   assert(N->isLeaf() && "Must be a leaf");
    574 
    575   if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
    576     AddMatcher(new EmitIntegerMatcher(II->getValue(), N->getType(0)));
    577     ResultOps.push_back(NextRecordedOperandNo++);
    578     return;
    579   }
    580 
    581   // If this is an explicit register reference, handle it.
    582   if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) {
    583     Record *Def = DI->getDef();
    584     if (Def->isSubClassOf("Register")) {
    585       const CodeGenRegister *Reg =
    586         CGP.getTargetInfo().getRegBank().getReg(Def);
    587       AddMatcher(new EmitRegisterMatcher(Reg, N->getType(0)));
    588       ResultOps.push_back(NextRecordedOperandNo++);
    589       return;
    590     }
    591 
    592     if (Def->getName() == "zero_reg") {
    593       AddMatcher(new EmitRegisterMatcher(0, N->getType(0)));
    594       ResultOps.push_back(NextRecordedOperandNo++);
    595       return;
    596     }
    597 
    598     // Handle a reference to a register class. This is used
    599     // in COPY_TO_SUBREG instructions.
    600     if (Def->isSubClassOf("RegisterOperand"))
    601       Def = Def->getValueAsDef("RegClass");
    602     if (Def->isSubClassOf("RegisterClass")) {
    603       std::string Value = getQualifiedName(Def) + "RegClassID";
    604       AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
    605       ResultOps.push_back(NextRecordedOperandNo++);
    606       return;
    607     }
    608 
    609     // Handle a subregister index. This is used for INSERT_SUBREG etc.
    610     if (Def->isSubClassOf("SubRegIndex")) {
    611       std::string Value = getQualifiedName(Def);
    612       AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
    613       ResultOps.push_back(NextRecordedOperandNo++);
    614       return;
    615     }
    616   }
    617 
    618   errs() << "unhandled leaf node: \n";
    619   N->dump();
    620 }
    621 
    622 /// GetInstPatternNode - Get the pattern for an instruction.
    623 ///
    624 const TreePatternNode *MatcherGen::
    625 GetInstPatternNode(const DAGInstruction &Inst, const TreePatternNode *N) {
    626   const TreePattern *InstPat = Inst.getPattern();
    627 
    628   // FIXME2?: Assume actual pattern comes before "implicit".
    629   TreePatternNode *InstPatNode;
    630   if (InstPat)
    631     InstPatNode = InstPat->getTree(0);
    632   else if (/*isRoot*/ N == Pattern.getDstPattern())
    633     InstPatNode = Pattern.getSrcPattern();
    634   else
    635     return 0;
    636 
    637   if (InstPatNode && !InstPatNode->isLeaf() &&
    638       InstPatNode->getOperator()->getName() == "set")
    639     InstPatNode = InstPatNode->getChild(InstPatNode->getNumChildren()-1);
    640 
    641   return InstPatNode;
    642 }
    643 
    644 static bool
    645 mayInstNodeLoadOrStore(const TreePatternNode *N,
    646                        const CodeGenDAGPatterns &CGP) {
    647   Record *Op = N->getOperator();
    648   const CodeGenTarget &CGT = CGP.getTargetInfo();
    649   CodeGenInstruction &II = CGT.getInstruction(Op);
    650   return II.mayLoad || II.mayStore;
    651 }
    652 
    653 static unsigned
    654 numNodesThatMayLoadOrStore(const TreePatternNode *N,
    655                            const CodeGenDAGPatterns &CGP) {
    656   if (N->isLeaf())
    657     return 0;
    658 
    659   Record *OpRec = N->getOperator();
    660   if (!OpRec->isSubClassOf("Instruction"))
    661     return 0;
    662 
    663   unsigned Count = 0;
    664   if (mayInstNodeLoadOrStore(N, CGP))
    665     ++Count;
    666 
    667   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
    668     Count += numNodesThatMayLoadOrStore(N->getChild(i), CGP);
    669 
    670   return Count;
    671 }
    672 
    673 void MatcherGen::
    674 EmitResultInstructionAsOperand(const TreePatternNode *N,
    675                                SmallVectorImpl<unsigned> &OutputOps) {
    676   Record *Op = N->getOperator();
    677   const CodeGenTarget &CGT = CGP.getTargetInfo();
    678   CodeGenInstruction &II = CGT.getInstruction(Op);
    679   const DAGInstruction &Inst = CGP.getInstruction(Op);
    680 
    681   // If we can, get the pattern for the instruction we're generating.  We derive
    682   // a variety of information from this pattern, such as whether it has a chain.
    683   //
    684   // FIXME2: This is extremely dubious for several reasons, not the least of
    685   // which it gives special status to instructions with patterns that Pat<>
    686   // nodes can't duplicate.
    687   const TreePatternNode *InstPatNode = GetInstPatternNode(Inst, N);
    688 
    689   // NodeHasChain - Whether the instruction node we're creating takes chains.
    690   bool NodeHasChain = InstPatNode &&
    691                       InstPatNode->TreeHasProperty(SDNPHasChain, CGP);
    692 
    693   bool isRoot = N == Pattern.getDstPattern();
    694 
    695   // TreeHasOutGlue - True if this tree has glue.
    696   bool TreeHasInGlue = false, TreeHasOutGlue = false;
    697   if (isRoot) {
    698     const TreePatternNode *SrcPat = Pattern.getSrcPattern();
    699     TreeHasInGlue = SrcPat->TreeHasProperty(SDNPOptInGlue, CGP) ||
    700                     SrcPat->TreeHasProperty(SDNPInGlue, CGP);
    701 
    702     // FIXME2: this is checking the entire pattern, not just the node in
    703     // question, doing this just for the root seems like a total hack.
    704     TreeHasOutGlue = SrcPat->TreeHasProperty(SDNPOutGlue, CGP);
    705   }
    706 
    707   // NumResults - This is the number of results produced by the instruction in
    708   // the "outs" list.
    709   unsigned NumResults = Inst.getNumResults();
    710 
    711   // Loop over all of the operands of the instruction pattern, emitting code
    712   // to fill them all in.  The node 'N' usually has number children equal to
    713   // the number of input operands of the instruction.  However, in cases
    714   // where there are predicate operands for an instruction, we need to fill
    715   // in the 'execute always' values.  Match up the node operands to the
    716   // instruction operands to do this.
    717   SmallVector<unsigned, 8> InstOps;
    718   for (unsigned ChildNo = 0, InstOpNo = NumResults, e = II.Operands.size();
    719        InstOpNo != e; ++InstOpNo) {
    720 
    721     // Determine what to emit for this operand.
    722     Record *OperandNode = II.Operands[InstOpNo].Rec;
    723     if ((OperandNode->isSubClassOf("PredicateOperand") ||
    724          OperandNode->isSubClassOf("OptionalDefOperand")) &&
    725         !CGP.getDefaultOperand(OperandNode).DefaultOps.empty()) {
    726       // This is a predicate or optional def operand; emit the
    727       // 'default ops' operands.
    728       const DAGDefaultOperand &DefaultOp
    729         = CGP.getDefaultOperand(OperandNode);
    730       for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i)
    731         EmitResultOperand(DefaultOp.DefaultOps[i], InstOps);
    732       continue;
    733     }
    734 
    735     const TreePatternNode *Child = N->getChild(ChildNo);
    736 
    737     // Otherwise this is a normal operand or a predicate operand without
    738     // 'execute always'; emit it.
    739     unsigned BeforeAddingNumOps = InstOps.size();
    740     EmitResultOperand(Child, InstOps);
    741     assert(InstOps.size() > BeforeAddingNumOps && "Didn't add any operands");
    742 
    743     // If the operand is an instruction and it produced multiple results, just
    744     // take the first one.
    745     if (!Child->isLeaf() && Child->getOperator()->isSubClassOf("Instruction"))
    746       InstOps.resize(BeforeAddingNumOps+1);
    747 
    748     ++ChildNo;
    749   }
    750 
    751   // If this node has input glue or explicitly specified input physregs, we
    752   // need to add chained and glued copyfromreg nodes and materialize the glue
    753   // input.
    754   if (isRoot && !PhysRegInputs.empty()) {
    755     // Emit all of the CopyToReg nodes for the input physical registers.  These
    756     // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src).
    757     for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i)
    758       AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs[i].second,
    759                                           PhysRegInputs[i].first));
    760     // Even if the node has no other glue inputs, the resultant node must be
    761     // glued to the CopyFromReg nodes we just generated.
    762     TreeHasInGlue = true;
    763   }
    764 
    765   // Result order: node results, chain, glue
    766 
    767   // Determine the result types.
    768   SmallVector<MVT::SimpleValueType, 4> ResultVTs;
    769   for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i)
    770     ResultVTs.push_back(N->getType(i));
    771 
    772   // If this is the root instruction of a pattern that has physical registers in
    773   // its result pattern, add output VTs for them.  For example, X86 has:
    774   //   (set AL, (mul ...))
    775   // This also handles implicit results like:
    776   //   (implicit EFLAGS)
    777   if (isRoot && !Pattern.getDstRegs().empty()) {
    778     // If the root came from an implicit def in the instruction handling stuff,
    779     // don't re-add it.
    780     Record *HandledReg = 0;
    781     if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
    782       HandledReg = II.ImplicitDefs[0];
    783 
    784     for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) {
    785       Record *Reg = Pattern.getDstRegs()[i];
    786       if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
    787       ResultVTs.push_back(getRegisterValueType(Reg, CGT));
    788     }
    789   }
    790 
    791   // If this is the root of the pattern and the pattern we're matching includes
    792   // a node that is variadic, mark the generated node as variadic so that it
    793   // gets the excess operands from the input DAG.
    794   int NumFixedArityOperands = -1;
    795   if (isRoot &&
    796       (Pattern.getSrcPattern()->NodeHasProperty(SDNPVariadic, CGP)))
    797     NumFixedArityOperands = Pattern.getSrcPattern()->getNumChildren();
    798 
    799   // If this is the root node and multiple matched nodes in the input pattern
    800   // have MemRefs in them, have the interpreter collect them and plop them onto
    801   // this node. If there is just one node with MemRefs, leave them on that node
    802   // even if it is not the root.
    803   //
    804   // FIXME3: This is actively incorrect for result patterns with multiple
    805   // memory-referencing instructions.
    806   bool PatternHasMemOperands =
    807     Pattern.getSrcPattern()->TreeHasProperty(SDNPMemOperand, CGP);
    808 
    809   bool NodeHasMemRefs = false;
    810   if (PatternHasMemOperands) {
    811     unsigned NumNodesThatLoadOrStore =
    812       numNodesThatMayLoadOrStore(Pattern.getDstPattern(), CGP);
    813     bool NodeIsUniqueLoadOrStore = mayInstNodeLoadOrStore(N, CGP) &&
    814                                    NumNodesThatLoadOrStore == 1;
    815     NodeHasMemRefs =
    816       NodeIsUniqueLoadOrStore || (isRoot && (mayInstNodeLoadOrStore(N, CGP) ||
    817                                              NumNodesThatLoadOrStore != 1));
    818   }
    819 
    820   assert((!ResultVTs.empty() || TreeHasOutGlue || NodeHasChain) &&
    821          "Node has no result");
    822 
    823   AddMatcher(new EmitNodeMatcher(II.Namespace+"::"+II.TheDef->getName(),
    824                                  ResultVTs.data(), ResultVTs.size(),
    825                                  InstOps.data(), InstOps.size(),
    826                                  NodeHasChain, TreeHasInGlue, TreeHasOutGlue,
    827                                  NodeHasMemRefs, NumFixedArityOperands,
    828                                  NextRecordedOperandNo));
    829 
    830   // The non-chain and non-glue results of the newly emitted node get recorded.
    831   for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) {
    832     if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Glue) break;
    833     OutputOps.push_back(NextRecordedOperandNo++);
    834   }
    835 }
    836 
    837 void MatcherGen::
    838 EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
    839                                SmallVectorImpl<unsigned> &ResultOps) {
    840   assert(N->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?");
    841 
    842   // Emit the operand.
    843   SmallVector<unsigned, 8> InputOps;
    844 
    845   // FIXME2: Could easily generalize this to support multiple inputs and outputs
    846   // to the SDNodeXForm.  For now we just support one input and one output like
    847   // the old instruction selector.
    848   assert(N->getNumChildren() == 1);
    849   EmitResultOperand(N->getChild(0), InputOps);
    850 
    851   // The input currently must have produced exactly one result.
    852   assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm");
    853 
    854   AddMatcher(new EmitNodeXFormMatcher(InputOps[0], N->getOperator()));
    855   ResultOps.push_back(NextRecordedOperandNo++);
    856 }
    857 
    858 void MatcherGen::EmitResultOperand(const TreePatternNode *N,
    859                                    SmallVectorImpl<unsigned> &ResultOps) {
    860   // This is something selected from the pattern we matched.
    861   if (!N->getName().empty())
    862     return EmitResultOfNamedOperand(N, ResultOps);
    863 
    864   if (N->isLeaf())
    865     return EmitResultLeafAsOperand(N, ResultOps);
    866 
    867   Record *OpRec = N->getOperator();
    868   if (OpRec->isSubClassOf("Instruction"))
    869     return EmitResultInstructionAsOperand(N, ResultOps);
    870   if (OpRec->isSubClassOf("SDNodeXForm"))
    871     return EmitResultSDNodeXFormAsOperand(N, ResultOps);
    872   errs() << "Unknown result node to emit code for: " << *N << '\n';
    873   throw std::string("Unknown node in result pattern!");
    874 }
    875 
    876 void MatcherGen::EmitResultCode() {
    877   // Patterns that match nodes with (potentially multiple) chain inputs have to
    878   // merge them together into a token factor.  This informs the generated code
    879   // what all the chained nodes are.
    880   if (!MatchedChainNodes.empty())
    881     AddMatcher(new EmitMergeInputChainsMatcher
    882                (MatchedChainNodes.data(), MatchedChainNodes.size()));
    883 
    884   // Codegen the root of the result pattern, capturing the resulting values.
    885   SmallVector<unsigned, 8> Ops;
    886   EmitResultOperand(Pattern.getDstPattern(), Ops);
    887 
    888   // At this point, we have however many values the result pattern produces.
    889   // However, the input pattern might not need all of these.  If there are
    890   // excess values at the end (such as implicit defs of condition codes etc)
    891   // just lop them off.  This doesn't need to worry about glue or chains, just
    892   // explicit results.
    893   //
    894   unsigned NumSrcResults = Pattern.getSrcPattern()->getNumTypes();
    895 
    896   // If the pattern also has (implicit) results, count them as well.
    897   if (!Pattern.getDstRegs().empty()) {
    898     // If the root came from an implicit def in the instruction handling stuff,
    899     // don't re-add it.
    900     Record *HandledReg = 0;
    901     const TreePatternNode *DstPat = Pattern.getDstPattern();
    902     if (!DstPat->isLeaf() &&DstPat->getOperator()->isSubClassOf("Instruction")){
    903       const CodeGenTarget &CGT = CGP.getTargetInfo();
    904       CodeGenInstruction &II = CGT.getInstruction(DstPat->getOperator());
    905 
    906       if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
    907         HandledReg = II.ImplicitDefs[0];
    908     }
    909 
    910     for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) {
    911       Record *Reg = Pattern.getDstRegs()[i];
    912       if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
    913       ++NumSrcResults;
    914     }
    915   }
    916 
    917   assert(Ops.size() >= NumSrcResults && "Didn't provide enough results");
    918   Ops.resize(NumSrcResults);
    919 
    920   // If the matched pattern covers nodes which define a glue result, emit a node
    921   // that tells the matcher about them so that it can update their results.
    922   if (!MatchedGlueResultNodes.empty())
    923     AddMatcher(new MarkGlueResultsMatcher(MatchedGlueResultNodes.data(),
    924                                           MatchedGlueResultNodes.size()));
    925 
    926   AddMatcher(new CompleteMatchMatcher(Ops.data(), Ops.size(), Pattern));
    927 }
    928 
    929 
    930 /// ConvertPatternToMatcher - Create the matcher for the specified pattern with
    931 /// the specified variant.  If the variant number is invalid, this returns null.
    932 Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern,
    933                                        unsigned Variant,
    934                                        const CodeGenDAGPatterns &CGP) {
    935   MatcherGen Gen(Pattern, CGP);
    936 
    937   // Generate the code for the matcher.
    938   if (Gen.EmitMatcherCode(Variant))
    939     return 0;
    940 
    941   // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence.
    942   // FIXME2: Split result code out to another table, and make the matcher end
    943   // with an "Emit <index>" command.  This allows result generation stuff to be
    944   // shared and factored?
    945 
    946   // If the match succeeds, then we generate Pattern.
    947   Gen.EmitResultCode();
    948 
    949   // Unconditional match.
    950   return Gen.GetMatcher();
    951 }
    952