Home | History | Annotate | Download | only in src
      1 // Copyright 2011 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/bignum.h"
      6 #include "src/utils.h"
      7 
      8 namespace v8 {
      9 namespace internal {
     10 
     11 Bignum::Bignum()
     12     : bigits_(bigits_buffer_, kBigitCapacity), used_digits_(0), exponent_(0) {
     13   for (int i = 0; i < kBigitCapacity; ++i) {
     14     bigits_[i] = 0;
     15   }
     16 }
     17 
     18 
     19 template<typename S>
     20 static int BitSize(S value) {
     21   return 8 * sizeof(value);
     22 }
     23 
     24 
     25 // Guaranteed to lie in one Bigit.
     26 void Bignum::AssignUInt16(uint16_t value) {
     27   DCHECK(kBigitSize >= BitSize(value));
     28   Zero();
     29   if (value == 0) return;
     30 
     31   EnsureCapacity(1);
     32   bigits_[0] = value;
     33   used_digits_ = 1;
     34 }
     35 
     36 
     37 void Bignum::AssignUInt64(uint64_t value) {
     38   const int kUInt64Size = 64;
     39 
     40   Zero();
     41   if (value == 0) return;
     42 
     43   int needed_bigits = kUInt64Size / kBigitSize + 1;
     44   EnsureCapacity(needed_bigits);
     45   for (int i = 0; i < needed_bigits; ++i) {
     46     bigits_[i] = static_cast<Chunk>(value & kBigitMask);
     47     value = value >> kBigitSize;
     48   }
     49   used_digits_ = needed_bigits;
     50   Clamp();
     51 }
     52 
     53 
     54 void Bignum::AssignBignum(const Bignum& other) {
     55   exponent_ = other.exponent_;
     56   for (int i = 0; i < other.used_digits_; ++i) {
     57     bigits_[i] = other.bigits_[i];
     58   }
     59   // Clear the excess digits (if there were any).
     60   for (int i = other.used_digits_; i < used_digits_; ++i) {
     61     bigits_[i] = 0;
     62   }
     63   used_digits_ = other.used_digits_;
     64 }
     65 
     66 
     67 static uint64_t ReadUInt64(Vector<const char> buffer,
     68                            int from,
     69                            int digits_to_read) {
     70   uint64_t result = 0;
     71   int to = from + digits_to_read;
     72 
     73   for (int i = from; i < to; ++i) {
     74     int digit = buffer[i] - '0';
     75     DCHECK(0 <= digit && digit <= 9);
     76     result = result * 10 + digit;
     77   }
     78   return result;
     79 }
     80 
     81 
     82 void Bignum::AssignDecimalString(Vector<const char> value) {
     83   // 2^64 = 18446744073709551616 > 10^19
     84   const int kMaxUint64DecimalDigits = 19;
     85   Zero();
     86   int length = value.length();
     87   int pos = 0;
     88   // Let's just say that each digit needs 4 bits.
     89   while (length >= kMaxUint64DecimalDigits) {
     90     uint64_t digits = ReadUInt64(value, pos, kMaxUint64DecimalDigits);
     91     pos += kMaxUint64DecimalDigits;
     92     length -= kMaxUint64DecimalDigits;
     93     MultiplyByPowerOfTen(kMaxUint64DecimalDigits);
     94     AddUInt64(digits);
     95   }
     96   uint64_t digits = ReadUInt64(value, pos, length);
     97   MultiplyByPowerOfTen(length);
     98   AddUInt64(digits);
     99   Clamp();
    100 }
    101 
    102 
    103 static int HexCharValue(char c) {
    104   if ('0' <= c && c <= '9') return c - '0';
    105   if ('a' <= c && c <= 'f') return 10 + c - 'a';
    106   if ('A' <= c && c <= 'F') return 10 + c - 'A';
    107   UNREACHABLE();
    108   return 0;  // To make compiler happy.
    109 }
    110 
    111 
    112 void Bignum::AssignHexString(Vector<const char> value) {
    113   Zero();
    114   int length = value.length();
    115 
    116   int needed_bigits = length * 4 / kBigitSize + 1;
    117   EnsureCapacity(needed_bigits);
    118   int string_index = length - 1;
    119   for (int i = 0; i < needed_bigits - 1; ++i) {
    120     // These bigits are guaranteed to be "full".
    121     Chunk current_bigit = 0;
    122     for (int j = 0; j < kBigitSize / 4; j++) {
    123       current_bigit += HexCharValue(value[string_index--]) << (j * 4);
    124     }
    125     bigits_[i] = current_bigit;
    126   }
    127   used_digits_ = needed_bigits - 1;
    128 
    129   Chunk most_significant_bigit = 0;  // Could be = 0;
    130   for (int j = 0; j <= string_index; ++j) {
    131     most_significant_bigit <<= 4;
    132     most_significant_bigit += HexCharValue(value[j]);
    133   }
    134   if (most_significant_bigit != 0) {
    135     bigits_[used_digits_] = most_significant_bigit;
    136     used_digits_++;
    137   }
    138   Clamp();
    139 }
    140 
    141 
    142 void Bignum::AddUInt64(uint64_t operand) {
    143   if (operand == 0) return;
    144   Bignum other;
    145   other.AssignUInt64(operand);
    146   AddBignum(other);
    147 }
    148 
    149 
    150 void Bignum::AddBignum(const Bignum& other) {
    151   DCHECK(IsClamped());
    152   DCHECK(other.IsClamped());
    153 
    154   // If this has a greater exponent than other append zero-bigits to this.
    155   // After this call exponent_ <= other.exponent_.
    156   Align(other);
    157 
    158   // There are two possibilities:
    159   //   aaaaaaaaaaa 0000  (where the 0s represent a's exponent)
    160   //     bbbbb 00000000
    161   //   ----------------
    162   //   ccccccccccc 0000
    163   // or
    164   //    aaaaaaaaaa 0000
    165   //  bbbbbbbbb 0000000
    166   //  -----------------
    167   //  cccccccccccc 0000
    168   // In both cases we might need a carry bigit.
    169 
    170   EnsureCapacity(1 + Max(BigitLength(), other.BigitLength()) - exponent_);
    171   Chunk carry = 0;
    172   int bigit_pos = other.exponent_ - exponent_;
    173   DCHECK(bigit_pos >= 0);
    174   for (int i = 0; i < other.used_digits_; ++i) {
    175     Chunk sum = bigits_[bigit_pos] + other.bigits_[i] + carry;
    176     bigits_[bigit_pos] = sum & kBigitMask;
    177     carry = sum >> kBigitSize;
    178     bigit_pos++;
    179   }
    180 
    181   while (carry != 0) {
    182     Chunk sum = bigits_[bigit_pos] + carry;
    183     bigits_[bigit_pos] = sum & kBigitMask;
    184     carry = sum >> kBigitSize;
    185     bigit_pos++;
    186   }
    187   used_digits_ = Max(bigit_pos, used_digits_);
    188   DCHECK(IsClamped());
    189 }
    190 
    191 
    192 void Bignum::SubtractBignum(const Bignum& other) {
    193   DCHECK(IsClamped());
    194   DCHECK(other.IsClamped());
    195   // We require this to be bigger than other.
    196   DCHECK(LessEqual(other, *this));
    197 
    198   Align(other);
    199 
    200   int offset = other.exponent_ - exponent_;
    201   Chunk borrow = 0;
    202   int i;
    203   for (i = 0; i < other.used_digits_; ++i) {
    204     DCHECK((borrow == 0) || (borrow == 1));
    205     Chunk difference = bigits_[i + offset] - other.bigits_[i] - borrow;
    206     bigits_[i + offset] = difference & kBigitMask;
    207     borrow = difference >> (kChunkSize - 1);
    208   }
    209   while (borrow != 0) {
    210     Chunk difference = bigits_[i + offset] - borrow;
    211     bigits_[i + offset] = difference & kBigitMask;
    212     borrow = difference >> (kChunkSize - 1);
    213     ++i;
    214   }
    215   Clamp();
    216 }
    217 
    218 
    219 void Bignum::ShiftLeft(int shift_amount) {
    220   if (used_digits_ == 0) return;
    221   exponent_ += shift_amount / kBigitSize;
    222   int local_shift = shift_amount % kBigitSize;
    223   EnsureCapacity(used_digits_ + 1);
    224   BigitsShiftLeft(local_shift);
    225 }
    226 
    227 
    228 void Bignum::MultiplyByUInt32(uint32_t factor) {
    229   if (factor == 1) return;
    230   if (factor == 0) {
    231     Zero();
    232     return;
    233   }
    234   if (used_digits_ == 0) return;
    235 
    236   // The product of a bigit with the factor is of size kBigitSize + 32.
    237   // Assert that this number + 1 (for the carry) fits into double chunk.
    238   DCHECK(kDoubleChunkSize >= kBigitSize + 32 + 1);
    239   DoubleChunk carry = 0;
    240   for (int i = 0; i < used_digits_; ++i) {
    241     DoubleChunk product = static_cast<DoubleChunk>(factor) * bigits_[i] + carry;
    242     bigits_[i] = static_cast<Chunk>(product & kBigitMask);
    243     carry = (product >> kBigitSize);
    244   }
    245   while (carry != 0) {
    246     EnsureCapacity(used_digits_ + 1);
    247     bigits_[used_digits_] = static_cast<Chunk>(carry & kBigitMask);
    248     used_digits_++;
    249     carry >>= kBigitSize;
    250   }
    251 }
    252 
    253 
    254 void Bignum::MultiplyByUInt64(uint64_t factor) {
    255   if (factor == 1) return;
    256   if (factor == 0) {
    257     Zero();
    258     return;
    259   }
    260   DCHECK(kBigitSize < 32);
    261   uint64_t carry = 0;
    262   uint64_t low = factor & 0xFFFFFFFF;
    263   uint64_t high = factor >> 32;
    264   for (int i = 0; i < used_digits_; ++i) {
    265     uint64_t product_low = low * bigits_[i];
    266     uint64_t product_high = high * bigits_[i];
    267     uint64_t tmp = (carry & kBigitMask) + product_low;
    268     bigits_[i] = static_cast<Chunk>(tmp & kBigitMask);
    269     carry = (carry >> kBigitSize) + (tmp >> kBigitSize) +
    270         (product_high << (32 - kBigitSize));
    271   }
    272   while (carry != 0) {
    273     EnsureCapacity(used_digits_ + 1);
    274     bigits_[used_digits_] = static_cast<Chunk>(carry & kBigitMask);
    275     used_digits_++;
    276     carry >>= kBigitSize;
    277   }
    278 }
    279 
    280 
    281 void Bignum::MultiplyByPowerOfTen(int exponent) {
    282   const uint64_t kFive27 = V8_2PART_UINT64_C(0x6765c793, fa10079d);
    283   const uint16_t kFive1 = 5;
    284   const uint16_t kFive2 = kFive1 * 5;
    285   const uint16_t kFive3 = kFive2 * 5;
    286   const uint16_t kFive4 = kFive3 * 5;
    287   const uint16_t kFive5 = kFive4 * 5;
    288   const uint16_t kFive6 = kFive5 * 5;
    289   const uint32_t kFive7 = kFive6 * 5;
    290   const uint32_t kFive8 = kFive7 * 5;
    291   const uint32_t kFive9 = kFive8 * 5;
    292   const uint32_t kFive10 = kFive9 * 5;
    293   const uint32_t kFive11 = kFive10 * 5;
    294   const uint32_t kFive12 = kFive11 * 5;
    295   const uint32_t kFive13 = kFive12 * 5;
    296   const uint32_t kFive1_to_12[] =
    297       { kFive1, kFive2, kFive3, kFive4, kFive5, kFive6,
    298         kFive7, kFive8, kFive9, kFive10, kFive11, kFive12 };
    299 
    300   DCHECK(exponent >= 0);
    301   if (exponent == 0) return;
    302   if (used_digits_ == 0) return;
    303 
    304   // We shift by exponent at the end just before returning.
    305   int remaining_exponent = exponent;
    306   while (remaining_exponent >= 27) {
    307     MultiplyByUInt64(kFive27);
    308     remaining_exponent -= 27;
    309   }
    310   while (remaining_exponent >= 13) {
    311     MultiplyByUInt32(kFive13);
    312     remaining_exponent -= 13;
    313   }
    314   if (remaining_exponent > 0) {
    315     MultiplyByUInt32(kFive1_to_12[remaining_exponent - 1]);
    316   }
    317   ShiftLeft(exponent);
    318 }
    319 
    320 
    321 void Bignum::Square() {
    322   DCHECK(IsClamped());
    323   int product_length = 2 * used_digits_;
    324   EnsureCapacity(product_length);
    325 
    326   // Comba multiplication: compute each column separately.
    327   // Example: r = a2a1a0 * b2b1b0.
    328   //    r =  1    * a0b0 +
    329   //        10    * (a1b0 + a0b1) +
    330   //        100   * (a2b0 + a1b1 + a0b2) +
    331   //        1000  * (a2b1 + a1b2) +
    332   //        10000 * a2b2
    333   //
    334   // In the worst case we have to accumulate nb-digits products of digit*digit.
    335   //
    336   // Assert that the additional number of bits in a DoubleChunk are enough to
    337   // sum up used_digits of Bigit*Bigit.
    338   if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_digits_) {
    339     UNIMPLEMENTED();
    340   }
    341   DoubleChunk accumulator = 0;
    342   // First shift the digits so we don't overwrite them.
    343   int copy_offset = used_digits_;
    344   for (int i = 0; i < used_digits_; ++i) {
    345     bigits_[copy_offset + i] = bigits_[i];
    346   }
    347   // We have two loops to avoid some 'if's in the loop.
    348   for (int i = 0; i < used_digits_; ++i) {
    349     // Process temporary digit i with power i.
    350     // The sum of the two indices must be equal to i.
    351     int bigit_index1 = i;
    352     int bigit_index2 = 0;
    353     // Sum all of the sub-products.
    354     while (bigit_index1 >= 0) {
    355       Chunk chunk1 = bigits_[copy_offset + bigit_index1];
    356       Chunk chunk2 = bigits_[copy_offset + bigit_index2];
    357       accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
    358       bigit_index1--;
    359       bigit_index2++;
    360     }
    361     bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
    362     accumulator >>= kBigitSize;
    363   }
    364   for (int i = used_digits_; i < product_length; ++i) {
    365     int bigit_index1 = used_digits_ - 1;
    366     int bigit_index2 = i - bigit_index1;
    367     // Invariant: sum of both indices is again equal to i.
    368     // Inner loop runs 0 times on last iteration, emptying accumulator.
    369     while (bigit_index2 < used_digits_) {
    370       Chunk chunk1 = bigits_[copy_offset + bigit_index1];
    371       Chunk chunk2 = bigits_[copy_offset + bigit_index2];
    372       accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
    373       bigit_index1--;
    374       bigit_index2++;
    375     }
    376     // The overwritten bigits_[i] will never be read in further loop iterations,
    377     // because bigit_index1 and bigit_index2 are always greater
    378     // than i - used_digits_.
    379     bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
    380     accumulator >>= kBigitSize;
    381   }
    382   // Since the result was guaranteed to lie inside the number the
    383   // accumulator must be 0 now.
    384   DCHECK(accumulator == 0);
    385 
    386   // Don't forget to update the used_digits and the exponent.
    387   used_digits_ = product_length;
    388   exponent_ *= 2;
    389   Clamp();
    390 }
    391 
    392 
    393 void Bignum::AssignPowerUInt16(uint16_t base, int power_exponent) {
    394   DCHECK(base != 0);
    395   DCHECK(power_exponent >= 0);
    396   if (power_exponent == 0) {
    397     AssignUInt16(1);
    398     return;
    399   }
    400   Zero();
    401   int shifts = 0;
    402   // We expect base to be in range 2-32, and most often to be 10.
    403   // It does not make much sense to implement different algorithms for counting
    404   // the bits.
    405   while ((base & 1) == 0) {
    406     base >>= 1;
    407     shifts++;
    408   }
    409   int bit_size = 0;
    410   int tmp_base = base;
    411   while (tmp_base != 0) {
    412     tmp_base >>= 1;
    413     bit_size++;
    414   }
    415   int final_size = bit_size * power_exponent;
    416   // 1 extra bigit for the shifting, and one for rounded final_size.
    417   EnsureCapacity(final_size / kBigitSize + 2);
    418 
    419   // Left to Right exponentiation.
    420   int mask = 1;
    421   while (power_exponent >= mask) mask <<= 1;
    422 
    423   // The mask is now pointing to the bit above the most significant 1-bit of
    424   // power_exponent.
    425   // Get rid of first 1-bit;
    426   mask >>= 2;
    427   uint64_t this_value = base;
    428 
    429   bool delayed_multipliciation = false;
    430   const uint64_t max_32bits = 0xFFFFFFFF;
    431   while (mask != 0 && this_value <= max_32bits) {
    432     this_value = this_value * this_value;
    433     // Verify that there is enough space in this_value to perform the
    434     // multiplication.  The first bit_size bits must be 0.
    435     if ((power_exponent & mask) != 0) {
    436       uint64_t base_bits_mask =
    437           ~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1);
    438       bool high_bits_zero = (this_value & base_bits_mask) == 0;
    439       if (high_bits_zero) {
    440         this_value *= base;
    441       } else {
    442         delayed_multipliciation = true;
    443       }
    444     }
    445     mask >>= 1;
    446   }
    447   AssignUInt64(this_value);
    448   if (delayed_multipliciation) {
    449     MultiplyByUInt32(base);
    450   }
    451 
    452   // Now do the same thing as a bignum.
    453   while (mask != 0) {
    454     Square();
    455     if ((power_exponent & mask) != 0) {
    456       MultiplyByUInt32(base);
    457     }
    458     mask >>= 1;
    459   }
    460 
    461   // And finally add the saved shifts.
    462   ShiftLeft(shifts * power_exponent);
    463 }
    464 
    465 
    466 // Precondition: this/other < 16bit.
    467 uint16_t Bignum::DivideModuloIntBignum(const Bignum& other) {
    468   DCHECK(IsClamped());
    469   DCHECK(other.IsClamped());
    470   DCHECK(other.used_digits_ > 0);
    471 
    472   // Easy case: if we have less digits than the divisor than the result is 0.
    473   // Note: this handles the case where this == 0, too.
    474   if (BigitLength() < other.BigitLength()) {
    475     return 0;
    476   }
    477 
    478   Align(other);
    479 
    480   uint16_t result = 0;
    481 
    482   // Start by removing multiples of 'other' until both numbers have the same
    483   // number of digits.
    484   while (BigitLength() > other.BigitLength()) {
    485     // This naive approach is extremely inefficient if the this divided other
    486     // might be big. This function is implemented for doubleToString where
    487     // the result should be small (less than 10).
    488     DCHECK(other.bigits_[other.used_digits_ - 1] >= ((1 << kBigitSize) / 16));
    489     // Remove the multiples of the first digit.
    490     // Example this = 23 and other equals 9. -> Remove 2 multiples.
    491     result += bigits_[used_digits_ - 1];
    492     SubtractTimes(other, bigits_[used_digits_ - 1]);
    493   }
    494 
    495   DCHECK(BigitLength() == other.BigitLength());
    496 
    497   // Both bignums are at the same length now.
    498   // Since other has more than 0 digits we know that the access to
    499   // bigits_[used_digits_ - 1] is safe.
    500   Chunk this_bigit = bigits_[used_digits_ - 1];
    501   Chunk other_bigit = other.bigits_[other.used_digits_ - 1];
    502 
    503   if (other.used_digits_ == 1) {
    504     // Shortcut for easy (and common) case.
    505     int quotient = this_bigit / other_bigit;
    506     bigits_[used_digits_ - 1] = this_bigit - other_bigit * quotient;
    507     result += quotient;
    508     Clamp();
    509     return result;
    510   }
    511 
    512   int division_estimate = this_bigit / (other_bigit + 1);
    513   result += division_estimate;
    514   SubtractTimes(other, division_estimate);
    515 
    516   if (other_bigit * (division_estimate + 1) > this_bigit) {
    517     // No need to even try to subtract. Even if other's remaining digits were 0
    518     // another subtraction would be too much.
    519     return result;
    520   }
    521 
    522   while (LessEqual(other, *this)) {
    523     SubtractBignum(other);
    524     result++;
    525   }
    526   return result;
    527 }
    528 
    529 
    530 template<typename S>
    531 static int SizeInHexChars(S number) {
    532   DCHECK(number > 0);
    533   int result = 0;
    534   while (number != 0) {
    535     number >>= 4;
    536     result++;
    537   }
    538   return result;
    539 }
    540 
    541 
    542 bool Bignum::ToHexString(char* buffer, int buffer_size) const {
    543   DCHECK(IsClamped());
    544   // Each bigit must be printable as separate hex-character.
    545   DCHECK(kBigitSize % 4 == 0);
    546   const int kHexCharsPerBigit = kBigitSize / 4;
    547 
    548   if (used_digits_ == 0) {
    549     if (buffer_size < 2) return false;
    550     buffer[0] = '0';
    551     buffer[1] = '\0';
    552     return true;
    553   }
    554   // We add 1 for the terminating '\0' character.
    555   int needed_chars = (BigitLength() - 1) * kHexCharsPerBigit +
    556       SizeInHexChars(bigits_[used_digits_ - 1]) + 1;
    557   if (needed_chars > buffer_size) return false;
    558   int string_index = needed_chars - 1;
    559   buffer[string_index--] = '\0';
    560   for (int i = 0; i < exponent_; ++i) {
    561     for (int j = 0; j < kHexCharsPerBigit; ++j) {
    562       buffer[string_index--] = '0';
    563     }
    564   }
    565   for (int i = 0; i < used_digits_ - 1; ++i) {
    566     Chunk current_bigit = bigits_[i];
    567     for (int j = 0; j < kHexCharsPerBigit; ++j) {
    568       buffer[string_index--] = HexCharOfValue(current_bigit & 0xF);
    569       current_bigit >>= 4;
    570     }
    571   }
    572   // And finally the last bigit.
    573   Chunk most_significant_bigit = bigits_[used_digits_ - 1];
    574   while (most_significant_bigit != 0) {
    575     buffer[string_index--] = HexCharOfValue(most_significant_bigit & 0xF);
    576     most_significant_bigit >>= 4;
    577   }
    578   return true;
    579 }
    580 
    581 
    582 Bignum::Chunk Bignum::BigitAt(int index) const {
    583   if (index >= BigitLength()) return 0;
    584   if (index < exponent_) return 0;
    585   return bigits_[index - exponent_];
    586 }
    587 
    588 
    589 int Bignum::Compare(const Bignum& a, const Bignum& b) {
    590   DCHECK(a.IsClamped());
    591   DCHECK(b.IsClamped());
    592   int bigit_length_a = a.BigitLength();
    593   int bigit_length_b = b.BigitLength();
    594   if (bigit_length_a < bigit_length_b) return -1;
    595   if (bigit_length_a > bigit_length_b) return +1;
    596   for (int i = bigit_length_a - 1; i >= Min(a.exponent_, b.exponent_); --i) {
    597     Chunk bigit_a = a.BigitAt(i);
    598     Chunk bigit_b = b.BigitAt(i);
    599     if (bigit_a < bigit_b) return -1;
    600     if (bigit_a > bigit_b) return +1;
    601     // Otherwise they are equal up to this digit. Try the next digit.
    602   }
    603   return 0;
    604 }
    605 
    606 
    607 int Bignum::PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c) {
    608   DCHECK(a.IsClamped());
    609   DCHECK(b.IsClamped());
    610   DCHECK(c.IsClamped());
    611   if (a.BigitLength() < b.BigitLength()) {
    612     return PlusCompare(b, a, c);
    613   }
    614   if (a.BigitLength() + 1 < c.BigitLength()) return -1;
    615   if (a.BigitLength() > c.BigitLength()) return +1;
    616   // The exponent encodes 0-bigits. So if there are more 0-digits in 'a' than
    617   // 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the one
    618   // of 'a'.
    619   if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength()) {
    620     return -1;
    621   }
    622 
    623   Chunk borrow = 0;
    624   // Starting at min_exponent all digits are == 0. So no need to compare them.
    625   int min_exponent = Min(Min(a.exponent_, b.exponent_), c.exponent_);
    626   for (int i = c.BigitLength() - 1; i >= min_exponent; --i) {
    627     Chunk chunk_a = a.BigitAt(i);
    628     Chunk chunk_b = b.BigitAt(i);
    629     Chunk chunk_c = c.BigitAt(i);
    630     Chunk sum = chunk_a + chunk_b;
    631     if (sum > chunk_c + borrow) {
    632       return +1;
    633     } else {
    634       borrow = chunk_c + borrow - sum;
    635       if (borrow > 1) return -1;
    636       borrow <<= kBigitSize;
    637     }
    638   }
    639   if (borrow == 0) return 0;
    640   return -1;
    641 }
    642 
    643 
    644 void Bignum::Clamp() {
    645   while (used_digits_ > 0 && bigits_[used_digits_ - 1] == 0) {
    646     used_digits_--;
    647   }
    648   if (used_digits_ == 0) {
    649     // Zero.
    650     exponent_ = 0;
    651   }
    652 }
    653 
    654 
    655 bool Bignum::IsClamped() const {
    656   return used_digits_ == 0 || bigits_[used_digits_ - 1] != 0;
    657 }
    658 
    659 
    660 void Bignum::Zero() {
    661   for (int i = 0; i < used_digits_; ++i) {
    662     bigits_[i] = 0;
    663   }
    664   used_digits_ = 0;
    665   exponent_ = 0;
    666 }
    667 
    668 
    669 void Bignum::Align(const Bignum& other) {
    670   if (exponent_ > other.exponent_) {
    671     // If "X" represents a "hidden" digit (by the exponent) then we are in the
    672     // following case (a == this, b == other):
    673     // a:  aaaaaaXXXX   or a:   aaaaaXXX
    674     // b:     bbbbbbX      b: bbbbbbbbXX
    675     // We replace some of the hidden digits (X) of a with 0 digits.
    676     // a:  aaaaaa000X   or a:   aaaaa0XX
    677     int zero_digits = exponent_ - other.exponent_;
    678     EnsureCapacity(used_digits_ + zero_digits);
    679     for (int i = used_digits_ - 1; i >= 0; --i) {
    680       bigits_[i + zero_digits] = bigits_[i];
    681     }
    682     for (int i = 0; i < zero_digits; ++i) {
    683       bigits_[i] = 0;
    684     }
    685     used_digits_ += zero_digits;
    686     exponent_ -= zero_digits;
    687     DCHECK(used_digits_ >= 0);
    688     DCHECK(exponent_ >= 0);
    689   }
    690 }
    691 
    692 
    693 void Bignum::BigitsShiftLeft(int shift_amount) {
    694   DCHECK(shift_amount < kBigitSize);
    695   DCHECK(shift_amount >= 0);
    696   Chunk carry = 0;
    697   for (int i = 0; i < used_digits_; ++i) {
    698     Chunk new_carry = bigits_[i] >> (kBigitSize - shift_amount);
    699     bigits_[i] = ((bigits_[i] << shift_amount) + carry) & kBigitMask;
    700     carry = new_carry;
    701   }
    702   if (carry != 0) {
    703     bigits_[used_digits_] = carry;
    704     used_digits_++;
    705   }
    706 }
    707 
    708 
    709 void Bignum::SubtractTimes(const Bignum& other, int factor) {
    710 #ifdef DEBUG
    711   Bignum a, b;
    712   a.AssignBignum(*this);
    713   b.AssignBignum(other);
    714   b.MultiplyByUInt32(factor);
    715   a.SubtractBignum(b);
    716 #endif
    717   DCHECK(exponent_ <= other.exponent_);
    718   if (factor < 3) {
    719     for (int i = 0; i < factor; ++i) {
    720       SubtractBignum(other);
    721     }
    722     return;
    723   }
    724   Chunk borrow = 0;
    725   int exponent_diff = other.exponent_ - exponent_;
    726   for (int i = 0; i < other.used_digits_; ++i) {
    727     DoubleChunk product = static_cast<DoubleChunk>(factor) * other.bigits_[i];
    728     DoubleChunk remove = borrow + product;
    729     Chunk difference =
    730         bigits_[i + exponent_diff] - static_cast<Chunk>(remove & kBigitMask);
    731     bigits_[i + exponent_diff] = difference & kBigitMask;
    732     borrow = static_cast<Chunk>((difference >> (kChunkSize - 1)) +
    733                                 (remove >> kBigitSize));
    734   }
    735   for (int i = other.used_digits_ + exponent_diff; i < used_digits_; ++i) {
    736     if (borrow == 0) return;
    737     Chunk difference = bigits_[i] - borrow;
    738     bigits_[i] = difference & kBigitMask;
    739     borrow = difference >> (kChunkSize - 1);
    740   }
    741   Clamp();
    742   DCHECK(Bignum::Equal(a, *this));
    743 }
    744 
    745 
    746 }  // namespace internal
    747 }  // namespace v8
    748