1 // Copyright 2011 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include "src/bignum.h" 6 #include "src/utils.h" 7 8 namespace v8 { 9 namespace internal { 10 11 Bignum::Bignum() 12 : bigits_(bigits_buffer_, kBigitCapacity), used_digits_(0), exponent_(0) { 13 for (int i = 0; i < kBigitCapacity; ++i) { 14 bigits_[i] = 0; 15 } 16 } 17 18 19 template<typename S> 20 static int BitSize(S value) { 21 return 8 * sizeof(value); 22 } 23 24 25 // Guaranteed to lie in one Bigit. 26 void Bignum::AssignUInt16(uint16_t value) { 27 DCHECK(kBigitSize >= BitSize(value)); 28 Zero(); 29 if (value == 0) return; 30 31 EnsureCapacity(1); 32 bigits_[0] = value; 33 used_digits_ = 1; 34 } 35 36 37 void Bignum::AssignUInt64(uint64_t value) { 38 const int kUInt64Size = 64; 39 40 Zero(); 41 if (value == 0) return; 42 43 int needed_bigits = kUInt64Size / kBigitSize + 1; 44 EnsureCapacity(needed_bigits); 45 for (int i = 0; i < needed_bigits; ++i) { 46 bigits_[i] = static_cast<Chunk>(value & kBigitMask); 47 value = value >> kBigitSize; 48 } 49 used_digits_ = needed_bigits; 50 Clamp(); 51 } 52 53 54 void Bignum::AssignBignum(const Bignum& other) { 55 exponent_ = other.exponent_; 56 for (int i = 0; i < other.used_digits_; ++i) { 57 bigits_[i] = other.bigits_[i]; 58 } 59 // Clear the excess digits (if there were any). 60 for (int i = other.used_digits_; i < used_digits_; ++i) { 61 bigits_[i] = 0; 62 } 63 used_digits_ = other.used_digits_; 64 } 65 66 67 static uint64_t ReadUInt64(Vector<const char> buffer, 68 int from, 69 int digits_to_read) { 70 uint64_t result = 0; 71 int to = from + digits_to_read; 72 73 for (int i = from; i < to; ++i) { 74 int digit = buffer[i] - '0'; 75 DCHECK(0 <= digit && digit <= 9); 76 result = result * 10 + digit; 77 } 78 return result; 79 } 80 81 82 void Bignum::AssignDecimalString(Vector<const char> value) { 83 // 2^64 = 18446744073709551616 > 10^19 84 const int kMaxUint64DecimalDigits = 19; 85 Zero(); 86 int length = value.length(); 87 int pos = 0; 88 // Let's just say that each digit needs 4 bits. 89 while (length >= kMaxUint64DecimalDigits) { 90 uint64_t digits = ReadUInt64(value, pos, kMaxUint64DecimalDigits); 91 pos += kMaxUint64DecimalDigits; 92 length -= kMaxUint64DecimalDigits; 93 MultiplyByPowerOfTen(kMaxUint64DecimalDigits); 94 AddUInt64(digits); 95 } 96 uint64_t digits = ReadUInt64(value, pos, length); 97 MultiplyByPowerOfTen(length); 98 AddUInt64(digits); 99 Clamp(); 100 } 101 102 103 static int HexCharValue(char c) { 104 if ('0' <= c && c <= '9') return c - '0'; 105 if ('a' <= c && c <= 'f') return 10 + c - 'a'; 106 if ('A' <= c && c <= 'F') return 10 + c - 'A'; 107 UNREACHABLE(); 108 return 0; // To make compiler happy. 109 } 110 111 112 void Bignum::AssignHexString(Vector<const char> value) { 113 Zero(); 114 int length = value.length(); 115 116 int needed_bigits = length * 4 / kBigitSize + 1; 117 EnsureCapacity(needed_bigits); 118 int string_index = length - 1; 119 for (int i = 0; i < needed_bigits - 1; ++i) { 120 // These bigits are guaranteed to be "full". 121 Chunk current_bigit = 0; 122 for (int j = 0; j < kBigitSize / 4; j++) { 123 current_bigit += HexCharValue(value[string_index--]) << (j * 4); 124 } 125 bigits_[i] = current_bigit; 126 } 127 used_digits_ = needed_bigits - 1; 128 129 Chunk most_significant_bigit = 0; // Could be = 0; 130 for (int j = 0; j <= string_index; ++j) { 131 most_significant_bigit <<= 4; 132 most_significant_bigit += HexCharValue(value[j]); 133 } 134 if (most_significant_bigit != 0) { 135 bigits_[used_digits_] = most_significant_bigit; 136 used_digits_++; 137 } 138 Clamp(); 139 } 140 141 142 void Bignum::AddUInt64(uint64_t operand) { 143 if (operand == 0) return; 144 Bignum other; 145 other.AssignUInt64(operand); 146 AddBignum(other); 147 } 148 149 150 void Bignum::AddBignum(const Bignum& other) { 151 DCHECK(IsClamped()); 152 DCHECK(other.IsClamped()); 153 154 // If this has a greater exponent than other append zero-bigits to this. 155 // After this call exponent_ <= other.exponent_. 156 Align(other); 157 158 // There are two possibilities: 159 // aaaaaaaaaaa 0000 (where the 0s represent a's exponent) 160 // bbbbb 00000000 161 // ---------------- 162 // ccccccccccc 0000 163 // or 164 // aaaaaaaaaa 0000 165 // bbbbbbbbb 0000000 166 // ----------------- 167 // cccccccccccc 0000 168 // In both cases we might need a carry bigit. 169 170 EnsureCapacity(1 + Max(BigitLength(), other.BigitLength()) - exponent_); 171 Chunk carry = 0; 172 int bigit_pos = other.exponent_ - exponent_; 173 DCHECK(bigit_pos >= 0); 174 for (int i = 0; i < other.used_digits_; ++i) { 175 Chunk sum = bigits_[bigit_pos] + other.bigits_[i] + carry; 176 bigits_[bigit_pos] = sum & kBigitMask; 177 carry = sum >> kBigitSize; 178 bigit_pos++; 179 } 180 181 while (carry != 0) { 182 Chunk sum = bigits_[bigit_pos] + carry; 183 bigits_[bigit_pos] = sum & kBigitMask; 184 carry = sum >> kBigitSize; 185 bigit_pos++; 186 } 187 used_digits_ = Max(bigit_pos, used_digits_); 188 DCHECK(IsClamped()); 189 } 190 191 192 void Bignum::SubtractBignum(const Bignum& other) { 193 DCHECK(IsClamped()); 194 DCHECK(other.IsClamped()); 195 // We require this to be bigger than other. 196 DCHECK(LessEqual(other, *this)); 197 198 Align(other); 199 200 int offset = other.exponent_ - exponent_; 201 Chunk borrow = 0; 202 int i; 203 for (i = 0; i < other.used_digits_; ++i) { 204 DCHECK((borrow == 0) || (borrow == 1)); 205 Chunk difference = bigits_[i + offset] - other.bigits_[i] - borrow; 206 bigits_[i + offset] = difference & kBigitMask; 207 borrow = difference >> (kChunkSize - 1); 208 } 209 while (borrow != 0) { 210 Chunk difference = bigits_[i + offset] - borrow; 211 bigits_[i + offset] = difference & kBigitMask; 212 borrow = difference >> (kChunkSize - 1); 213 ++i; 214 } 215 Clamp(); 216 } 217 218 219 void Bignum::ShiftLeft(int shift_amount) { 220 if (used_digits_ == 0) return; 221 exponent_ += shift_amount / kBigitSize; 222 int local_shift = shift_amount % kBigitSize; 223 EnsureCapacity(used_digits_ + 1); 224 BigitsShiftLeft(local_shift); 225 } 226 227 228 void Bignum::MultiplyByUInt32(uint32_t factor) { 229 if (factor == 1) return; 230 if (factor == 0) { 231 Zero(); 232 return; 233 } 234 if (used_digits_ == 0) return; 235 236 // The product of a bigit with the factor is of size kBigitSize + 32. 237 // Assert that this number + 1 (for the carry) fits into double chunk. 238 DCHECK(kDoubleChunkSize >= kBigitSize + 32 + 1); 239 DoubleChunk carry = 0; 240 for (int i = 0; i < used_digits_; ++i) { 241 DoubleChunk product = static_cast<DoubleChunk>(factor) * bigits_[i] + carry; 242 bigits_[i] = static_cast<Chunk>(product & kBigitMask); 243 carry = (product >> kBigitSize); 244 } 245 while (carry != 0) { 246 EnsureCapacity(used_digits_ + 1); 247 bigits_[used_digits_] = static_cast<Chunk>(carry & kBigitMask); 248 used_digits_++; 249 carry >>= kBigitSize; 250 } 251 } 252 253 254 void Bignum::MultiplyByUInt64(uint64_t factor) { 255 if (factor == 1) return; 256 if (factor == 0) { 257 Zero(); 258 return; 259 } 260 DCHECK(kBigitSize < 32); 261 uint64_t carry = 0; 262 uint64_t low = factor & 0xFFFFFFFF; 263 uint64_t high = factor >> 32; 264 for (int i = 0; i < used_digits_; ++i) { 265 uint64_t product_low = low * bigits_[i]; 266 uint64_t product_high = high * bigits_[i]; 267 uint64_t tmp = (carry & kBigitMask) + product_low; 268 bigits_[i] = static_cast<Chunk>(tmp & kBigitMask); 269 carry = (carry >> kBigitSize) + (tmp >> kBigitSize) + 270 (product_high << (32 - kBigitSize)); 271 } 272 while (carry != 0) { 273 EnsureCapacity(used_digits_ + 1); 274 bigits_[used_digits_] = static_cast<Chunk>(carry & kBigitMask); 275 used_digits_++; 276 carry >>= kBigitSize; 277 } 278 } 279 280 281 void Bignum::MultiplyByPowerOfTen(int exponent) { 282 const uint64_t kFive27 = V8_2PART_UINT64_C(0x6765c793, fa10079d); 283 const uint16_t kFive1 = 5; 284 const uint16_t kFive2 = kFive1 * 5; 285 const uint16_t kFive3 = kFive2 * 5; 286 const uint16_t kFive4 = kFive3 * 5; 287 const uint16_t kFive5 = kFive4 * 5; 288 const uint16_t kFive6 = kFive5 * 5; 289 const uint32_t kFive7 = kFive6 * 5; 290 const uint32_t kFive8 = kFive7 * 5; 291 const uint32_t kFive9 = kFive8 * 5; 292 const uint32_t kFive10 = kFive9 * 5; 293 const uint32_t kFive11 = kFive10 * 5; 294 const uint32_t kFive12 = kFive11 * 5; 295 const uint32_t kFive13 = kFive12 * 5; 296 const uint32_t kFive1_to_12[] = 297 { kFive1, kFive2, kFive3, kFive4, kFive5, kFive6, 298 kFive7, kFive8, kFive9, kFive10, kFive11, kFive12 }; 299 300 DCHECK(exponent >= 0); 301 if (exponent == 0) return; 302 if (used_digits_ == 0) return; 303 304 // We shift by exponent at the end just before returning. 305 int remaining_exponent = exponent; 306 while (remaining_exponent >= 27) { 307 MultiplyByUInt64(kFive27); 308 remaining_exponent -= 27; 309 } 310 while (remaining_exponent >= 13) { 311 MultiplyByUInt32(kFive13); 312 remaining_exponent -= 13; 313 } 314 if (remaining_exponent > 0) { 315 MultiplyByUInt32(kFive1_to_12[remaining_exponent - 1]); 316 } 317 ShiftLeft(exponent); 318 } 319 320 321 void Bignum::Square() { 322 DCHECK(IsClamped()); 323 int product_length = 2 * used_digits_; 324 EnsureCapacity(product_length); 325 326 // Comba multiplication: compute each column separately. 327 // Example: r = a2a1a0 * b2b1b0. 328 // r = 1 * a0b0 + 329 // 10 * (a1b0 + a0b1) + 330 // 100 * (a2b0 + a1b1 + a0b2) + 331 // 1000 * (a2b1 + a1b2) + 332 // 10000 * a2b2 333 // 334 // In the worst case we have to accumulate nb-digits products of digit*digit. 335 // 336 // Assert that the additional number of bits in a DoubleChunk are enough to 337 // sum up used_digits of Bigit*Bigit. 338 if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_digits_) { 339 UNIMPLEMENTED(); 340 } 341 DoubleChunk accumulator = 0; 342 // First shift the digits so we don't overwrite them. 343 int copy_offset = used_digits_; 344 for (int i = 0; i < used_digits_; ++i) { 345 bigits_[copy_offset + i] = bigits_[i]; 346 } 347 // We have two loops to avoid some 'if's in the loop. 348 for (int i = 0; i < used_digits_; ++i) { 349 // Process temporary digit i with power i. 350 // The sum of the two indices must be equal to i. 351 int bigit_index1 = i; 352 int bigit_index2 = 0; 353 // Sum all of the sub-products. 354 while (bigit_index1 >= 0) { 355 Chunk chunk1 = bigits_[copy_offset + bigit_index1]; 356 Chunk chunk2 = bigits_[copy_offset + bigit_index2]; 357 accumulator += static_cast<DoubleChunk>(chunk1) * chunk2; 358 bigit_index1--; 359 bigit_index2++; 360 } 361 bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask; 362 accumulator >>= kBigitSize; 363 } 364 for (int i = used_digits_; i < product_length; ++i) { 365 int bigit_index1 = used_digits_ - 1; 366 int bigit_index2 = i - bigit_index1; 367 // Invariant: sum of both indices is again equal to i. 368 // Inner loop runs 0 times on last iteration, emptying accumulator. 369 while (bigit_index2 < used_digits_) { 370 Chunk chunk1 = bigits_[copy_offset + bigit_index1]; 371 Chunk chunk2 = bigits_[copy_offset + bigit_index2]; 372 accumulator += static_cast<DoubleChunk>(chunk1) * chunk2; 373 bigit_index1--; 374 bigit_index2++; 375 } 376 // The overwritten bigits_[i] will never be read in further loop iterations, 377 // because bigit_index1 and bigit_index2 are always greater 378 // than i - used_digits_. 379 bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask; 380 accumulator >>= kBigitSize; 381 } 382 // Since the result was guaranteed to lie inside the number the 383 // accumulator must be 0 now. 384 DCHECK(accumulator == 0); 385 386 // Don't forget to update the used_digits and the exponent. 387 used_digits_ = product_length; 388 exponent_ *= 2; 389 Clamp(); 390 } 391 392 393 void Bignum::AssignPowerUInt16(uint16_t base, int power_exponent) { 394 DCHECK(base != 0); 395 DCHECK(power_exponent >= 0); 396 if (power_exponent == 0) { 397 AssignUInt16(1); 398 return; 399 } 400 Zero(); 401 int shifts = 0; 402 // We expect base to be in range 2-32, and most often to be 10. 403 // It does not make much sense to implement different algorithms for counting 404 // the bits. 405 while ((base & 1) == 0) { 406 base >>= 1; 407 shifts++; 408 } 409 int bit_size = 0; 410 int tmp_base = base; 411 while (tmp_base != 0) { 412 tmp_base >>= 1; 413 bit_size++; 414 } 415 int final_size = bit_size * power_exponent; 416 // 1 extra bigit for the shifting, and one for rounded final_size. 417 EnsureCapacity(final_size / kBigitSize + 2); 418 419 // Left to Right exponentiation. 420 int mask = 1; 421 while (power_exponent >= mask) mask <<= 1; 422 423 // The mask is now pointing to the bit above the most significant 1-bit of 424 // power_exponent. 425 // Get rid of first 1-bit; 426 mask >>= 2; 427 uint64_t this_value = base; 428 429 bool delayed_multipliciation = false; 430 const uint64_t max_32bits = 0xFFFFFFFF; 431 while (mask != 0 && this_value <= max_32bits) { 432 this_value = this_value * this_value; 433 // Verify that there is enough space in this_value to perform the 434 // multiplication. The first bit_size bits must be 0. 435 if ((power_exponent & mask) != 0) { 436 uint64_t base_bits_mask = 437 ~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1); 438 bool high_bits_zero = (this_value & base_bits_mask) == 0; 439 if (high_bits_zero) { 440 this_value *= base; 441 } else { 442 delayed_multipliciation = true; 443 } 444 } 445 mask >>= 1; 446 } 447 AssignUInt64(this_value); 448 if (delayed_multipliciation) { 449 MultiplyByUInt32(base); 450 } 451 452 // Now do the same thing as a bignum. 453 while (mask != 0) { 454 Square(); 455 if ((power_exponent & mask) != 0) { 456 MultiplyByUInt32(base); 457 } 458 mask >>= 1; 459 } 460 461 // And finally add the saved shifts. 462 ShiftLeft(shifts * power_exponent); 463 } 464 465 466 // Precondition: this/other < 16bit. 467 uint16_t Bignum::DivideModuloIntBignum(const Bignum& other) { 468 DCHECK(IsClamped()); 469 DCHECK(other.IsClamped()); 470 DCHECK(other.used_digits_ > 0); 471 472 // Easy case: if we have less digits than the divisor than the result is 0. 473 // Note: this handles the case where this == 0, too. 474 if (BigitLength() < other.BigitLength()) { 475 return 0; 476 } 477 478 Align(other); 479 480 uint16_t result = 0; 481 482 // Start by removing multiples of 'other' until both numbers have the same 483 // number of digits. 484 while (BigitLength() > other.BigitLength()) { 485 // This naive approach is extremely inefficient if the this divided other 486 // might be big. This function is implemented for doubleToString where 487 // the result should be small (less than 10). 488 DCHECK(other.bigits_[other.used_digits_ - 1] >= ((1 << kBigitSize) / 16)); 489 // Remove the multiples of the first digit. 490 // Example this = 23 and other equals 9. -> Remove 2 multiples. 491 result += bigits_[used_digits_ - 1]; 492 SubtractTimes(other, bigits_[used_digits_ - 1]); 493 } 494 495 DCHECK(BigitLength() == other.BigitLength()); 496 497 // Both bignums are at the same length now. 498 // Since other has more than 0 digits we know that the access to 499 // bigits_[used_digits_ - 1] is safe. 500 Chunk this_bigit = bigits_[used_digits_ - 1]; 501 Chunk other_bigit = other.bigits_[other.used_digits_ - 1]; 502 503 if (other.used_digits_ == 1) { 504 // Shortcut for easy (and common) case. 505 int quotient = this_bigit / other_bigit; 506 bigits_[used_digits_ - 1] = this_bigit - other_bigit * quotient; 507 result += quotient; 508 Clamp(); 509 return result; 510 } 511 512 int division_estimate = this_bigit / (other_bigit + 1); 513 result += division_estimate; 514 SubtractTimes(other, division_estimate); 515 516 if (other_bigit * (division_estimate + 1) > this_bigit) { 517 // No need to even try to subtract. Even if other's remaining digits were 0 518 // another subtraction would be too much. 519 return result; 520 } 521 522 while (LessEqual(other, *this)) { 523 SubtractBignum(other); 524 result++; 525 } 526 return result; 527 } 528 529 530 template<typename S> 531 static int SizeInHexChars(S number) { 532 DCHECK(number > 0); 533 int result = 0; 534 while (number != 0) { 535 number >>= 4; 536 result++; 537 } 538 return result; 539 } 540 541 542 bool Bignum::ToHexString(char* buffer, int buffer_size) const { 543 DCHECK(IsClamped()); 544 // Each bigit must be printable as separate hex-character. 545 DCHECK(kBigitSize % 4 == 0); 546 const int kHexCharsPerBigit = kBigitSize / 4; 547 548 if (used_digits_ == 0) { 549 if (buffer_size < 2) return false; 550 buffer[0] = '0'; 551 buffer[1] = '\0'; 552 return true; 553 } 554 // We add 1 for the terminating '\0' character. 555 int needed_chars = (BigitLength() - 1) * kHexCharsPerBigit + 556 SizeInHexChars(bigits_[used_digits_ - 1]) + 1; 557 if (needed_chars > buffer_size) return false; 558 int string_index = needed_chars - 1; 559 buffer[string_index--] = '\0'; 560 for (int i = 0; i < exponent_; ++i) { 561 for (int j = 0; j < kHexCharsPerBigit; ++j) { 562 buffer[string_index--] = '0'; 563 } 564 } 565 for (int i = 0; i < used_digits_ - 1; ++i) { 566 Chunk current_bigit = bigits_[i]; 567 for (int j = 0; j < kHexCharsPerBigit; ++j) { 568 buffer[string_index--] = HexCharOfValue(current_bigit & 0xF); 569 current_bigit >>= 4; 570 } 571 } 572 // And finally the last bigit. 573 Chunk most_significant_bigit = bigits_[used_digits_ - 1]; 574 while (most_significant_bigit != 0) { 575 buffer[string_index--] = HexCharOfValue(most_significant_bigit & 0xF); 576 most_significant_bigit >>= 4; 577 } 578 return true; 579 } 580 581 582 Bignum::Chunk Bignum::BigitAt(int index) const { 583 if (index >= BigitLength()) return 0; 584 if (index < exponent_) return 0; 585 return bigits_[index - exponent_]; 586 } 587 588 589 int Bignum::Compare(const Bignum& a, const Bignum& b) { 590 DCHECK(a.IsClamped()); 591 DCHECK(b.IsClamped()); 592 int bigit_length_a = a.BigitLength(); 593 int bigit_length_b = b.BigitLength(); 594 if (bigit_length_a < bigit_length_b) return -1; 595 if (bigit_length_a > bigit_length_b) return +1; 596 for (int i = bigit_length_a - 1; i >= Min(a.exponent_, b.exponent_); --i) { 597 Chunk bigit_a = a.BigitAt(i); 598 Chunk bigit_b = b.BigitAt(i); 599 if (bigit_a < bigit_b) return -1; 600 if (bigit_a > bigit_b) return +1; 601 // Otherwise they are equal up to this digit. Try the next digit. 602 } 603 return 0; 604 } 605 606 607 int Bignum::PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c) { 608 DCHECK(a.IsClamped()); 609 DCHECK(b.IsClamped()); 610 DCHECK(c.IsClamped()); 611 if (a.BigitLength() < b.BigitLength()) { 612 return PlusCompare(b, a, c); 613 } 614 if (a.BigitLength() + 1 < c.BigitLength()) return -1; 615 if (a.BigitLength() > c.BigitLength()) return +1; 616 // The exponent encodes 0-bigits. So if there are more 0-digits in 'a' than 617 // 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the one 618 // of 'a'. 619 if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength()) { 620 return -1; 621 } 622 623 Chunk borrow = 0; 624 // Starting at min_exponent all digits are == 0. So no need to compare them. 625 int min_exponent = Min(Min(a.exponent_, b.exponent_), c.exponent_); 626 for (int i = c.BigitLength() - 1; i >= min_exponent; --i) { 627 Chunk chunk_a = a.BigitAt(i); 628 Chunk chunk_b = b.BigitAt(i); 629 Chunk chunk_c = c.BigitAt(i); 630 Chunk sum = chunk_a + chunk_b; 631 if (sum > chunk_c + borrow) { 632 return +1; 633 } else { 634 borrow = chunk_c + borrow - sum; 635 if (borrow > 1) return -1; 636 borrow <<= kBigitSize; 637 } 638 } 639 if (borrow == 0) return 0; 640 return -1; 641 } 642 643 644 void Bignum::Clamp() { 645 while (used_digits_ > 0 && bigits_[used_digits_ - 1] == 0) { 646 used_digits_--; 647 } 648 if (used_digits_ == 0) { 649 // Zero. 650 exponent_ = 0; 651 } 652 } 653 654 655 bool Bignum::IsClamped() const { 656 return used_digits_ == 0 || bigits_[used_digits_ - 1] != 0; 657 } 658 659 660 void Bignum::Zero() { 661 for (int i = 0; i < used_digits_; ++i) { 662 bigits_[i] = 0; 663 } 664 used_digits_ = 0; 665 exponent_ = 0; 666 } 667 668 669 void Bignum::Align(const Bignum& other) { 670 if (exponent_ > other.exponent_) { 671 // If "X" represents a "hidden" digit (by the exponent) then we are in the 672 // following case (a == this, b == other): 673 // a: aaaaaaXXXX or a: aaaaaXXX 674 // b: bbbbbbX b: bbbbbbbbXX 675 // We replace some of the hidden digits (X) of a with 0 digits. 676 // a: aaaaaa000X or a: aaaaa0XX 677 int zero_digits = exponent_ - other.exponent_; 678 EnsureCapacity(used_digits_ + zero_digits); 679 for (int i = used_digits_ - 1; i >= 0; --i) { 680 bigits_[i + zero_digits] = bigits_[i]; 681 } 682 for (int i = 0; i < zero_digits; ++i) { 683 bigits_[i] = 0; 684 } 685 used_digits_ += zero_digits; 686 exponent_ -= zero_digits; 687 DCHECK(used_digits_ >= 0); 688 DCHECK(exponent_ >= 0); 689 } 690 } 691 692 693 void Bignum::BigitsShiftLeft(int shift_amount) { 694 DCHECK(shift_amount < kBigitSize); 695 DCHECK(shift_amount >= 0); 696 Chunk carry = 0; 697 for (int i = 0; i < used_digits_; ++i) { 698 Chunk new_carry = bigits_[i] >> (kBigitSize - shift_amount); 699 bigits_[i] = ((bigits_[i] << shift_amount) + carry) & kBigitMask; 700 carry = new_carry; 701 } 702 if (carry != 0) { 703 bigits_[used_digits_] = carry; 704 used_digits_++; 705 } 706 } 707 708 709 void Bignum::SubtractTimes(const Bignum& other, int factor) { 710 #ifdef DEBUG 711 Bignum a, b; 712 a.AssignBignum(*this); 713 b.AssignBignum(other); 714 b.MultiplyByUInt32(factor); 715 a.SubtractBignum(b); 716 #endif 717 DCHECK(exponent_ <= other.exponent_); 718 if (factor < 3) { 719 for (int i = 0; i < factor; ++i) { 720 SubtractBignum(other); 721 } 722 return; 723 } 724 Chunk borrow = 0; 725 int exponent_diff = other.exponent_ - exponent_; 726 for (int i = 0; i < other.used_digits_; ++i) { 727 DoubleChunk product = static_cast<DoubleChunk>(factor) * other.bigits_[i]; 728 DoubleChunk remove = borrow + product; 729 Chunk difference = 730 bigits_[i + exponent_diff] - static_cast<Chunk>(remove & kBigitMask); 731 bigits_[i + exponent_diff] = difference & kBigitMask; 732 borrow = static_cast<Chunk>((difference >> (kChunkSize - 1)) + 733 (remove >> kBigitSize)); 734 } 735 for (int i = other.used_digits_ + exponent_diff; i < used_digits_; ++i) { 736 if (borrow == 0) return; 737 Chunk difference = bigits_[i] - borrow; 738 bigits_[i] = difference & kBigitMask; 739 borrow = difference >> (kChunkSize - 1); 740 } 741 Clamp(); 742 DCHECK(Bignum::Equal(a, *this)); 743 } 744 745 746 } // namespace internal 747 } // namespace v8 748