1 // Copyright 2013 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include "src/crankshaft/hydrogen-escape-analysis.h" 6 7 namespace v8 { 8 namespace internal { 9 10 11 bool HEscapeAnalysisPhase::HasNoEscapingUses(HValue* value, int size) { 12 for (HUseIterator it(value->uses()); !it.Done(); it.Advance()) { 13 HValue* use = it.value(); 14 if (use->HasEscapingOperandAt(it.index())) { 15 if (FLAG_trace_escape_analysis) { 16 PrintF("#%d (%s) escapes through #%d (%s) @%d\n", value->id(), 17 value->Mnemonic(), use->id(), use->Mnemonic(), it.index()); 18 } 19 return false; 20 } 21 if (use->HasOutOfBoundsAccess(size)) { 22 if (FLAG_trace_escape_analysis) { 23 PrintF("#%d (%s) out of bounds at #%d (%s) @%d\n", value->id(), 24 value->Mnemonic(), use->id(), use->Mnemonic(), it.index()); 25 } 26 return false; 27 } 28 int redefined_index = use->RedefinedOperandIndex(); 29 if (redefined_index == it.index() && !HasNoEscapingUses(use, size)) { 30 if (FLAG_trace_escape_analysis) { 31 PrintF("#%d (%s) escapes redefinition #%d (%s) @%d\n", value->id(), 32 value->Mnemonic(), use->id(), use->Mnemonic(), it.index()); 33 } 34 return false; 35 } 36 } 37 return true; 38 } 39 40 41 void HEscapeAnalysisPhase::CollectCapturedValues() { 42 int block_count = graph()->blocks()->length(); 43 for (int i = 0; i < block_count; ++i) { 44 HBasicBlock* block = graph()->blocks()->at(i); 45 for (HInstructionIterator it(block); !it.Done(); it.Advance()) { 46 HInstruction* instr = it.Current(); 47 if (!instr->IsAllocate()) continue; 48 HAllocate* allocate = HAllocate::cast(instr); 49 if (!allocate->size()->IsInteger32Constant()) continue; 50 int size_in_bytes = allocate->size()->GetInteger32Constant(); 51 if (HasNoEscapingUses(instr, size_in_bytes)) { 52 if (FLAG_trace_escape_analysis) { 53 PrintF("#%d (%s) is being captured\n", instr->id(), 54 instr->Mnemonic()); 55 } 56 captured_.Add(instr, zone()); 57 } 58 } 59 } 60 } 61 62 63 HCapturedObject* HEscapeAnalysisPhase::NewState(HInstruction* previous) { 64 Zone* zone = graph()->zone(); 65 HCapturedObject* state = 66 new(zone) HCapturedObject(number_of_values_, number_of_objects_, zone); 67 state->InsertAfter(previous); 68 return state; 69 } 70 71 72 // Create a new state for replacing HAllocate instructions. 73 HCapturedObject* HEscapeAnalysisPhase::NewStateForAllocation( 74 HInstruction* previous) { 75 HConstant* undefined = graph()->GetConstantUndefined(); 76 HCapturedObject* state = NewState(previous); 77 for (int index = 0; index < number_of_values_; index++) { 78 state->SetOperandAt(index, undefined); 79 } 80 return state; 81 } 82 83 84 // Create a new state full of phis for loop header entries. 85 HCapturedObject* HEscapeAnalysisPhase::NewStateForLoopHeader( 86 HInstruction* previous, 87 HCapturedObject* old_state) { 88 HBasicBlock* block = previous->block(); 89 HCapturedObject* state = NewState(previous); 90 for (int index = 0; index < number_of_values_; index++) { 91 HValue* operand = old_state->OperandAt(index); 92 HPhi* phi = NewPhiAndInsert(block, operand, index); 93 state->SetOperandAt(index, phi); 94 } 95 return state; 96 } 97 98 99 // Create a new state by copying an existing one. 100 HCapturedObject* HEscapeAnalysisPhase::NewStateCopy( 101 HInstruction* previous, 102 HCapturedObject* old_state) { 103 HCapturedObject* state = NewState(previous); 104 for (int index = 0; index < number_of_values_; index++) { 105 HValue* operand = old_state->OperandAt(index); 106 state->SetOperandAt(index, operand); 107 } 108 return state; 109 } 110 111 112 // Insert a newly created phi into the given block and fill all incoming 113 // edges with the given value. 114 HPhi* HEscapeAnalysisPhase::NewPhiAndInsert(HBasicBlock* block, 115 HValue* incoming_value, 116 int index) { 117 Zone* zone = graph()->zone(); 118 HPhi* phi = new(zone) HPhi(HPhi::kInvalidMergedIndex, zone); 119 for (int i = 0; i < block->predecessors()->length(); i++) { 120 phi->AddInput(incoming_value); 121 } 122 block->AddPhi(phi); 123 return phi; 124 } 125 126 127 // Insert a newly created value check as a replacement for map checks. 128 HValue* HEscapeAnalysisPhase::NewMapCheckAndInsert(HCapturedObject* state, 129 HCheckMaps* mapcheck) { 130 Zone* zone = graph()->zone(); 131 HValue* value = state->map_value(); 132 // TODO(mstarzinger): This will narrow a map check against a set of maps 133 // down to the first element in the set. Revisit and fix this. 134 HCheckValue* check = HCheckValue::New(graph()->isolate(), zone, NULL, value, 135 mapcheck->maps()->at(0), false); 136 check->InsertBefore(mapcheck); 137 return check; 138 } 139 140 141 // Replace a field load with a given value, forcing Smi representation if 142 // necessary. 143 HValue* HEscapeAnalysisPhase::NewLoadReplacement( 144 HLoadNamedField* load, HValue* load_value) { 145 isolate()->counters()->crankshaft_escape_loads_replaced()->Increment(); 146 HValue* replacement = load_value; 147 Representation representation = load->representation(); 148 if (representation.IsSmiOrInteger32() || representation.IsDouble()) { 149 Zone* zone = graph()->zone(); 150 HInstruction* new_instr = HForceRepresentation::New( 151 graph()->isolate(), zone, NULL, load_value, representation); 152 new_instr->InsertAfter(load); 153 replacement = new_instr; 154 } 155 return replacement; 156 } 157 158 159 // Performs a forward data-flow analysis of all loads and stores on the 160 // given captured allocation. This uses a reverse post-order iteration 161 // over affected basic blocks. All non-escaping instructions are handled 162 // and replaced during the analysis. 163 void HEscapeAnalysisPhase::AnalyzeDataFlow(HInstruction* allocate) { 164 HBasicBlock* allocate_block = allocate->block(); 165 block_states_.AddBlock(NULL, graph()->blocks()->length(), zone()); 166 167 // Iterate all blocks starting with the allocation block, since the 168 // allocation cannot dominate blocks that come before. 169 int start = allocate_block->block_id(); 170 for (int i = start; i < graph()->blocks()->length(); i++) { 171 HBasicBlock* block = graph()->blocks()->at(i); 172 HCapturedObject* state = StateAt(block); 173 174 // Skip blocks that are not dominated by the captured allocation. 175 if (!allocate_block->Dominates(block) && allocate_block != block) continue; 176 if (FLAG_trace_escape_analysis) { 177 PrintF("Analyzing data-flow in B%d\n", block->block_id()); 178 } 179 180 // Go through all instructions of the current block. 181 for (HInstructionIterator it(block); !it.Done(); it.Advance()) { 182 HInstruction* instr = it.Current(); 183 switch (instr->opcode()) { 184 case HValue::kAllocate: { 185 if (instr != allocate) continue; 186 state = NewStateForAllocation(allocate); 187 break; 188 } 189 case HValue::kLoadNamedField: { 190 HLoadNamedField* load = HLoadNamedField::cast(instr); 191 int index = load->access().offset() / kPointerSize; 192 if (load->object() != allocate) continue; 193 DCHECK(load->access().IsInobject()); 194 HValue* replacement = 195 NewLoadReplacement(load, state->OperandAt(index)); 196 load->DeleteAndReplaceWith(replacement); 197 if (FLAG_trace_escape_analysis) { 198 PrintF("Replacing load #%d with #%d (%s)\n", load->id(), 199 replacement->id(), replacement->Mnemonic()); 200 } 201 break; 202 } 203 case HValue::kStoreNamedField: { 204 HStoreNamedField* store = HStoreNamedField::cast(instr); 205 int index = store->access().offset() / kPointerSize; 206 if (store->object() != allocate) continue; 207 DCHECK(store->access().IsInobject()); 208 state = NewStateCopy(store->previous(), state); 209 state->SetOperandAt(index, store->value()); 210 if (store->has_transition()) { 211 state->SetOperandAt(0, store->transition()); 212 } 213 if (store->HasObservableSideEffects()) { 214 state->ReuseSideEffectsFromStore(store); 215 } 216 store->DeleteAndReplaceWith(store->ActualValue()); 217 if (FLAG_trace_escape_analysis) { 218 PrintF("Replacing store #%d%s\n", instr->id(), 219 store->has_transition() ? " (with transition)" : ""); 220 } 221 break; 222 } 223 case HValue::kArgumentsObject: 224 case HValue::kCapturedObject: 225 case HValue::kSimulate: { 226 for (int i = 0; i < instr->OperandCount(); i++) { 227 if (instr->OperandAt(i) != allocate) continue; 228 instr->SetOperandAt(i, state); 229 } 230 break; 231 } 232 case HValue::kCheckHeapObject: { 233 HCheckHeapObject* check = HCheckHeapObject::cast(instr); 234 if (check->value() != allocate) continue; 235 check->DeleteAndReplaceWith(check->ActualValue()); 236 break; 237 } 238 case HValue::kCheckMaps: { 239 HCheckMaps* mapcheck = HCheckMaps::cast(instr); 240 if (mapcheck->value() != allocate) continue; 241 NewMapCheckAndInsert(state, mapcheck); 242 mapcheck->DeleteAndReplaceWith(mapcheck->ActualValue()); 243 break; 244 } 245 default: 246 // Nothing to see here, move along ... 247 break; 248 } 249 } 250 251 // Propagate the block state forward to all successor blocks. 252 for (int i = 0; i < block->end()->SuccessorCount(); i++) { 253 HBasicBlock* succ = block->end()->SuccessorAt(i); 254 if (!allocate_block->Dominates(succ)) continue; 255 if (succ->predecessors()->length() == 1) { 256 // Case 1: This is the only predecessor, just reuse state. 257 SetStateAt(succ, state); 258 } else if (StateAt(succ) == NULL && succ->IsLoopHeader()) { 259 // Case 2: This is a state that enters a loop header, be 260 // pessimistic about loop headers, add phis for all values. 261 SetStateAt(succ, NewStateForLoopHeader(succ->first(), state)); 262 } else if (StateAt(succ) == NULL) { 263 // Case 3: This is the first state propagated forward to the 264 // successor, leave a copy of the current state. 265 SetStateAt(succ, NewStateCopy(succ->first(), state)); 266 } else { 267 // Case 4: This is a state that needs merging with previously 268 // propagated states, potentially introducing new phis lazily or 269 // adding values to existing phis. 270 HCapturedObject* succ_state = StateAt(succ); 271 for (int index = 0; index < number_of_values_; index++) { 272 HValue* operand = state->OperandAt(index); 273 HValue* succ_operand = succ_state->OperandAt(index); 274 if (succ_operand->IsPhi() && succ_operand->block() == succ) { 275 // Phi already exists, add operand. 276 HPhi* phi = HPhi::cast(succ_operand); 277 phi->SetOperandAt(succ->PredecessorIndexOf(block), operand); 278 } else if (succ_operand != operand) { 279 // Phi does not exist, introduce one. 280 HPhi* phi = NewPhiAndInsert(succ, succ_operand, index); 281 phi->SetOperandAt(succ->PredecessorIndexOf(block), operand); 282 succ_state->SetOperandAt(index, phi); 283 } 284 } 285 } 286 } 287 } 288 289 // All uses have been handled. 290 DCHECK(allocate->HasNoUses()); 291 allocate->DeleteAndReplaceWith(NULL); 292 } 293 294 295 void HEscapeAnalysisPhase::PerformScalarReplacement() { 296 for (int i = 0; i < captured_.length(); i++) { 297 HAllocate* allocate = HAllocate::cast(captured_.at(i)); 298 299 // Compute number of scalar values and start with clean slate. 300 int size_in_bytes = allocate->size()->GetInteger32Constant(); 301 number_of_values_ = size_in_bytes / kPointerSize; 302 number_of_objects_++; 303 block_states_.Rewind(0); 304 305 // Perform actual analysis step. 306 AnalyzeDataFlow(allocate); 307 308 cumulative_values_ += number_of_values_; 309 DCHECK(allocate->HasNoUses()); 310 DCHECK(!allocate->IsLinked()); 311 } 312 } 313 314 315 void HEscapeAnalysisPhase::Run() { 316 // TODO(mstarzinger): We disable escape analysis with OSR for now, because 317 // spill slots might be uninitialized. Needs investigation. 318 if (graph()->has_osr()) return; 319 int max_fixpoint_iteration_count = FLAG_escape_analysis_iterations; 320 for (int i = 0; i < max_fixpoint_iteration_count; i++) { 321 CollectCapturedValues(); 322 if (captured_.is_empty()) break; 323 isolate()->counters()->crankshaft_escape_allocs_replaced()->Increment( 324 captured_.length()); 325 PerformScalarReplacement(); 326 captured_.Rewind(0); 327 } 328 } 329 330 331 } // namespace internal 332 } // namespace v8 333