1 // Copyright 2011 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include <stdint.h> 6 #include "src/base/logging.h" 7 #include "src/utils.h" 8 9 #include "src/fast-dtoa.h" 10 11 #include "src/cached-powers.h" 12 #include "src/diy-fp.h" 13 #include "src/double.h" 14 15 namespace v8 { 16 namespace internal { 17 18 // The minimal and maximal target exponent define the range of w's binary 19 // exponent, where 'w' is the result of multiplying the input by a cached power 20 // of ten. 21 // 22 // A different range might be chosen on a different platform, to optimize digit 23 // generation, but a smaller range requires more powers of ten to be cached. 24 static const int kMinimalTargetExponent = -60; 25 static const int kMaximalTargetExponent = -32; 26 27 28 // Adjusts the last digit of the generated number, and screens out generated 29 // solutions that may be inaccurate. A solution may be inaccurate if it is 30 // outside the safe interval, or if we ctannot prove that it is closer to the 31 // input than a neighboring representation of the same length. 32 // 33 // Input: * buffer containing the digits of too_high / 10^kappa 34 // * the buffer's length 35 // * distance_too_high_w == (too_high - w).f() * unit 36 // * unsafe_interval == (too_high - too_low).f() * unit 37 // * rest = (too_high - buffer * 10^kappa).f() * unit 38 // * ten_kappa = 10^kappa * unit 39 // * unit = the common multiplier 40 // Output: returns true if the buffer is guaranteed to contain the closest 41 // representable number to the input. 42 // Modifies the generated digits in the buffer to approach (round towards) w. 43 static bool RoundWeed(Vector<char> buffer, 44 int length, 45 uint64_t distance_too_high_w, 46 uint64_t unsafe_interval, 47 uint64_t rest, 48 uint64_t ten_kappa, 49 uint64_t unit) { 50 uint64_t small_distance = distance_too_high_w - unit; 51 uint64_t big_distance = distance_too_high_w + unit; 52 // Let w_low = too_high - big_distance, and 53 // w_high = too_high - small_distance. 54 // Note: w_low < w < w_high 55 // 56 // The real w (* unit) must lie somewhere inside the interval 57 // ]w_low; w_high[ (often written as "(w_low; w_high)") 58 59 // Basically the buffer currently contains a number in the unsafe interval 60 // ]too_low; too_high[ with too_low < w < too_high 61 // 62 // too_high - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 63 // ^v 1 unit ^ ^ ^ ^ 64 // boundary_high --------------------- . . . . 65 // ^v 1 unit . . . . 66 // - - - - - - - - - - - - - - - - - - - + - - + - - - - - - . . 67 // . . ^ . . 68 // . big_distance . . . 69 // . . . . rest 70 // small_distance . . . . 71 // v . . . . 72 // w_high - - - - - - - - - - - - - - - - - - . . . . 73 // ^v 1 unit . . . . 74 // w ---------------------------------------- . . . . 75 // ^v 1 unit v . . . 76 // w_low - - - - - - - - - - - - - - - - - - - - - . . . 77 // . . v 78 // buffer --------------------------------------------------+-------+-------- 79 // . . 80 // safe_interval . 81 // v . 82 // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - . 83 // ^v 1 unit . 84 // boundary_low ------------------------- unsafe_interval 85 // ^v 1 unit v 86 // too_low - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 87 // 88 // 89 // Note that the value of buffer could lie anywhere inside the range too_low 90 // to too_high. 91 // 92 // boundary_low, boundary_high and w are approximations of the real boundaries 93 // and v (the input number). They are guaranteed to be precise up to one unit. 94 // In fact the error is guaranteed to be strictly less than one unit. 95 // 96 // Anything that lies outside the unsafe interval is guaranteed not to round 97 // to v when read again. 98 // Anything that lies inside the safe interval is guaranteed to round to v 99 // when read again. 100 // If the number inside the buffer lies inside the unsafe interval but not 101 // inside the safe interval then we simply do not know and bail out (returning 102 // false). 103 // 104 // Similarly we have to take into account the imprecision of 'w' when finding 105 // the closest representation of 'w'. If we have two potential 106 // representations, and one is closer to both w_low and w_high, then we know 107 // it is closer to the actual value v. 108 // 109 // By generating the digits of too_high we got the largest (closest to 110 // too_high) buffer that is still in the unsafe interval. In the case where 111 // w_high < buffer < too_high we try to decrement the buffer. 112 // This way the buffer approaches (rounds towards) w. 113 // There are 3 conditions that stop the decrementation process: 114 // 1) the buffer is already below w_high 115 // 2) decrementing the buffer would make it leave the unsafe interval 116 // 3) decrementing the buffer would yield a number below w_high and farther 117 // away than the current number. In other words: 118 // (buffer{-1} < w_high) && w_high - buffer{-1} > buffer - w_high 119 // Instead of using the buffer directly we use its distance to too_high. 120 // Conceptually rest ~= too_high - buffer 121 // We need to do the following tests in this order to avoid over- and 122 // underflows. 123 DCHECK(rest <= unsafe_interval); 124 while (rest < small_distance && // Negated condition 1 125 unsafe_interval - rest >= ten_kappa && // Negated condition 2 126 (rest + ten_kappa < small_distance || // buffer{-1} > w_high 127 small_distance - rest >= rest + ten_kappa - small_distance)) { 128 buffer[length - 1]--; 129 rest += ten_kappa; 130 } 131 132 // We have approached w+ as much as possible. We now test if approaching w- 133 // would require changing the buffer. If yes, then we have two possible 134 // representations close to w, but we cannot decide which one is closer. 135 if (rest < big_distance && 136 unsafe_interval - rest >= ten_kappa && 137 (rest + ten_kappa < big_distance || 138 big_distance - rest > rest + ten_kappa - big_distance)) { 139 return false; 140 } 141 142 // Weeding test. 143 // The safe interval is [too_low + 2 ulp; too_high - 2 ulp] 144 // Since too_low = too_high - unsafe_interval this is equivalent to 145 // [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp] 146 // Conceptually we have: rest ~= too_high - buffer 147 return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit); 148 } 149 150 151 // Rounds the buffer upwards if the result is closer to v by possibly adding 152 // 1 to the buffer. If the precision of the calculation is not sufficient to 153 // round correctly, return false. 154 // The rounding might shift the whole buffer in which case the kappa is 155 // adjusted. For example "99", kappa = 3 might become "10", kappa = 4. 156 // 157 // If 2*rest > ten_kappa then the buffer needs to be round up. 158 // rest can have an error of +/- 1 unit. This function accounts for the 159 // imprecision and returns false, if the rounding direction cannot be 160 // unambiguously determined. 161 // 162 // Precondition: rest < ten_kappa. 163 static bool RoundWeedCounted(Vector<char> buffer, 164 int length, 165 uint64_t rest, 166 uint64_t ten_kappa, 167 uint64_t unit, 168 int* kappa) { 169 DCHECK(rest < ten_kappa); 170 // The following tests are done in a specific order to avoid overflows. They 171 // will work correctly with any uint64 values of rest < ten_kappa and unit. 172 // 173 // If the unit is too big, then we don't know which way to round. For example 174 // a unit of 50 means that the real number lies within rest +/- 50. If 175 // 10^kappa == 40 then there is no way to tell which way to round. 176 if (unit >= ten_kappa) return false; 177 // Even if unit is just half the size of 10^kappa we are already completely 178 // lost. (And after the previous test we know that the expression will not 179 // over/underflow.) 180 if (ten_kappa - unit <= unit) return false; 181 // If 2 * (rest + unit) <= 10^kappa we can safely round down. 182 if ((ten_kappa - rest > rest) && (ten_kappa - 2 * rest >= 2 * unit)) { 183 return true; 184 } 185 // If 2 * (rest - unit) >= 10^kappa, then we can safely round up. 186 if ((rest > unit) && (ten_kappa - (rest - unit) <= (rest - unit))) { 187 // Increment the last digit recursively until we find a non '9' digit. 188 buffer[length - 1]++; 189 for (int i = length - 1; i > 0; --i) { 190 if (buffer[i] != '0' + 10) break; 191 buffer[i] = '0'; 192 buffer[i - 1]++; 193 } 194 // If the first digit is now '0'+ 10 we had a buffer with all '9's. With the 195 // exception of the first digit all digits are now '0'. Simply switch the 196 // first digit to '1' and adjust the kappa. Example: "99" becomes "10" and 197 // the power (the kappa) is increased. 198 if (buffer[0] == '0' + 10) { 199 buffer[0] = '1'; 200 (*kappa) += 1; 201 } 202 return true; 203 } 204 return false; 205 } 206 207 208 static const uint32_t kTen4 = 10000; 209 static const uint32_t kTen5 = 100000; 210 static const uint32_t kTen6 = 1000000; 211 static const uint32_t kTen7 = 10000000; 212 static const uint32_t kTen8 = 100000000; 213 static const uint32_t kTen9 = 1000000000; 214 215 // Returns the biggest power of ten that is less than or equal than the given 216 // number. We furthermore receive the maximum number of bits 'number' has. 217 // If number_bits == 0 then 0^-1 is returned 218 // The number of bits must be <= 32. 219 // Precondition: number < (1 << (number_bits + 1)). 220 static void BiggestPowerTen(uint32_t number, 221 int number_bits, 222 uint32_t* power, 223 int* exponent) { 224 switch (number_bits) { 225 case 32: 226 case 31: 227 case 30: 228 if (kTen9 <= number) { 229 *power = kTen9; 230 *exponent = 9; 231 break; 232 } // else fallthrough 233 case 29: 234 case 28: 235 case 27: 236 if (kTen8 <= number) { 237 *power = kTen8; 238 *exponent = 8; 239 break; 240 } // else fallthrough 241 case 26: 242 case 25: 243 case 24: 244 if (kTen7 <= number) { 245 *power = kTen7; 246 *exponent = 7; 247 break; 248 } // else fallthrough 249 case 23: 250 case 22: 251 case 21: 252 case 20: 253 if (kTen6 <= number) { 254 *power = kTen6; 255 *exponent = 6; 256 break; 257 } // else fallthrough 258 case 19: 259 case 18: 260 case 17: 261 if (kTen5 <= number) { 262 *power = kTen5; 263 *exponent = 5; 264 break; 265 } // else fallthrough 266 case 16: 267 case 15: 268 case 14: 269 if (kTen4 <= number) { 270 *power = kTen4; 271 *exponent = 4; 272 break; 273 } // else fallthrough 274 case 13: 275 case 12: 276 case 11: 277 case 10: 278 if (1000 <= number) { 279 *power = 1000; 280 *exponent = 3; 281 break; 282 } // else fallthrough 283 case 9: 284 case 8: 285 case 7: 286 if (100 <= number) { 287 *power = 100; 288 *exponent = 2; 289 break; 290 } // else fallthrough 291 case 6: 292 case 5: 293 case 4: 294 if (10 <= number) { 295 *power = 10; 296 *exponent = 1; 297 break; 298 } // else fallthrough 299 case 3: 300 case 2: 301 case 1: 302 if (1 <= number) { 303 *power = 1; 304 *exponent = 0; 305 break; 306 } // else fallthrough 307 case 0: 308 *power = 0; 309 *exponent = -1; 310 break; 311 default: 312 // Following assignments are here to silence compiler warnings. 313 *power = 0; 314 *exponent = 0; 315 UNREACHABLE(); 316 } 317 } 318 319 320 // Generates the digits of input number w. 321 // w is a floating-point number (DiyFp), consisting of a significand and an 322 // exponent. Its exponent is bounded by kMinimalTargetExponent and 323 // kMaximalTargetExponent. 324 // Hence -60 <= w.e() <= -32. 325 // 326 // Returns false if it fails, in which case the generated digits in the buffer 327 // should not be used. 328 // Preconditions: 329 // * low, w and high are correct up to 1 ulp (unit in the last place). That 330 // is, their error must be less than a unit of their last digits. 331 // * low.e() == w.e() == high.e() 332 // * low < w < high, and taking into account their error: low~ <= high~ 333 // * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent 334 // Postconditions: returns false if procedure fails. 335 // otherwise: 336 // * buffer is not null-terminated, but len contains the number of digits. 337 // * buffer contains the shortest possible decimal digit-sequence 338 // such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the 339 // correct values of low and high (without their error). 340 // * if more than one decimal representation gives the minimal number of 341 // decimal digits then the one closest to W (where W is the correct value 342 // of w) is chosen. 343 // Remark: this procedure takes into account the imprecision of its input 344 // numbers. If the precision is not enough to guarantee all the postconditions 345 // then false is returned. This usually happens rarely (~0.5%). 346 // 347 // Say, for the sake of example, that 348 // w.e() == -48, and w.f() == 0x1234567890abcdef 349 // w's value can be computed by w.f() * 2^w.e() 350 // We can obtain w's integral digits by simply shifting w.f() by -w.e(). 351 // -> w's integral part is 0x1234 352 // w's fractional part is therefore 0x567890abcdef. 353 // Printing w's integral part is easy (simply print 0x1234 in decimal). 354 // In order to print its fraction we repeatedly multiply the fraction by 10 and 355 // get each digit. Example the first digit after the point would be computed by 356 // (0x567890abcdef * 10) >> 48. -> 3 357 // The whole thing becomes slightly more complicated because we want to stop 358 // once we have enough digits. That is, once the digits inside the buffer 359 // represent 'w' we can stop. Everything inside the interval low - high 360 // represents w. However we have to pay attention to low, high and w's 361 // imprecision. 362 static bool DigitGen(DiyFp low, 363 DiyFp w, 364 DiyFp high, 365 Vector<char> buffer, 366 int* length, 367 int* kappa) { 368 DCHECK(low.e() == w.e() && w.e() == high.e()); 369 DCHECK(low.f() + 1 <= high.f() - 1); 370 DCHECK(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent); 371 // low, w and high are imprecise, but by less than one ulp (unit in the last 372 // place). 373 // If we remove (resp. add) 1 ulp from low (resp. high) we are certain that 374 // the new numbers are outside of the interval we want the final 375 // representation to lie in. 376 // Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield 377 // numbers that are certain to lie in the interval. We will use this fact 378 // later on. 379 // We will now start by generating the digits within the uncertain 380 // interval. Later we will weed out representations that lie outside the safe 381 // interval and thus _might_ lie outside the correct interval. 382 uint64_t unit = 1; 383 DiyFp too_low = DiyFp(low.f() - unit, low.e()); 384 DiyFp too_high = DiyFp(high.f() + unit, high.e()); 385 // too_low and too_high are guaranteed to lie outside the interval we want the 386 // generated number in. 387 DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low); 388 // We now cut the input number into two parts: the integral digits and the 389 // fractionals. We will not write any decimal separator though, but adapt 390 // kappa instead. 391 // Reminder: we are currently computing the digits (stored inside the buffer) 392 // such that: too_low < buffer * 10^kappa < too_high 393 // We use too_high for the digit_generation and stop as soon as possible. 394 // If we stop early we effectively round down. 395 DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e()); 396 // Division by one is a shift. 397 uint32_t integrals = static_cast<uint32_t>(too_high.f() >> -one.e()); 398 // Modulo by one is an and. 399 uint64_t fractionals = too_high.f() & (one.f() - 1); 400 uint32_t divisor; 401 int divisor_exponent; 402 BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()), 403 &divisor, &divisor_exponent); 404 *kappa = divisor_exponent + 1; 405 *length = 0; 406 // Loop invariant: buffer = too_high / 10^kappa (integer division) 407 // The invariant holds for the first iteration: kappa has been initialized 408 // with the divisor exponent + 1. And the divisor is the biggest power of ten 409 // that is smaller than integrals. 410 while (*kappa > 0) { 411 int digit = integrals / divisor; 412 buffer[*length] = '0' + digit; 413 (*length)++; 414 integrals %= divisor; 415 (*kappa)--; 416 // Note that kappa now equals the exponent of the divisor and that the 417 // invariant thus holds again. 418 uint64_t rest = 419 (static_cast<uint64_t>(integrals) << -one.e()) + fractionals; 420 // Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e()) 421 // Reminder: unsafe_interval.e() == one.e() 422 if (rest < unsafe_interval.f()) { 423 // Rounding down (by not emitting the remaining digits) yields a number 424 // that lies within the unsafe interval. 425 return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(), 426 unsafe_interval.f(), rest, 427 static_cast<uint64_t>(divisor) << -one.e(), unit); 428 } 429 divisor /= 10; 430 } 431 432 // The integrals have been generated. We are at the point of the decimal 433 // separator. In the following loop we simply multiply the remaining digits by 434 // 10 and divide by one. We just need to pay attention to multiply associated 435 // data (like the interval or 'unit'), too. 436 // Note that the multiplication by 10 does not overflow, because w.e >= -60 437 // and thus one.e >= -60. 438 DCHECK(one.e() >= -60); 439 DCHECK(fractionals < one.f()); 440 DCHECK(V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f()); 441 while (true) { 442 fractionals *= 10; 443 unit *= 10; 444 unsafe_interval.set_f(unsafe_interval.f() * 10); 445 // Integer division by one. 446 int digit = static_cast<int>(fractionals >> -one.e()); 447 buffer[*length] = '0' + digit; 448 (*length)++; 449 fractionals &= one.f() - 1; // Modulo by one. 450 (*kappa)--; 451 if (fractionals < unsafe_interval.f()) { 452 return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f() * unit, 453 unsafe_interval.f(), fractionals, one.f(), unit); 454 } 455 } 456 } 457 458 459 460 // Generates (at most) requested_digits of input number w. 461 // w is a floating-point number (DiyFp), consisting of a significand and an 462 // exponent. Its exponent is bounded by kMinimalTargetExponent and 463 // kMaximalTargetExponent. 464 // Hence -60 <= w.e() <= -32. 465 // 466 // Returns false if it fails, in which case the generated digits in the buffer 467 // should not be used. 468 // Preconditions: 469 // * w is correct up to 1 ulp (unit in the last place). That 470 // is, its error must be strictly less than a unit of its last digit. 471 // * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent 472 // 473 // Postconditions: returns false if procedure fails. 474 // otherwise: 475 // * buffer is not null-terminated, but length contains the number of 476 // digits. 477 // * the representation in buffer is the most precise representation of 478 // requested_digits digits. 479 // * buffer contains at most requested_digits digits of w. If there are less 480 // than requested_digits digits then some trailing '0's have been removed. 481 // * kappa is such that 482 // w = buffer * 10^kappa + eps with |eps| < 10^kappa / 2. 483 // 484 // Remark: This procedure takes into account the imprecision of its input 485 // numbers. If the precision is not enough to guarantee all the postconditions 486 // then false is returned. This usually happens rarely, but the failure-rate 487 // increases with higher requested_digits. 488 static bool DigitGenCounted(DiyFp w, 489 int requested_digits, 490 Vector<char> buffer, 491 int* length, 492 int* kappa) { 493 DCHECK(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent); 494 DCHECK(kMinimalTargetExponent >= -60); 495 DCHECK(kMaximalTargetExponent <= -32); 496 // w is assumed to have an error less than 1 unit. Whenever w is scaled we 497 // also scale its error. 498 uint64_t w_error = 1; 499 // We cut the input number into two parts: the integral digits and the 500 // fractional digits. We don't emit any decimal separator, but adapt kappa 501 // instead. Example: instead of writing "1.2" we put "12" into the buffer and 502 // increase kappa by 1. 503 DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e()); 504 // Division by one is a shift. 505 uint32_t integrals = static_cast<uint32_t>(w.f() >> -one.e()); 506 // Modulo by one is an and. 507 uint64_t fractionals = w.f() & (one.f() - 1); 508 uint32_t divisor; 509 int divisor_exponent; 510 BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()), 511 &divisor, &divisor_exponent); 512 *kappa = divisor_exponent + 1; 513 *length = 0; 514 515 // Loop invariant: buffer = w / 10^kappa (integer division) 516 // The invariant holds for the first iteration: kappa has been initialized 517 // with the divisor exponent + 1. And the divisor is the biggest power of ten 518 // that is smaller than 'integrals'. 519 while (*kappa > 0) { 520 int digit = integrals / divisor; 521 buffer[*length] = '0' + digit; 522 (*length)++; 523 requested_digits--; 524 integrals %= divisor; 525 (*kappa)--; 526 // Note that kappa now equals the exponent of the divisor and that the 527 // invariant thus holds again. 528 if (requested_digits == 0) break; 529 divisor /= 10; 530 } 531 532 if (requested_digits == 0) { 533 uint64_t rest = 534 (static_cast<uint64_t>(integrals) << -one.e()) + fractionals; 535 return RoundWeedCounted(buffer, *length, rest, 536 static_cast<uint64_t>(divisor) << -one.e(), w_error, 537 kappa); 538 } 539 540 // The integrals have been generated. We are at the point of the decimal 541 // separator. In the following loop we simply multiply the remaining digits by 542 // 10 and divide by one. We just need to pay attention to multiply associated 543 // data (the 'unit'), too. 544 // Note that the multiplication by 10 does not overflow, because w.e >= -60 545 // and thus one.e >= -60. 546 DCHECK(one.e() >= -60); 547 DCHECK(fractionals < one.f()); 548 DCHECK(V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f()); 549 while (requested_digits > 0 && fractionals > w_error) { 550 fractionals *= 10; 551 w_error *= 10; 552 // Integer division by one. 553 int digit = static_cast<int>(fractionals >> -one.e()); 554 buffer[*length] = '0' + digit; 555 (*length)++; 556 requested_digits--; 557 fractionals &= one.f() - 1; // Modulo by one. 558 (*kappa)--; 559 } 560 if (requested_digits != 0) return false; 561 return RoundWeedCounted(buffer, *length, fractionals, one.f(), w_error, 562 kappa); 563 } 564 565 566 // Provides a decimal representation of v. 567 // Returns true if it succeeds, otherwise the result cannot be trusted. 568 // There will be *length digits inside the buffer (not null-terminated). 569 // If the function returns true then 570 // v == (double) (buffer * 10^decimal_exponent). 571 // The digits in the buffer are the shortest representation possible: no 572 // 0.09999999999999999 instead of 0.1. The shorter representation will even be 573 // chosen even if the longer one would be closer to v. 574 // The last digit will be closest to the actual v. That is, even if several 575 // digits might correctly yield 'v' when read again, the closest will be 576 // computed. 577 static bool Grisu3(double v, 578 Vector<char> buffer, 579 int* length, 580 int* decimal_exponent) { 581 DiyFp w = Double(v).AsNormalizedDiyFp(); 582 // boundary_minus and boundary_plus are the boundaries between v and its 583 // closest floating-point neighbors. Any number strictly between 584 // boundary_minus and boundary_plus will round to v when convert to a double. 585 // Grisu3 will never output representations that lie exactly on a boundary. 586 DiyFp boundary_minus, boundary_plus; 587 Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus); 588 DCHECK(boundary_plus.e() == w.e()); 589 DiyFp ten_mk; // Cached power of ten: 10^-k 590 int mk; // -k 591 int ten_mk_minimal_binary_exponent = 592 kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize); 593 int ten_mk_maximal_binary_exponent = 594 kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize); 595 PowersOfTenCache::GetCachedPowerForBinaryExponentRange( 596 ten_mk_minimal_binary_exponent, 597 ten_mk_maximal_binary_exponent, 598 &ten_mk, &mk); 599 DCHECK((kMinimalTargetExponent <= w.e() + ten_mk.e() + 600 DiyFp::kSignificandSize) && 601 (kMaximalTargetExponent >= w.e() + ten_mk.e() + 602 DiyFp::kSignificandSize)); 603 // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a 604 // 64 bit significand and ten_mk is thus only precise up to 64 bits. 605 606 // The DiyFp::Times procedure rounds its result, and ten_mk is approximated 607 // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now 608 // off by a small amount. 609 // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w. 610 // In other words: let f = scaled_w.f() and e = scaled_w.e(), then 611 // (f-1) * 2^e < w*10^k < (f+1) * 2^e 612 DiyFp scaled_w = DiyFp::Times(w, ten_mk); 613 DCHECK(scaled_w.e() == 614 boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize); 615 // In theory it would be possible to avoid some recomputations by computing 616 // the difference between w and boundary_minus/plus (a power of 2) and to 617 // compute scaled_boundary_minus/plus by subtracting/adding from 618 // scaled_w. However the code becomes much less readable and the speed 619 // enhancements are not terriffic. 620 DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk); 621 DiyFp scaled_boundary_plus = DiyFp::Times(boundary_plus, ten_mk); 622 623 // DigitGen will generate the digits of scaled_w. Therefore we have 624 // v == (double) (scaled_w * 10^-mk). 625 // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an 626 // integer than it will be updated. For instance if scaled_w == 1.23 then 627 // the buffer will be filled with "123" und the decimal_exponent will be 628 // decreased by 2. 629 int kappa; 630 bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus, 631 buffer, length, &kappa); 632 *decimal_exponent = -mk + kappa; 633 return result; 634 } 635 636 637 // The "counted" version of grisu3 (see above) only generates requested_digits 638 // number of digits. This version does not generate the shortest representation, 639 // and with enough requested digits 0.1 will at some point print as 0.9999999... 640 // Grisu3 is too imprecise for real halfway cases (1.5 will not work) and 641 // therefore the rounding strategy for halfway cases is irrelevant. 642 static bool Grisu3Counted(double v, 643 int requested_digits, 644 Vector<char> buffer, 645 int* length, 646 int* decimal_exponent) { 647 DiyFp w = Double(v).AsNormalizedDiyFp(); 648 DiyFp ten_mk; // Cached power of ten: 10^-k 649 int mk; // -k 650 int ten_mk_minimal_binary_exponent = 651 kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize); 652 int ten_mk_maximal_binary_exponent = 653 kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize); 654 PowersOfTenCache::GetCachedPowerForBinaryExponentRange( 655 ten_mk_minimal_binary_exponent, 656 ten_mk_maximal_binary_exponent, 657 &ten_mk, &mk); 658 DCHECK((kMinimalTargetExponent <= w.e() + ten_mk.e() + 659 DiyFp::kSignificandSize) && 660 (kMaximalTargetExponent >= w.e() + ten_mk.e() + 661 DiyFp::kSignificandSize)); 662 // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a 663 // 64 bit significand and ten_mk is thus only precise up to 64 bits. 664 665 // The DiyFp::Times procedure rounds its result, and ten_mk is approximated 666 // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now 667 // off by a small amount. 668 // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w. 669 // In other words: let f = scaled_w.f() and e = scaled_w.e(), then 670 // (f-1) * 2^e < w*10^k < (f+1) * 2^e 671 DiyFp scaled_w = DiyFp::Times(w, ten_mk); 672 673 // We now have (double) (scaled_w * 10^-mk). 674 // DigitGen will generate the first requested_digits digits of scaled_w and 675 // return together with a kappa such that scaled_w ~= buffer * 10^kappa. (It 676 // will not always be exactly the same since DigitGenCounted only produces a 677 // limited number of digits.) 678 int kappa; 679 bool result = DigitGenCounted(scaled_w, requested_digits, 680 buffer, length, &kappa); 681 *decimal_exponent = -mk + kappa; 682 return result; 683 } 684 685 686 bool FastDtoa(double v, 687 FastDtoaMode mode, 688 int requested_digits, 689 Vector<char> buffer, 690 int* length, 691 int* decimal_point) { 692 DCHECK(v > 0); 693 DCHECK(!Double(v).IsSpecial()); 694 695 bool result = false; 696 int decimal_exponent = 0; 697 switch (mode) { 698 case FAST_DTOA_SHORTEST: 699 result = Grisu3(v, buffer, length, &decimal_exponent); 700 break; 701 case FAST_DTOA_PRECISION: 702 result = Grisu3Counted(v, requested_digits, 703 buffer, length, &decimal_exponent); 704 break; 705 default: 706 UNREACHABLE(); 707 } 708 if (result) { 709 *decimal_point = *length + decimal_exponent; 710 buffer[*length] = '\0'; 711 } 712 return result; 713 } 714 715 } // namespace internal 716 } // namespace v8 717