Home | History | Annotate | Download | only in heap
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef V8_HEAP_HEAP_INL_H_
      6 #define V8_HEAP_HEAP_INL_H_
      7 
      8 #include <cmath>
      9 
     10 #include "src/base/platform/platform.h"
     11 #include "src/counters-inl.h"
     12 #include "src/heap/heap.h"
     13 #include "src/heap/incremental-marking-inl.h"
     14 #include "src/heap/mark-compact.h"
     15 #include "src/heap/object-stats.h"
     16 #include "src/heap/remembered-set.h"
     17 #include "src/heap/spaces-inl.h"
     18 #include "src/heap/store-buffer.h"
     19 #include "src/isolate.h"
     20 #include "src/list-inl.h"
     21 #include "src/log.h"
     22 #include "src/msan.h"
     23 #include "src/objects-inl.h"
     24 #include "src/type-feedback-vector-inl.h"
     25 
     26 namespace v8 {
     27 namespace internal {
     28 
     29 AllocationSpace AllocationResult::RetrySpace() {
     30   DCHECK(IsRetry());
     31   return static_cast<AllocationSpace>(Smi::cast(object_)->value());
     32 }
     33 
     34 HeapObject* AllocationResult::ToObjectChecked() {
     35   CHECK(!IsRetry());
     36   return HeapObject::cast(object_);
     37 }
     38 
     39 void PromotionQueue::insert(HeapObject* target, int32_t size,
     40                             bool was_marked_black) {
     41   if (emergency_stack_ != NULL) {
     42     emergency_stack_->Add(Entry(target, size, was_marked_black));
     43     return;
     44   }
     45 
     46   if ((rear_ - 1) < limit_) {
     47     RelocateQueueHead();
     48     emergency_stack_->Add(Entry(target, size, was_marked_black));
     49     return;
     50   }
     51 
     52   struct Entry* entry = reinterpret_cast<struct Entry*>(--rear_);
     53   entry->obj_ = target;
     54   entry->size_ = size;
     55   entry->was_marked_black_ = was_marked_black;
     56 
     57 // Assert no overflow into live objects.
     58 #ifdef DEBUG
     59   SemiSpace::AssertValidRange(target->GetIsolate()->heap()->new_space()->top(),
     60                               reinterpret_cast<Address>(rear_));
     61 #endif
     62 }
     63 
     64 void PromotionQueue::remove(HeapObject** target, int32_t* size,
     65                             bool* was_marked_black) {
     66   DCHECK(!is_empty());
     67   if (front_ == rear_) {
     68     Entry e = emergency_stack_->RemoveLast();
     69     *target = e.obj_;
     70     *size = e.size_;
     71     *was_marked_black = e.was_marked_black_;
     72     return;
     73   }
     74 
     75   struct Entry* entry = reinterpret_cast<struct Entry*>(--front_);
     76   *target = entry->obj_;
     77   *size = entry->size_;
     78   *was_marked_black = entry->was_marked_black_;
     79 
     80   // Assert no underflow.
     81   SemiSpace::AssertValidRange(reinterpret_cast<Address>(rear_),
     82                               reinterpret_cast<Address>(front_));
     83 }
     84 
     85 Page* PromotionQueue::GetHeadPage() {
     86   return Page::FromAllocationAreaAddress(reinterpret_cast<Address>(rear_));
     87 }
     88 
     89 void PromotionQueue::SetNewLimit(Address limit) {
     90   // If we are already using an emergency stack, we can ignore it.
     91   if (emergency_stack_) return;
     92 
     93   // If the limit is not on the same page, we can ignore it.
     94   if (Page::FromAllocationAreaAddress(limit) != GetHeadPage()) return;
     95 
     96   limit_ = reinterpret_cast<struct Entry*>(limit);
     97 
     98   if (limit_ <= rear_) {
     99     return;
    100   }
    101 
    102   RelocateQueueHead();
    103 }
    104 
    105 bool PromotionQueue::IsBelowPromotionQueue(Address to_space_top) {
    106   // If an emergency stack is used, the to-space address cannot interfere
    107   // with the promotion queue.
    108   if (emergency_stack_) return true;
    109 
    110   // If the given to-space top pointer and the head of the promotion queue
    111   // are not on the same page, then the to-space objects are below the
    112   // promotion queue.
    113   if (GetHeadPage() != Page::FromAddress(to_space_top)) {
    114     return true;
    115   }
    116   // If the to space top pointer is smaller or equal than the promotion
    117   // queue head, then the to-space objects are below the promotion queue.
    118   return reinterpret_cast<struct Entry*>(to_space_top) <= rear_;
    119 }
    120 
    121 #define ROOT_ACCESSOR(type, name, camel_name) \
    122   type* Heap::name() { return type::cast(roots_[k##camel_name##RootIndex]); }
    123 ROOT_LIST(ROOT_ACCESSOR)
    124 #undef ROOT_ACCESSOR
    125 
    126 #define STRUCT_MAP_ACCESSOR(NAME, Name, name) \
    127   Map* Heap::name##_map() { return Map::cast(roots_[k##Name##MapRootIndex]); }
    128 STRUCT_LIST(STRUCT_MAP_ACCESSOR)
    129 #undef STRUCT_MAP_ACCESSOR
    130 
    131 #define STRING_ACCESSOR(name, str) \
    132   String* Heap::name() { return String::cast(roots_[k##name##RootIndex]); }
    133 INTERNALIZED_STRING_LIST(STRING_ACCESSOR)
    134 #undef STRING_ACCESSOR
    135 
    136 #define SYMBOL_ACCESSOR(name) \
    137   Symbol* Heap::name() { return Symbol::cast(roots_[k##name##RootIndex]); }
    138 PRIVATE_SYMBOL_LIST(SYMBOL_ACCESSOR)
    139 #undef SYMBOL_ACCESSOR
    140 
    141 #define SYMBOL_ACCESSOR(name, description) \
    142   Symbol* Heap::name() { return Symbol::cast(roots_[k##name##RootIndex]); }
    143 PUBLIC_SYMBOL_LIST(SYMBOL_ACCESSOR)
    144 WELL_KNOWN_SYMBOL_LIST(SYMBOL_ACCESSOR)
    145 #undef SYMBOL_ACCESSOR
    146 
    147 #define ROOT_ACCESSOR(type, name, camel_name)                                 \
    148   void Heap::set_##name(type* value) {                                        \
    149     /* The deserializer makes use of the fact that these common roots are */  \
    150     /* never in new space and never on a page that is being compacted.    */  \
    151     DCHECK(!deserialization_complete() ||                                     \
    152            RootCanBeWrittenAfterInitialization(k##camel_name##RootIndex));    \
    153     DCHECK(k##camel_name##RootIndex >= kOldSpaceRoots || !InNewSpace(value)); \
    154     roots_[k##camel_name##RootIndex] = value;                                 \
    155   }
    156 ROOT_LIST(ROOT_ACCESSOR)
    157 #undef ROOT_ACCESSOR
    158 
    159 PagedSpace* Heap::paged_space(int idx) {
    160   DCHECK_NE(idx, LO_SPACE);
    161   DCHECK_NE(idx, NEW_SPACE);
    162   return static_cast<PagedSpace*>(space_[idx]);
    163 }
    164 
    165 Space* Heap::space(int idx) { return space_[idx]; }
    166 
    167 Address* Heap::NewSpaceAllocationTopAddress() {
    168   return new_space_->allocation_top_address();
    169 }
    170 
    171 Address* Heap::NewSpaceAllocationLimitAddress() {
    172   return new_space_->allocation_limit_address();
    173 }
    174 
    175 Address* Heap::OldSpaceAllocationTopAddress() {
    176   return old_space_->allocation_top_address();
    177 }
    178 
    179 Address* Heap::OldSpaceAllocationLimitAddress() {
    180   return old_space_->allocation_limit_address();
    181 }
    182 
    183 void Heap::UpdateNewSpaceAllocationCounter() {
    184   new_space_allocation_counter_ = NewSpaceAllocationCounter();
    185 }
    186 
    187 size_t Heap::NewSpaceAllocationCounter() {
    188   return new_space_allocation_counter_ + new_space()->AllocatedSinceLastGC();
    189 }
    190 
    191 template <>
    192 bool inline Heap::IsOneByte(Vector<const char> str, int chars) {
    193   // TODO(dcarney): incorporate Latin-1 check when Latin-1 is supported?
    194   return chars == str.length();
    195 }
    196 
    197 
    198 template <>
    199 bool inline Heap::IsOneByte(String* str, int chars) {
    200   return str->IsOneByteRepresentation();
    201 }
    202 
    203 
    204 AllocationResult Heap::AllocateInternalizedStringFromUtf8(
    205     Vector<const char> str, int chars, uint32_t hash_field) {
    206   if (IsOneByte(str, chars)) {
    207     return AllocateOneByteInternalizedString(Vector<const uint8_t>::cast(str),
    208                                              hash_field);
    209   }
    210   return AllocateInternalizedStringImpl<false>(str, chars, hash_field);
    211 }
    212 
    213 
    214 template <typename T>
    215 AllocationResult Heap::AllocateInternalizedStringImpl(T t, int chars,
    216                                                       uint32_t hash_field) {
    217   if (IsOneByte(t, chars)) {
    218     return AllocateInternalizedStringImpl<true>(t, chars, hash_field);
    219   }
    220   return AllocateInternalizedStringImpl<false>(t, chars, hash_field);
    221 }
    222 
    223 
    224 AllocationResult Heap::AllocateOneByteInternalizedString(
    225     Vector<const uint8_t> str, uint32_t hash_field) {
    226   CHECK_GE(String::kMaxLength, str.length());
    227   // Compute map and object size.
    228   Map* map = one_byte_internalized_string_map();
    229   int size = SeqOneByteString::SizeFor(str.length());
    230 
    231   // Allocate string.
    232   HeapObject* result = nullptr;
    233   {
    234     AllocationResult allocation = AllocateRaw(size, OLD_SPACE);
    235     if (!allocation.To(&result)) return allocation;
    236   }
    237 
    238   // String maps are all immortal immovable objects.
    239   result->set_map_no_write_barrier(map);
    240   // Set length and hash fields of the allocated string.
    241   String* answer = String::cast(result);
    242   answer->set_length(str.length());
    243   answer->set_hash_field(hash_field);
    244 
    245   DCHECK_EQ(size, answer->Size());
    246 
    247   // Fill in the characters.
    248   MemCopy(answer->address() + SeqOneByteString::kHeaderSize, str.start(),
    249           str.length());
    250 
    251   return answer;
    252 }
    253 
    254 
    255 AllocationResult Heap::AllocateTwoByteInternalizedString(Vector<const uc16> str,
    256                                                          uint32_t hash_field) {
    257   CHECK_GE(String::kMaxLength, str.length());
    258   // Compute map and object size.
    259   Map* map = internalized_string_map();
    260   int size = SeqTwoByteString::SizeFor(str.length());
    261 
    262   // Allocate string.
    263   HeapObject* result = nullptr;
    264   {
    265     AllocationResult allocation = AllocateRaw(size, OLD_SPACE);
    266     if (!allocation.To(&result)) return allocation;
    267   }
    268 
    269   result->set_map(map);
    270   // Set length and hash fields of the allocated string.
    271   String* answer = String::cast(result);
    272   answer->set_length(str.length());
    273   answer->set_hash_field(hash_field);
    274 
    275   DCHECK_EQ(size, answer->Size());
    276 
    277   // Fill in the characters.
    278   MemCopy(answer->address() + SeqTwoByteString::kHeaderSize, str.start(),
    279           str.length() * kUC16Size);
    280 
    281   return answer;
    282 }
    283 
    284 AllocationResult Heap::CopyFixedArray(FixedArray* src) {
    285   if (src->length() == 0) return src;
    286   return CopyFixedArrayWithMap(src, src->map());
    287 }
    288 
    289 
    290 AllocationResult Heap::CopyFixedDoubleArray(FixedDoubleArray* src) {
    291   if (src->length() == 0) return src;
    292   return CopyFixedDoubleArrayWithMap(src, src->map());
    293 }
    294 
    295 
    296 AllocationResult Heap::AllocateRaw(int size_in_bytes, AllocationSpace space,
    297                                    AllocationAlignment alignment) {
    298   DCHECK(AllowHandleAllocation::IsAllowed());
    299   DCHECK(AllowHeapAllocation::IsAllowed());
    300   DCHECK(gc_state_ == NOT_IN_GC);
    301 #ifdef DEBUG
    302   if (FLAG_gc_interval >= 0 && !always_allocate() &&
    303       Heap::allocation_timeout_-- <= 0) {
    304     return AllocationResult::Retry(space);
    305   }
    306   isolate_->counters()->objs_since_last_full()->Increment();
    307   isolate_->counters()->objs_since_last_young()->Increment();
    308 #endif
    309 
    310   bool large_object = size_in_bytes > kMaxRegularHeapObjectSize;
    311   HeapObject* object = nullptr;
    312   AllocationResult allocation;
    313   if (NEW_SPACE == space) {
    314     if (large_object) {
    315       space = LO_SPACE;
    316     } else {
    317       allocation = new_space_->AllocateRaw(size_in_bytes, alignment);
    318       if (allocation.To(&object)) {
    319         OnAllocationEvent(object, size_in_bytes);
    320       }
    321       return allocation;
    322     }
    323   }
    324 
    325   // Here we only allocate in the old generation.
    326   if (OLD_SPACE == space) {
    327     if (large_object) {
    328       allocation = lo_space_->AllocateRaw(size_in_bytes, NOT_EXECUTABLE);
    329     } else {
    330       allocation = old_space_->AllocateRaw(size_in_bytes, alignment);
    331     }
    332   } else if (CODE_SPACE == space) {
    333     if (size_in_bytes <= code_space()->AreaSize()) {
    334       allocation = code_space_->AllocateRawUnaligned(size_in_bytes);
    335     } else {
    336       allocation = lo_space_->AllocateRaw(size_in_bytes, EXECUTABLE);
    337     }
    338   } else if (LO_SPACE == space) {
    339     DCHECK(large_object);
    340     allocation = lo_space_->AllocateRaw(size_in_bytes, NOT_EXECUTABLE);
    341   } else if (MAP_SPACE == space) {
    342     allocation = map_space_->AllocateRawUnaligned(size_in_bytes);
    343   } else {
    344     // NEW_SPACE is not allowed here.
    345     UNREACHABLE();
    346   }
    347   if (allocation.To(&object)) {
    348     OnAllocationEvent(object, size_in_bytes);
    349   }
    350 
    351   return allocation;
    352 }
    353 
    354 
    355 void Heap::OnAllocationEvent(HeapObject* object, int size_in_bytes) {
    356   HeapProfiler* profiler = isolate_->heap_profiler();
    357   if (profiler->is_tracking_allocations()) {
    358     profiler->AllocationEvent(object->address(), size_in_bytes);
    359   }
    360 
    361   if (FLAG_verify_predictable) {
    362     ++allocations_count_;
    363     // Advance synthetic time by making a time request.
    364     MonotonicallyIncreasingTimeInMs();
    365 
    366     UpdateAllocationsHash(object);
    367     UpdateAllocationsHash(size_in_bytes);
    368 
    369     if (allocations_count_ % FLAG_dump_allocations_digest_at_alloc == 0) {
    370       PrintAlloctionsHash();
    371     }
    372   }
    373 
    374   if (FLAG_trace_allocation_stack_interval > 0) {
    375     if (!FLAG_verify_predictable) ++allocations_count_;
    376     if (allocations_count_ % FLAG_trace_allocation_stack_interval == 0) {
    377       isolate()->PrintStack(stdout, Isolate::kPrintStackConcise);
    378     }
    379   }
    380 }
    381 
    382 
    383 void Heap::OnMoveEvent(HeapObject* target, HeapObject* source,
    384                        int size_in_bytes) {
    385   HeapProfiler* heap_profiler = isolate_->heap_profiler();
    386   if (heap_profiler->is_tracking_object_moves()) {
    387     heap_profiler->ObjectMoveEvent(source->address(), target->address(),
    388                                    size_in_bytes);
    389   }
    390   if (target->IsSharedFunctionInfo()) {
    391     LOG_CODE_EVENT(isolate_, SharedFunctionInfoMoveEvent(source->address(),
    392                                                          target->address()));
    393   }
    394 
    395   if (FLAG_verify_predictable) {
    396     ++allocations_count_;
    397     // Advance synthetic time by making a time request.
    398     MonotonicallyIncreasingTimeInMs();
    399 
    400     UpdateAllocationsHash(source);
    401     UpdateAllocationsHash(target);
    402     UpdateAllocationsHash(size_in_bytes);
    403 
    404     if (allocations_count_ % FLAG_dump_allocations_digest_at_alloc == 0) {
    405       PrintAlloctionsHash();
    406     }
    407   }
    408 }
    409 
    410 
    411 void Heap::UpdateAllocationsHash(HeapObject* object) {
    412   Address object_address = object->address();
    413   MemoryChunk* memory_chunk = MemoryChunk::FromAddress(object_address);
    414   AllocationSpace allocation_space = memory_chunk->owner()->identity();
    415 
    416   STATIC_ASSERT(kSpaceTagSize + kPageSizeBits <= 32);
    417   uint32_t value =
    418       static_cast<uint32_t>(object_address - memory_chunk->address()) |
    419       (static_cast<uint32_t>(allocation_space) << kPageSizeBits);
    420 
    421   UpdateAllocationsHash(value);
    422 }
    423 
    424 
    425 void Heap::UpdateAllocationsHash(uint32_t value) {
    426   uint16_t c1 = static_cast<uint16_t>(value);
    427   uint16_t c2 = static_cast<uint16_t>(value >> 16);
    428   raw_allocations_hash_ =
    429       StringHasher::AddCharacterCore(raw_allocations_hash_, c1);
    430   raw_allocations_hash_ =
    431       StringHasher::AddCharacterCore(raw_allocations_hash_, c2);
    432 }
    433 
    434 
    435 void Heap::RegisterExternalString(String* string) {
    436   external_string_table_.AddString(string);
    437 }
    438 
    439 
    440 void Heap::FinalizeExternalString(String* string) {
    441   DCHECK(string->IsExternalString());
    442   v8::String::ExternalStringResourceBase** resource_addr =
    443       reinterpret_cast<v8::String::ExternalStringResourceBase**>(
    444           reinterpret_cast<byte*>(string) + ExternalString::kResourceOffset -
    445           kHeapObjectTag);
    446 
    447   // Dispose of the C++ object if it has not already been disposed.
    448   if (*resource_addr != NULL) {
    449     (*resource_addr)->Dispose();
    450     *resource_addr = NULL;
    451   }
    452 }
    453 
    454 Address Heap::NewSpaceTop() { return new_space_->top(); }
    455 
    456 bool Heap::DeoptMaybeTenuredAllocationSites() {
    457   return new_space_->IsAtMaximumCapacity() && maximum_size_scavenges_ == 0;
    458 }
    459 
    460 bool Heap::InNewSpace(Object* object) {
    461   // Inlined check from NewSpace::Contains.
    462   bool result =
    463       object->IsHeapObject() &&
    464       Page::FromAddress(HeapObject::cast(object)->address())->InNewSpace();
    465   DCHECK(!result ||                 // Either not in new space
    466          gc_state_ != NOT_IN_GC ||  // ... or in the middle of GC
    467          InToSpace(object));        // ... or in to-space (where we allocate).
    468   return result;
    469 }
    470 
    471 bool Heap::InFromSpace(Object* object) {
    472   return object->IsHeapObject() &&
    473          MemoryChunk::FromAddress(HeapObject::cast(object)->address())
    474              ->IsFlagSet(Page::IN_FROM_SPACE);
    475 }
    476 
    477 
    478 bool Heap::InToSpace(Object* object) {
    479   return object->IsHeapObject() &&
    480          MemoryChunk::FromAddress(HeapObject::cast(object)->address())
    481              ->IsFlagSet(Page::IN_TO_SPACE);
    482 }
    483 
    484 bool Heap::InOldSpace(Object* object) { return old_space_->Contains(object); }
    485 
    486 bool Heap::InNewSpaceSlow(Address address) {
    487   return new_space_->ContainsSlow(address);
    488 }
    489 
    490 bool Heap::InOldSpaceSlow(Address address) {
    491   return old_space_->ContainsSlow(address);
    492 }
    493 
    494 bool Heap::ShouldBePromoted(Address old_address, int object_size) {
    495   Page* page = Page::FromAddress(old_address);
    496   Address age_mark = new_space_->age_mark();
    497   return page->IsFlagSet(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK) &&
    498          (!page->ContainsLimit(age_mark) || old_address < age_mark);
    499 }
    500 
    501 void Heap::RecordWrite(Object* object, int offset, Object* o) {
    502   if (!InNewSpace(o) || !object->IsHeapObject() || InNewSpace(object)) {
    503     return;
    504   }
    505   store_buffer()->InsertEntry(HeapObject::cast(object)->address() + offset);
    506 }
    507 
    508 void Heap::RecordWriteIntoCode(Code* host, RelocInfo* rinfo, Object* value) {
    509   if (InNewSpace(value)) {
    510     RecordWriteIntoCodeSlow(host, rinfo, value);
    511   }
    512 }
    513 
    514 void Heap::RecordFixedArrayElements(FixedArray* array, int offset, int length) {
    515   if (InNewSpace(array)) return;
    516   for (int i = 0; i < length; i++) {
    517     if (!InNewSpace(array->get(offset + i))) continue;
    518     store_buffer()->InsertEntry(
    519         reinterpret_cast<Address>(array->RawFieldOfElementAt(offset + i)));
    520   }
    521 }
    522 
    523 Address* Heap::store_buffer_top_address() {
    524   return store_buffer()->top_address();
    525 }
    526 
    527 bool Heap::AllowedToBeMigrated(HeapObject* obj, AllocationSpace dst) {
    528   // Object migration is governed by the following rules:
    529   //
    530   // 1) Objects in new-space can be migrated to the old space
    531   //    that matches their target space or they stay in new-space.
    532   // 2) Objects in old-space stay in the same space when migrating.
    533   // 3) Fillers (two or more words) can migrate due to left-trimming of
    534   //    fixed arrays in new-space or old space.
    535   // 4) Fillers (one word) can never migrate, they are skipped by
    536   //    incremental marking explicitly to prevent invalid pattern.
    537   //
    538   // Since this function is used for debugging only, we do not place
    539   // asserts here, but check everything explicitly.
    540   if (obj->map() == one_pointer_filler_map()) return false;
    541   InstanceType type = obj->map()->instance_type();
    542   MemoryChunk* chunk = MemoryChunk::FromAddress(obj->address());
    543   AllocationSpace src = chunk->owner()->identity();
    544   switch (src) {
    545     case NEW_SPACE:
    546       return dst == src || dst == OLD_SPACE;
    547     case OLD_SPACE:
    548       return dst == src &&
    549              (dst == OLD_SPACE || obj->IsFiller() || obj->IsExternalString());
    550     case CODE_SPACE:
    551       return dst == src && type == CODE_TYPE;
    552     case MAP_SPACE:
    553     case LO_SPACE:
    554       return false;
    555   }
    556   UNREACHABLE();
    557   return false;
    558 }
    559 
    560 void Heap::CopyBlock(Address dst, Address src, int byte_size) {
    561   CopyWords(reinterpret_cast<Object**>(dst), reinterpret_cast<Object**>(src),
    562             static_cast<size_t>(byte_size / kPointerSize));
    563 }
    564 
    565 template <Heap::FindMementoMode mode>
    566 AllocationMemento* Heap::FindAllocationMemento(HeapObject* object) {
    567   Address object_address = object->address();
    568   Address memento_address = object_address + object->Size();
    569   Address last_memento_word_address = memento_address + kPointerSize;
    570   // If the memento would be on another page, bail out immediately.
    571   if (!Page::OnSamePage(object_address, last_memento_word_address)) {
    572     return nullptr;
    573   }
    574   HeapObject* candidate = HeapObject::FromAddress(memento_address);
    575   Map* candidate_map = candidate->map();
    576   // This fast check may peek at an uninitialized word. However, the slow check
    577   // below (memento_address == top) ensures that this is safe. Mark the word as
    578   // initialized to silence MemorySanitizer warnings.
    579   MSAN_MEMORY_IS_INITIALIZED(&candidate_map, sizeof(candidate_map));
    580   if (candidate_map != allocation_memento_map()) {
    581     return nullptr;
    582   }
    583 
    584   // Bail out if the memento is below the age mark, which can happen when
    585   // mementos survived because a page got moved within new space.
    586   Page* object_page = Page::FromAddress(object_address);
    587   if (object_page->IsFlagSet(Page::NEW_SPACE_BELOW_AGE_MARK)) {
    588     Address age_mark =
    589         reinterpret_cast<SemiSpace*>(object_page->owner())->age_mark();
    590     if (!object_page->Contains(age_mark)) {
    591       return nullptr;
    592     }
    593     // Do an exact check in the case where the age mark is on the same page.
    594     if (object_address < age_mark) {
    595       return nullptr;
    596     }
    597   }
    598 
    599   AllocationMemento* memento_candidate = AllocationMemento::cast(candidate);
    600 
    601   // Depending on what the memento is used for, we might need to perform
    602   // additional checks.
    603   Address top;
    604   switch (mode) {
    605     case Heap::kForGC:
    606       return memento_candidate;
    607     case Heap::kForRuntime:
    608       if (memento_candidate == nullptr) return nullptr;
    609       // Either the object is the last object in the new space, or there is
    610       // another object of at least word size (the header map word) following
    611       // it, so suffices to compare ptr and top here.
    612       top = NewSpaceTop();
    613       DCHECK(memento_address == top ||
    614              memento_address + HeapObject::kHeaderSize <= top ||
    615              !Page::OnSamePage(memento_address, top - 1));
    616       if ((memento_address != top) && memento_candidate->IsValid()) {
    617         return memento_candidate;
    618       }
    619       return nullptr;
    620     default:
    621       UNREACHABLE();
    622   }
    623   UNREACHABLE();
    624   return nullptr;
    625 }
    626 
    627 template <Heap::UpdateAllocationSiteMode mode>
    628 void Heap::UpdateAllocationSite(HeapObject* object,
    629                                 base::HashMap* pretenuring_feedback) {
    630   DCHECK(InFromSpace(object) ||
    631          (InToSpace(object) &&
    632           Page::FromAddress(object->address())
    633               ->IsFlagSet(Page::PAGE_NEW_NEW_PROMOTION)) ||
    634          (!InNewSpace(object) &&
    635           Page::FromAddress(object->address())
    636               ->IsFlagSet(Page::PAGE_NEW_OLD_PROMOTION)));
    637   if (!FLAG_allocation_site_pretenuring ||
    638       !AllocationSite::CanTrack(object->map()->instance_type()))
    639     return;
    640   AllocationMemento* memento_candidate = FindAllocationMemento<kForGC>(object);
    641   if (memento_candidate == nullptr) return;
    642 
    643   if (mode == kGlobal) {
    644     DCHECK_EQ(pretenuring_feedback, global_pretenuring_feedback_);
    645     // Entering global pretenuring feedback is only used in the scavenger, where
    646     // we are allowed to actually touch the allocation site.
    647     if (!memento_candidate->IsValid()) return;
    648     AllocationSite* site = memento_candidate->GetAllocationSite();
    649     DCHECK(!site->IsZombie());
    650     // For inserting in the global pretenuring storage we need to first
    651     // increment the memento found count on the allocation site.
    652     if (site->IncrementMementoFoundCount()) {
    653       global_pretenuring_feedback_->LookupOrInsert(site,
    654                                                    ObjectHash(site->address()));
    655     }
    656   } else {
    657     DCHECK_EQ(mode, kCached);
    658     DCHECK_NE(pretenuring_feedback, global_pretenuring_feedback_);
    659     // Entering cached feedback is used in the parallel case. We are not allowed
    660     // to dereference the allocation site and rather have to postpone all checks
    661     // till actually merging the data.
    662     Address key = memento_candidate->GetAllocationSiteUnchecked();
    663     base::HashMap::Entry* e =
    664         pretenuring_feedback->LookupOrInsert(key, ObjectHash(key));
    665     DCHECK(e != nullptr);
    666     (*bit_cast<intptr_t*>(&e->value))++;
    667   }
    668 }
    669 
    670 
    671 void Heap::RemoveAllocationSitePretenuringFeedback(AllocationSite* site) {
    672   global_pretenuring_feedback_->Remove(
    673       site, static_cast<uint32_t>(bit_cast<uintptr_t>(site)));
    674 }
    675 
    676 bool Heap::CollectGarbage(AllocationSpace space,
    677                           GarbageCollectionReason gc_reason,
    678                           const v8::GCCallbackFlags callbackFlags) {
    679   const char* collector_reason = NULL;
    680   GarbageCollector collector = SelectGarbageCollector(space, &collector_reason);
    681   return CollectGarbage(collector, gc_reason, collector_reason, callbackFlags);
    682 }
    683 
    684 
    685 Isolate* Heap::isolate() {
    686   return reinterpret_cast<Isolate*>(
    687       reinterpret_cast<intptr_t>(this) -
    688       reinterpret_cast<size_t>(reinterpret_cast<Isolate*>(16)->heap()) + 16);
    689 }
    690 
    691 
    692 void Heap::ExternalStringTable::AddString(String* string) {
    693   DCHECK(string->IsExternalString());
    694   if (heap_->InNewSpace(string)) {
    695     new_space_strings_.Add(string);
    696   } else {
    697     old_space_strings_.Add(string);
    698   }
    699 }
    700 
    701 
    702 void Heap::ExternalStringTable::Iterate(ObjectVisitor* v) {
    703   if (!new_space_strings_.is_empty()) {
    704     Object** start = &new_space_strings_[0];
    705     v->VisitPointers(start, start + new_space_strings_.length());
    706   }
    707   if (!old_space_strings_.is_empty()) {
    708     Object** start = &old_space_strings_[0];
    709     v->VisitPointers(start, start + old_space_strings_.length());
    710   }
    711 }
    712 
    713 
    714 // Verify() is inline to avoid ifdef-s around its calls in release
    715 // mode.
    716 void Heap::ExternalStringTable::Verify() {
    717 #ifdef DEBUG
    718   for (int i = 0; i < new_space_strings_.length(); ++i) {
    719     Object* obj = Object::cast(new_space_strings_[i]);
    720     DCHECK(heap_->InNewSpace(obj));
    721     DCHECK(!obj->IsTheHole(heap_->isolate()));
    722   }
    723   for (int i = 0; i < old_space_strings_.length(); ++i) {
    724     Object* obj = Object::cast(old_space_strings_[i]);
    725     DCHECK(!heap_->InNewSpace(obj));
    726     DCHECK(!obj->IsTheHole(heap_->isolate()));
    727   }
    728 #endif
    729 }
    730 
    731 
    732 void Heap::ExternalStringTable::AddOldString(String* string) {
    733   DCHECK(string->IsExternalString());
    734   DCHECK(!heap_->InNewSpace(string));
    735   old_space_strings_.Add(string);
    736 }
    737 
    738 
    739 void Heap::ExternalStringTable::ShrinkNewStrings(int position) {
    740   new_space_strings_.Rewind(position);
    741 #ifdef VERIFY_HEAP
    742   if (FLAG_verify_heap) {
    743     Verify();
    744   }
    745 #endif
    746 }
    747 
    748 void Heap::ClearInstanceofCache() { set_instanceof_cache_function(Smi::kZero); }
    749 
    750 Oddball* Heap::ToBoolean(bool condition) {
    751   return condition ? true_value() : false_value();
    752 }
    753 
    754 
    755 void Heap::CompletelyClearInstanceofCache() {
    756   set_instanceof_cache_map(Smi::kZero);
    757   set_instanceof_cache_function(Smi::kZero);
    758 }
    759 
    760 
    761 uint32_t Heap::HashSeed() {
    762   uint32_t seed = static_cast<uint32_t>(hash_seed()->value());
    763   DCHECK(FLAG_randomize_hashes || seed == 0);
    764   return seed;
    765 }
    766 
    767 
    768 int Heap::NextScriptId() {
    769   int last_id = last_script_id()->value();
    770   if (last_id == Smi::kMaxValue) {
    771     last_id = 1;
    772   } else {
    773     last_id++;
    774   }
    775   set_last_script_id(Smi::FromInt(last_id));
    776   return last_id;
    777 }
    778 
    779 void Heap::SetArgumentsAdaptorDeoptPCOffset(int pc_offset) {
    780   DCHECK(arguments_adaptor_deopt_pc_offset() == Smi::kZero);
    781   set_arguments_adaptor_deopt_pc_offset(Smi::FromInt(pc_offset));
    782 }
    783 
    784 void Heap::SetConstructStubDeoptPCOffset(int pc_offset) {
    785   DCHECK(construct_stub_deopt_pc_offset() == Smi::kZero);
    786   set_construct_stub_deopt_pc_offset(Smi::FromInt(pc_offset));
    787 }
    788 
    789 void Heap::SetGetterStubDeoptPCOffset(int pc_offset) {
    790   DCHECK(getter_stub_deopt_pc_offset() == Smi::kZero);
    791   set_getter_stub_deopt_pc_offset(Smi::FromInt(pc_offset));
    792 }
    793 
    794 void Heap::SetSetterStubDeoptPCOffset(int pc_offset) {
    795   DCHECK(setter_stub_deopt_pc_offset() == Smi::kZero);
    796   set_setter_stub_deopt_pc_offset(Smi::FromInt(pc_offset));
    797 }
    798 
    799 void Heap::SetInterpreterEntryReturnPCOffset(int pc_offset) {
    800   DCHECK(interpreter_entry_return_pc_offset() == Smi::kZero);
    801   set_interpreter_entry_return_pc_offset(Smi::FromInt(pc_offset));
    802 }
    803 
    804 int Heap::GetNextTemplateSerialNumber() {
    805   int next_serial_number = next_template_serial_number()->value() + 1;
    806   set_next_template_serial_number(Smi::FromInt(next_serial_number));
    807   return next_serial_number;
    808 }
    809 
    810 void Heap::SetSerializedTemplates(FixedArray* templates) {
    811   DCHECK_EQ(empty_fixed_array(), serialized_templates());
    812   set_serialized_templates(templates);
    813 }
    814 
    815 void Heap::CreateObjectStats() {
    816   if (V8_LIKELY(FLAG_gc_stats == 0)) return;
    817   if (!live_object_stats_) {
    818     live_object_stats_ = new ObjectStats(this);
    819   }
    820   if (!dead_object_stats_) {
    821     dead_object_stats_ = new ObjectStats(this);
    822   }
    823 }
    824 
    825 AlwaysAllocateScope::AlwaysAllocateScope(Isolate* isolate)
    826     : heap_(isolate->heap()) {
    827   heap_->always_allocate_scope_count_.Increment(1);
    828 }
    829 
    830 
    831 AlwaysAllocateScope::~AlwaysAllocateScope() {
    832   heap_->always_allocate_scope_count_.Increment(-1);
    833 }
    834 
    835 
    836 void VerifyPointersVisitor::VisitPointers(Object** start, Object** end) {
    837   for (Object** current = start; current < end; current++) {
    838     if ((*current)->IsHeapObject()) {
    839       HeapObject* object = HeapObject::cast(*current);
    840       CHECK(object->GetIsolate()->heap()->Contains(object));
    841       CHECK(object->map()->IsMap());
    842     }
    843   }
    844 }
    845 
    846 
    847 void VerifySmisVisitor::VisitPointers(Object** start, Object** end) {
    848   for (Object** current = start; current < end; current++) {
    849     CHECK((*current)->IsSmi());
    850   }
    851 }
    852 }  // namespace internal
    853 }  // namespace v8
    854 
    855 #endif  // V8_HEAP_HEAP_INL_H_
    856