Home | History | Annotate | Download | only in mips
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/mips/codegen-mips.h"
      6 
      7 #if V8_TARGET_ARCH_MIPS
      8 
      9 #include <memory>
     10 
     11 #include "src/codegen.h"
     12 #include "src/macro-assembler.h"
     13 #include "src/mips/simulator-mips.h"
     14 
     15 namespace v8 {
     16 namespace internal {
     17 
     18 
     19 #define __ masm.
     20 
     21 #if defined(V8_HOST_ARCH_MIPS)
     22 MemCopyUint8Function CreateMemCopyUint8Function(Isolate* isolate,
     23                                                 MemCopyUint8Function stub) {
     24 #if defined(USE_SIMULATOR) || defined(_MIPS_ARCH_MIPS32R6) || \
     25     defined(_MIPS_ARCH_MIPS32RX)
     26   return stub;
     27 #else
     28   size_t actual_size;
     29   byte* buffer =
     30       static_cast<byte*>(base::OS::Allocate(3 * KB, &actual_size, true));
     31   if (buffer == nullptr) return stub;
     32 
     33   // This code assumes that cache lines are 32 bytes and if the cache line is
     34   // larger it will not work correctly.
     35   MacroAssembler masm(isolate, buffer, static_cast<int>(actual_size),
     36                       CodeObjectRequired::kNo);
     37 
     38   {
     39     Label lastb, unaligned, aligned, chkw,
     40           loop16w, chk1w, wordCopy_loop, skip_pref, lastbloop,
     41           leave, ua_chk16w, ua_loop16w, ua_skip_pref, ua_chkw,
     42           ua_chk1w, ua_wordCopy_loop, ua_smallCopy, ua_smallCopy_loop;
     43 
     44     // The size of each prefetch.
     45     uint32_t pref_chunk = 32;
     46     // The maximum size of a prefetch, it must not be less than pref_chunk.
     47     // If the real size of a prefetch is greater than max_pref_size and
     48     // the kPrefHintPrepareForStore hint is used, the code will not work
     49     // correctly.
     50     uint32_t max_pref_size = 128;
     51     DCHECK(pref_chunk < max_pref_size);
     52 
     53     // pref_limit is set based on the fact that we never use an offset
     54     // greater then 5 on a store pref and that a single pref can
     55     // never be larger then max_pref_size.
     56     uint32_t pref_limit = (5 * pref_chunk) + max_pref_size;
     57     int32_t pref_hint_load = kPrefHintLoadStreamed;
     58     int32_t pref_hint_store = kPrefHintPrepareForStore;
     59     uint32_t loadstore_chunk = 4;
     60 
     61     // The initial prefetches may fetch bytes that are before the buffer being
     62     // copied. Start copies with an offset of 4 so avoid this situation when
     63     // using kPrefHintPrepareForStore.
     64     DCHECK(pref_hint_store != kPrefHintPrepareForStore ||
     65            pref_chunk * 4 >= max_pref_size);
     66 
     67     // If the size is less than 8, go to lastb. Regardless of size,
     68     // copy dst pointer to v0 for the retuen value.
     69     __ slti(t2, a2, 2 * loadstore_chunk);
     70     __ bne(t2, zero_reg, &lastb);
     71     __ mov(v0, a0);  // In delay slot.
     72 
     73     // If src and dst have different alignments, go to unaligned, if they
     74     // have the same alignment (but are not actually aligned) do a partial
     75     // load/store to make them aligned. If they are both already aligned
     76     // we can start copying at aligned.
     77     __ xor_(t8, a1, a0);
     78     __ andi(t8, t8, loadstore_chunk - 1);  // t8 is a0/a1 word-displacement.
     79     __ bne(t8, zero_reg, &unaligned);
     80     __ subu(a3, zero_reg, a0);  // In delay slot.
     81 
     82     __ andi(a3, a3, loadstore_chunk - 1);  // Copy a3 bytes to align a0/a1.
     83     __ beq(a3, zero_reg, &aligned);  // Already aligned.
     84     __ subu(a2, a2, a3);  // In delay slot. a2 is the remining bytes count.
     85 
     86     if (kArchEndian == kLittle) {
     87       __ lwr(t8, MemOperand(a1));
     88       __ addu(a1, a1, a3);
     89       __ swr(t8, MemOperand(a0));
     90       __ addu(a0, a0, a3);
     91     } else {
     92       __ lwl(t8, MemOperand(a1));
     93       __ addu(a1, a1, a3);
     94       __ swl(t8, MemOperand(a0));
     95       __ addu(a0, a0, a3);
     96     }
     97     // Now dst/src are both aligned to (word) aligned addresses. Set a2 to
     98     // count how many bytes we have to copy after all the 64 byte chunks are
     99     // copied and a3 to the dst pointer after all the 64 byte chunks have been
    100     // copied. We will loop, incrementing a0 and a1 until a0 equals a3.
    101     __ bind(&aligned);
    102     __ andi(t8, a2, 0x3f);
    103     __ beq(a2, t8, &chkw);  // Less than 64?
    104     __ subu(a3, a2, t8);  // In delay slot.
    105     __ addu(a3, a0, a3);  // Now a3 is the final dst after loop.
    106 
    107     // When in the loop we prefetch with kPrefHintPrepareForStore hint,
    108     // in this case the a0+x should be past the "t0-32" address. This means:
    109     // for x=128 the last "safe" a0 address is "t0-160". Alternatively, for
    110     // x=64 the last "safe" a0 address is "t0-96". In the current version we
    111     // will use "pref hint, 128(a0)", so "t0-160" is the limit.
    112     if (pref_hint_store == kPrefHintPrepareForStore) {
    113       __ addu(t0, a0, a2);  // t0 is the "past the end" address.
    114       __ Subu(t9, t0, pref_limit);  // t9 is the "last safe pref" address.
    115     }
    116 
    117     __ Pref(pref_hint_load, MemOperand(a1, 0 * pref_chunk));
    118     __ Pref(pref_hint_load, MemOperand(a1, 1 * pref_chunk));
    119     __ Pref(pref_hint_load, MemOperand(a1, 2 * pref_chunk));
    120     __ Pref(pref_hint_load, MemOperand(a1, 3 * pref_chunk));
    121 
    122     if (pref_hint_store != kPrefHintPrepareForStore) {
    123       __ Pref(pref_hint_store, MemOperand(a0, 1 * pref_chunk));
    124       __ Pref(pref_hint_store, MemOperand(a0, 2 * pref_chunk));
    125       __ Pref(pref_hint_store, MemOperand(a0, 3 * pref_chunk));
    126     }
    127     __ bind(&loop16w);
    128     __ lw(t0, MemOperand(a1));
    129 
    130     if (pref_hint_store == kPrefHintPrepareForStore) {
    131       __ sltu(v1, t9, a0);  // If a0 > t9, don't use next prefetch.
    132       __ Branch(USE_DELAY_SLOT, &skip_pref, gt, v1, Operand(zero_reg));
    133     }
    134     __ lw(t1, MemOperand(a1, 1, loadstore_chunk));  // Maybe in delay slot.
    135 
    136     __ Pref(pref_hint_store, MemOperand(a0, 4 * pref_chunk));
    137     __ Pref(pref_hint_store, MemOperand(a0, 5 * pref_chunk));
    138 
    139     __ bind(&skip_pref);
    140     __ lw(t2, MemOperand(a1, 2, loadstore_chunk));
    141     __ lw(t3, MemOperand(a1, 3, loadstore_chunk));
    142     __ lw(t4, MemOperand(a1, 4, loadstore_chunk));
    143     __ lw(t5, MemOperand(a1, 5, loadstore_chunk));
    144     __ lw(t6, MemOperand(a1, 6, loadstore_chunk));
    145     __ lw(t7, MemOperand(a1, 7, loadstore_chunk));
    146     __ Pref(pref_hint_load, MemOperand(a1, 4 * pref_chunk));
    147 
    148     __ sw(t0, MemOperand(a0));
    149     __ sw(t1, MemOperand(a0, 1, loadstore_chunk));
    150     __ sw(t2, MemOperand(a0, 2, loadstore_chunk));
    151     __ sw(t3, MemOperand(a0, 3, loadstore_chunk));
    152     __ sw(t4, MemOperand(a0, 4, loadstore_chunk));
    153     __ sw(t5, MemOperand(a0, 5, loadstore_chunk));
    154     __ sw(t6, MemOperand(a0, 6, loadstore_chunk));
    155     __ sw(t7, MemOperand(a0, 7, loadstore_chunk));
    156 
    157     __ lw(t0, MemOperand(a1, 8, loadstore_chunk));
    158     __ lw(t1, MemOperand(a1, 9, loadstore_chunk));
    159     __ lw(t2, MemOperand(a1, 10, loadstore_chunk));
    160     __ lw(t3, MemOperand(a1, 11, loadstore_chunk));
    161     __ lw(t4, MemOperand(a1, 12, loadstore_chunk));
    162     __ lw(t5, MemOperand(a1, 13, loadstore_chunk));
    163     __ lw(t6, MemOperand(a1, 14, loadstore_chunk));
    164     __ lw(t7, MemOperand(a1, 15, loadstore_chunk));
    165     __ Pref(pref_hint_load, MemOperand(a1, 5 * pref_chunk));
    166 
    167     __ sw(t0, MemOperand(a0, 8, loadstore_chunk));
    168     __ sw(t1, MemOperand(a0, 9, loadstore_chunk));
    169     __ sw(t2, MemOperand(a0, 10, loadstore_chunk));
    170     __ sw(t3, MemOperand(a0, 11, loadstore_chunk));
    171     __ sw(t4, MemOperand(a0, 12, loadstore_chunk));
    172     __ sw(t5, MemOperand(a0, 13, loadstore_chunk));
    173     __ sw(t6, MemOperand(a0, 14, loadstore_chunk));
    174     __ sw(t7, MemOperand(a0, 15, loadstore_chunk));
    175     __ addiu(a0, a0, 16 * loadstore_chunk);
    176     __ bne(a0, a3, &loop16w);
    177     __ addiu(a1, a1, 16 * loadstore_chunk);  // In delay slot.
    178     __ mov(a2, t8);
    179 
    180     // Here we have src and dest word-aligned but less than 64-bytes to go.
    181     // Check for a 32 bytes chunk and copy if there is one. Otherwise jump
    182     // down to chk1w to handle the tail end of the copy.
    183     __ bind(&chkw);
    184     __ Pref(pref_hint_load, MemOperand(a1, 0 * pref_chunk));
    185     __ andi(t8, a2, 0x1f);
    186     __ beq(a2, t8, &chk1w);  // Less than 32?
    187     __ nop();  // In delay slot.
    188     __ lw(t0, MemOperand(a1));
    189     __ lw(t1, MemOperand(a1, 1, loadstore_chunk));
    190     __ lw(t2, MemOperand(a1, 2, loadstore_chunk));
    191     __ lw(t3, MemOperand(a1, 3, loadstore_chunk));
    192     __ lw(t4, MemOperand(a1, 4, loadstore_chunk));
    193     __ lw(t5, MemOperand(a1, 5, loadstore_chunk));
    194     __ lw(t6, MemOperand(a1, 6, loadstore_chunk));
    195     __ lw(t7, MemOperand(a1, 7, loadstore_chunk));
    196     __ addiu(a1, a1, 8 * loadstore_chunk);
    197     __ sw(t0, MemOperand(a0));
    198     __ sw(t1, MemOperand(a0, 1, loadstore_chunk));
    199     __ sw(t2, MemOperand(a0, 2, loadstore_chunk));
    200     __ sw(t3, MemOperand(a0, 3, loadstore_chunk));
    201     __ sw(t4, MemOperand(a0, 4, loadstore_chunk));
    202     __ sw(t5, MemOperand(a0, 5, loadstore_chunk));
    203     __ sw(t6, MemOperand(a0, 6, loadstore_chunk));
    204     __ sw(t7, MemOperand(a0, 7, loadstore_chunk));
    205     __ addiu(a0, a0, 8 * loadstore_chunk);
    206 
    207     // Here we have less than 32 bytes to copy. Set up for a loop to copy
    208     // one word at a time. Set a2 to count how many bytes we have to copy
    209     // after all the word chunks are copied and a3 to the dst pointer after
    210     // all the word chunks have been copied. We will loop, incrementing a0
    211     // and a1 untill a0 equals a3.
    212     __ bind(&chk1w);
    213     __ andi(a2, t8, loadstore_chunk - 1);
    214     __ beq(a2, t8, &lastb);
    215     __ subu(a3, t8, a2);  // In delay slot.
    216     __ addu(a3, a0, a3);
    217 
    218     __ bind(&wordCopy_loop);
    219     __ lw(t3, MemOperand(a1));
    220     __ addiu(a0, a0, loadstore_chunk);
    221     __ addiu(a1, a1, loadstore_chunk);
    222     __ bne(a0, a3, &wordCopy_loop);
    223     __ sw(t3, MemOperand(a0, -1, loadstore_chunk));  // In delay slot.
    224 
    225     __ bind(&lastb);
    226     __ Branch(&leave, le, a2, Operand(zero_reg));
    227     __ addu(a3, a0, a2);
    228 
    229     __ bind(&lastbloop);
    230     __ lb(v1, MemOperand(a1));
    231     __ addiu(a0, a0, 1);
    232     __ addiu(a1, a1, 1);
    233     __ bne(a0, a3, &lastbloop);
    234     __ sb(v1, MemOperand(a0, -1));  // In delay slot.
    235 
    236     __ bind(&leave);
    237     __ jr(ra);
    238     __ nop();
    239 
    240     // Unaligned case. Only the dst gets aligned so we need to do partial
    241     // loads of the source followed by normal stores to the dst (once we
    242     // have aligned the destination).
    243     __ bind(&unaligned);
    244     __ andi(a3, a3, loadstore_chunk - 1);  // Copy a3 bytes to align a0/a1.
    245     __ beq(a3, zero_reg, &ua_chk16w);
    246     __ subu(a2, a2, a3);  // In delay slot.
    247 
    248     if (kArchEndian == kLittle) {
    249       __ lwr(v1, MemOperand(a1));
    250       __ lwl(v1,
    251              MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one));
    252       __ addu(a1, a1, a3);
    253       __ swr(v1, MemOperand(a0));
    254       __ addu(a0, a0, a3);
    255     } else {
    256       __ lwl(v1, MemOperand(a1));
    257       __ lwr(v1,
    258              MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one));
    259       __ addu(a1, a1, a3);
    260       __ swl(v1, MemOperand(a0));
    261       __ addu(a0, a0, a3);
    262     }
    263 
    264     // Now the dst (but not the source) is aligned. Set a2 to count how many
    265     // bytes we have to copy after all the 64 byte chunks are copied and a3 to
    266     // the dst pointer after all the 64 byte chunks have been copied. We will
    267     // loop, incrementing a0 and a1 until a0 equals a3.
    268     __ bind(&ua_chk16w);
    269     __ andi(t8, a2, 0x3f);
    270     __ beq(a2, t8, &ua_chkw);
    271     __ subu(a3, a2, t8);  // In delay slot.
    272     __ addu(a3, a0, a3);
    273 
    274     if (pref_hint_store == kPrefHintPrepareForStore) {
    275       __ addu(t0, a0, a2);
    276       __ Subu(t9, t0, pref_limit);
    277     }
    278 
    279     __ Pref(pref_hint_load, MemOperand(a1, 0 * pref_chunk));
    280     __ Pref(pref_hint_load, MemOperand(a1, 1 * pref_chunk));
    281     __ Pref(pref_hint_load, MemOperand(a1, 2 * pref_chunk));
    282 
    283     if (pref_hint_store != kPrefHintPrepareForStore) {
    284       __ Pref(pref_hint_store, MemOperand(a0, 1 * pref_chunk));
    285       __ Pref(pref_hint_store, MemOperand(a0, 2 * pref_chunk));
    286       __ Pref(pref_hint_store, MemOperand(a0, 3 * pref_chunk));
    287     }
    288 
    289     __ bind(&ua_loop16w);
    290     __ Pref(pref_hint_load, MemOperand(a1, 3 * pref_chunk));
    291     if (kArchEndian == kLittle) {
    292       __ lwr(t0, MemOperand(a1));
    293       __ lwr(t1, MemOperand(a1, 1, loadstore_chunk));
    294       __ lwr(t2, MemOperand(a1, 2, loadstore_chunk));
    295 
    296       if (pref_hint_store == kPrefHintPrepareForStore) {
    297         __ sltu(v1, t9, a0);
    298         __ Branch(USE_DELAY_SLOT, &ua_skip_pref, gt, v1, Operand(zero_reg));
    299       }
    300       __ lwr(t3, MemOperand(a1, 3, loadstore_chunk));  // Maybe in delay slot.
    301 
    302       __ Pref(pref_hint_store, MemOperand(a0, 4 * pref_chunk));
    303       __ Pref(pref_hint_store, MemOperand(a0, 5 * pref_chunk));
    304 
    305       __ bind(&ua_skip_pref);
    306       __ lwr(t4, MemOperand(a1, 4, loadstore_chunk));
    307       __ lwr(t5, MemOperand(a1, 5, loadstore_chunk));
    308       __ lwr(t6, MemOperand(a1, 6, loadstore_chunk));
    309       __ lwr(t7, MemOperand(a1, 7, loadstore_chunk));
    310       __ lwl(t0,
    311              MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one));
    312       __ lwl(t1,
    313              MemOperand(a1, 2, loadstore_chunk, MemOperand::offset_minus_one));
    314       __ lwl(t2,
    315              MemOperand(a1, 3, loadstore_chunk, MemOperand::offset_minus_one));
    316       __ lwl(t3,
    317              MemOperand(a1, 4, loadstore_chunk, MemOperand::offset_minus_one));
    318       __ lwl(t4,
    319              MemOperand(a1, 5, loadstore_chunk, MemOperand::offset_minus_one));
    320       __ lwl(t5,
    321              MemOperand(a1, 6, loadstore_chunk, MemOperand::offset_minus_one));
    322       __ lwl(t6,
    323              MemOperand(a1, 7, loadstore_chunk, MemOperand::offset_minus_one));
    324       __ lwl(t7,
    325              MemOperand(a1, 8, loadstore_chunk, MemOperand::offset_minus_one));
    326     } else {
    327       __ lwl(t0, MemOperand(a1));
    328       __ lwl(t1, MemOperand(a1, 1, loadstore_chunk));
    329       __ lwl(t2, MemOperand(a1, 2, loadstore_chunk));
    330 
    331       if (pref_hint_store == kPrefHintPrepareForStore) {
    332         __ sltu(v1, t9, a0);
    333         __ Branch(USE_DELAY_SLOT, &ua_skip_pref, gt, v1, Operand(zero_reg));
    334       }
    335       __ lwl(t3, MemOperand(a1, 3, loadstore_chunk));  // Maybe in delay slot.
    336 
    337       __ Pref(pref_hint_store, MemOperand(a0, 4 * pref_chunk));
    338       __ Pref(pref_hint_store, MemOperand(a0, 5 * pref_chunk));
    339 
    340       __ bind(&ua_skip_pref);
    341       __ lwl(t4, MemOperand(a1, 4, loadstore_chunk));
    342       __ lwl(t5, MemOperand(a1, 5, loadstore_chunk));
    343       __ lwl(t6, MemOperand(a1, 6, loadstore_chunk));
    344       __ lwl(t7, MemOperand(a1, 7, loadstore_chunk));
    345       __ lwr(t0,
    346              MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one));
    347       __ lwr(t1,
    348              MemOperand(a1, 2, loadstore_chunk, MemOperand::offset_minus_one));
    349       __ lwr(t2,
    350              MemOperand(a1, 3, loadstore_chunk, MemOperand::offset_minus_one));
    351       __ lwr(t3,
    352              MemOperand(a1, 4, loadstore_chunk, MemOperand::offset_minus_one));
    353       __ lwr(t4,
    354              MemOperand(a1, 5, loadstore_chunk, MemOperand::offset_minus_one));
    355       __ lwr(t5,
    356              MemOperand(a1, 6, loadstore_chunk, MemOperand::offset_minus_one));
    357       __ lwr(t6,
    358              MemOperand(a1, 7, loadstore_chunk, MemOperand::offset_minus_one));
    359       __ lwr(t7,
    360              MemOperand(a1, 8, loadstore_chunk, MemOperand::offset_minus_one));
    361     }
    362     __ Pref(pref_hint_load, MemOperand(a1, 4 * pref_chunk));
    363     __ sw(t0, MemOperand(a0));
    364     __ sw(t1, MemOperand(a0, 1, loadstore_chunk));
    365     __ sw(t2, MemOperand(a0, 2, loadstore_chunk));
    366     __ sw(t3, MemOperand(a0, 3, loadstore_chunk));
    367     __ sw(t4, MemOperand(a0, 4, loadstore_chunk));
    368     __ sw(t5, MemOperand(a0, 5, loadstore_chunk));
    369     __ sw(t6, MemOperand(a0, 6, loadstore_chunk));
    370     __ sw(t7, MemOperand(a0, 7, loadstore_chunk));
    371     if (kArchEndian == kLittle) {
    372       __ lwr(t0, MemOperand(a1, 8, loadstore_chunk));
    373       __ lwr(t1, MemOperand(a1, 9, loadstore_chunk));
    374       __ lwr(t2, MemOperand(a1, 10, loadstore_chunk));
    375       __ lwr(t3, MemOperand(a1, 11, loadstore_chunk));
    376       __ lwr(t4, MemOperand(a1, 12, loadstore_chunk));
    377       __ lwr(t5, MemOperand(a1, 13, loadstore_chunk));
    378       __ lwr(t6, MemOperand(a1, 14, loadstore_chunk));
    379       __ lwr(t7, MemOperand(a1, 15, loadstore_chunk));
    380       __ lwl(t0,
    381              MemOperand(a1, 9, loadstore_chunk, MemOperand::offset_minus_one));
    382       __ lwl(t1,
    383              MemOperand(a1, 10, loadstore_chunk, MemOperand::offset_minus_one));
    384       __ lwl(t2,
    385              MemOperand(a1, 11, loadstore_chunk, MemOperand::offset_minus_one));
    386       __ lwl(t3,
    387              MemOperand(a1, 12, loadstore_chunk, MemOperand::offset_minus_one));
    388       __ lwl(t4,
    389              MemOperand(a1, 13, loadstore_chunk, MemOperand::offset_minus_one));
    390       __ lwl(t5,
    391              MemOperand(a1, 14, loadstore_chunk, MemOperand::offset_minus_one));
    392       __ lwl(t6,
    393              MemOperand(a1, 15, loadstore_chunk, MemOperand::offset_minus_one));
    394       __ lwl(t7,
    395              MemOperand(a1, 16, loadstore_chunk, MemOperand::offset_minus_one));
    396     } else {
    397       __ lwl(t0, MemOperand(a1, 8, loadstore_chunk));
    398       __ lwl(t1, MemOperand(a1, 9, loadstore_chunk));
    399       __ lwl(t2, MemOperand(a1, 10, loadstore_chunk));
    400       __ lwl(t3, MemOperand(a1, 11, loadstore_chunk));
    401       __ lwl(t4, MemOperand(a1, 12, loadstore_chunk));
    402       __ lwl(t5, MemOperand(a1, 13, loadstore_chunk));
    403       __ lwl(t6, MemOperand(a1, 14, loadstore_chunk));
    404       __ lwl(t7, MemOperand(a1, 15, loadstore_chunk));
    405       __ lwr(t0,
    406              MemOperand(a1, 9, loadstore_chunk, MemOperand::offset_minus_one));
    407       __ lwr(t1,
    408              MemOperand(a1, 10, loadstore_chunk, MemOperand::offset_minus_one));
    409       __ lwr(t2,
    410              MemOperand(a1, 11, loadstore_chunk, MemOperand::offset_minus_one));
    411       __ lwr(t3,
    412              MemOperand(a1, 12, loadstore_chunk, MemOperand::offset_minus_one));
    413       __ lwr(t4,
    414              MemOperand(a1, 13, loadstore_chunk, MemOperand::offset_minus_one));
    415       __ lwr(t5,
    416              MemOperand(a1, 14, loadstore_chunk, MemOperand::offset_minus_one));
    417       __ lwr(t6,
    418              MemOperand(a1, 15, loadstore_chunk, MemOperand::offset_minus_one));
    419       __ lwr(t7,
    420              MemOperand(a1, 16, loadstore_chunk, MemOperand::offset_minus_one));
    421     }
    422     __ Pref(pref_hint_load, MemOperand(a1, 5 * pref_chunk));
    423     __ sw(t0, MemOperand(a0, 8, loadstore_chunk));
    424     __ sw(t1, MemOperand(a0, 9, loadstore_chunk));
    425     __ sw(t2, MemOperand(a0, 10, loadstore_chunk));
    426     __ sw(t3, MemOperand(a0, 11, loadstore_chunk));
    427     __ sw(t4, MemOperand(a0, 12, loadstore_chunk));
    428     __ sw(t5, MemOperand(a0, 13, loadstore_chunk));
    429     __ sw(t6, MemOperand(a0, 14, loadstore_chunk));
    430     __ sw(t7, MemOperand(a0, 15, loadstore_chunk));
    431     __ addiu(a0, a0, 16 * loadstore_chunk);
    432     __ bne(a0, a3, &ua_loop16w);
    433     __ addiu(a1, a1, 16 * loadstore_chunk);  // In delay slot.
    434     __ mov(a2, t8);
    435 
    436     // Here less than 64-bytes. Check for
    437     // a 32 byte chunk and copy if there is one. Otherwise jump down to
    438     // ua_chk1w to handle the tail end of the copy.
    439     __ bind(&ua_chkw);
    440     __ Pref(pref_hint_load, MemOperand(a1));
    441     __ andi(t8, a2, 0x1f);
    442 
    443     __ beq(a2, t8, &ua_chk1w);
    444     __ nop();  // In delay slot.
    445     if (kArchEndian == kLittle) {
    446       __ lwr(t0, MemOperand(a1));
    447       __ lwr(t1, MemOperand(a1, 1, loadstore_chunk));
    448       __ lwr(t2, MemOperand(a1, 2, loadstore_chunk));
    449       __ lwr(t3, MemOperand(a1, 3, loadstore_chunk));
    450       __ lwr(t4, MemOperand(a1, 4, loadstore_chunk));
    451       __ lwr(t5, MemOperand(a1, 5, loadstore_chunk));
    452       __ lwr(t6, MemOperand(a1, 6, loadstore_chunk));
    453       __ lwr(t7, MemOperand(a1, 7, loadstore_chunk));
    454       __ lwl(t0,
    455              MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one));
    456       __ lwl(t1,
    457              MemOperand(a1, 2, loadstore_chunk, MemOperand::offset_minus_one));
    458       __ lwl(t2,
    459              MemOperand(a1, 3, loadstore_chunk, MemOperand::offset_minus_one));
    460       __ lwl(t3,
    461              MemOperand(a1, 4, loadstore_chunk, MemOperand::offset_minus_one));
    462       __ lwl(t4,
    463              MemOperand(a1, 5, loadstore_chunk, MemOperand::offset_minus_one));
    464       __ lwl(t5,
    465              MemOperand(a1, 6, loadstore_chunk, MemOperand::offset_minus_one));
    466       __ lwl(t6,
    467              MemOperand(a1, 7, loadstore_chunk, MemOperand::offset_minus_one));
    468       __ lwl(t7,
    469              MemOperand(a1, 8, loadstore_chunk, MemOperand::offset_minus_one));
    470     } else {
    471       __ lwl(t0, MemOperand(a1));
    472       __ lwl(t1, MemOperand(a1, 1, loadstore_chunk));
    473       __ lwl(t2, MemOperand(a1, 2, loadstore_chunk));
    474       __ lwl(t3, MemOperand(a1, 3, loadstore_chunk));
    475       __ lwl(t4, MemOperand(a1, 4, loadstore_chunk));
    476       __ lwl(t5, MemOperand(a1, 5, loadstore_chunk));
    477       __ lwl(t6, MemOperand(a1, 6, loadstore_chunk));
    478       __ lwl(t7, MemOperand(a1, 7, loadstore_chunk));
    479       __ lwr(t0,
    480              MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one));
    481       __ lwr(t1,
    482              MemOperand(a1, 2, loadstore_chunk, MemOperand::offset_minus_one));
    483       __ lwr(t2,
    484              MemOperand(a1, 3, loadstore_chunk, MemOperand::offset_minus_one));
    485       __ lwr(t3,
    486              MemOperand(a1, 4, loadstore_chunk, MemOperand::offset_minus_one));
    487       __ lwr(t4,
    488              MemOperand(a1, 5, loadstore_chunk, MemOperand::offset_minus_one));
    489       __ lwr(t5,
    490              MemOperand(a1, 6, loadstore_chunk, MemOperand::offset_minus_one));
    491       __ lwr(t6,
    492              MemOperand(a1, 7, loadstore_chunk, MemOperand::offset_minus_one));
    493       __ lwr(t7,
    494              MemOperand(a1, 8, loadstore_chunk, MemOperand::offset_minus_one));
    495     }
    496     __ addiu(a1, a1, 8 * loadstore_chunk);
    497     __ sw(t0, MemOperand(a0));
    498     __ sw(t1, MemOperand(a0, 1, loadstore_chunk));
    499     __ sw(t2, MemOperand(a0, 2, loadstore_chunk));
    500     __ sw(t3, MemOperand(a0, 3, loadstore_chunk));
    501     __ sw(t4, MemOperand(a0, 4, loadstore_chunk));
    502     __ sw(t5, MemOperand(a0, 5, loadstore_chunk));
    503     __ sw(t6, MemOperand(a0, 6, loadstore_chunk));
    504     __ sw(t7, MemOperand(a0, 7, loadstore_chunk));
    505     __ addiu(a0, a0, 8 * loadstore_chunk);
    506 
    507     // Less than 32 bytes to copy. Set up for a loop to
    508     // copy one word at a time.
    509     __ bind(&ua_chk1w);
    510     __ andi(a2, t8, loadstore_chunk - 1);
    511     __ beq(a2, t8, &ua_smallCopy);
    512     __ subu(a3, t8, a2);  // In delay slot.
    513     __ addu(a3, a0, a3);
    514 
    515     __ bind(&ua_wordCopy_loop);
    516     if (kArchEndian == kLittle) {
    517       __ lwr(v1, MemOperand(a1));
    518       __ lwl(v1,
    519              MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one));
    520     } else {
    521       __ lwl(v1, MemOperand(a1));
    522       __ lwr(v1,
    523              MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one));
    524     }
    525     __ addiu(a0, a0, loadstore_chunk);
    526     __ addiu(a1, a1, loadstore_chunk);
    527     __ bne(a0, a3, &ua_wordCopy_loop);
    528     __ sw(v1, MemOperand(a0, -1, loadstore_chunk));  // In delay slot.
    529 
    530     // Copy the last 8 bytes.
    531     __ bind(&ua_smallCopy);
    532     __ beq(a2, zero_reg, &leave);
    533     __ addu(a3, a0, a2);  // In delay slot.
    534 
    535     __ bind(&ua_smallCopy_loop);
    536     __ lb(v1, MemOperand(a1));
    537     __ addiu(a0, a0, 1);
    538     __ addiu(a1, a1, 1);
    539     __ bne(a0, a3, &ua_smallCopy_loop);
    540     __ sb(v1, MemOperand(a0, -1));  // In delay slot.
    541 
    542     __ jr(ra);
    543     __ nop();
    544   }
    545   CodeDesc desc;
    546   masm.GetCode(&desc);
    547   DCHECK(!RelocInfo::RequiresRelocation(desc));
    548 
    549   Assembler::FlushICache(isolate, buffer, actual_size);
    550   base::OS::ProtectCode(buffer, actual_size);
    551   return FUNCTION_CAST<MemCopyUint8Function>(buffer);
    552 #endif
    553 }
    554 #endif
    555 
    556 UnaryMathFunctionWithIsolate CreateSqrtFunction(Isolate* isolate) {
    557 #if defined(USE_SIMULATOR)
    558   return nullptr;
    559 #else
    560   size_t actual_size;
    561   byte* buffer =
    562       static_cast<byte*>(base::OS::Allocate(1 * KB, &actual_size, true));
    563   if (buffer == nullptr) return nullptr;
    564 
    565   MacroAssembler masm(isolate, buffer, static_cast<int>(actual_size),
    566                       CodeObjectRequired::kNo);
    567 
    568   __ MovFromFloatParameter(f12);
    569   __ sqrt_d(f0, f12);
    570   __ MovToFloatResult(f0);
    571   __ Ret();
    572 
    573   CodeDesc desc;
    574   masm.GetCode(&desc);
    575   DCHECK(!RelocInfo::RequiresRelocation(desc));
    576 
    577   Assembler::FlushICache(isolate, buffer, actual_size);
    578   base::OS::ProtectCode(buffer, actual_size);
    579   return FUNCTION_CAST<UnaryMathFunctionWithIsolate>(buffer);
    580 #endif
    581 }
    582 
    583 #undef __
    584 
    585 
    586 // -------------------------------------------------------------------------
    587 // Platform-specific RuntimeCallHelper functions.
    588 
    589 void StubRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const {
    590   masm->EnterFrame(StackFrame::INTERNAL);
    591   DCHECK(!masm->has_frame());
    592   masm->set_has_frame(true);
    593 }
    594 
    595 
    596 void StubRuntimeCallHelper::AfterCall(MacroAssembler* masm) const {
    597   masm->LeaveFrame(StackFrame::INTERNAL);
    598   DCHECK(masm->has_frame());
    599   masm->set_has_frame(false);
    600 }
    601 
    602 
    603 // -------------------------------------------------------------------------
    604 // Code generators
    605 
    606 #define __ ACCESS_MASM(masm)
    607 
    608 void ElementsTransitionGenerator::GenerateMapChangeElementsTransition(
    609     MacroAssembler* masm,
    610     Register receiver,
    611     Register key,
    612     Register value,
    613     Register target_map,
    614     AllocationSiteMode mode,
    615     Label* allocation_memento_found) {
    616   Register scratch_elements = t0;
    617   DCHECK(!AreAliased(receiver, key, value, target_map,
    618                      scratch_elements));
    619 
    620   if (mode == TRACK_ALLOCATION_SITE) {
    621     DCHECK(allocation_memento_found != NULL);
    622     __ JumpIfJSArrayHasAllocationMemento(
    623         receiver, scratch_elements, allocation_memento_found);
    624   }
    625 
    626   // Set transitioned map.
    627   __ sw(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
    628   __ RecordWriteField(receiver,
    629                       HeapObject::kMapOffset,
    630                       target_map,
    631                       t5,
    632                       kRAHasNotBeenSaved,
    633                       kDontSaveFPRegs,
    634                       EMIT_REMEMBERED_SET,
    635                       OMIT_SMI_CHECK);
    636 }
    637 
    638 
    639 void ElementsTransitionGenerator::GenerateSmiToDouble(
    640     MacroAssembler* masm,
    641     Register receiver,
    642     Register key,
    643     Register value,
    644     Register target_map,
    645     AllocationSiteMode mode,
    646     Label* fail) {
    647   // Register ra contains the return address.
    648   Label loop, entry, convert_hole, gc_required, only_change_map, done;
    649   Register elements = t0;
    650   Register length = t1;
    651   Register array = t2;
    652   Register array_end = array;
    653 
    654   // target_map parameter can be clobbered.
    655   Register scratch1 = target_map;
    656   Register scratch2 = t5;
    657   Register scratch3 = t3;
    658 
    659   // Verify input registers don't conflict with locals.
    660   DCHECK(!AreAliased(receiver, key, value, target_map,
    661                      elements, length, array, scratch2));
    662 
    663   Register scratch = t6;
    664 
    665   if (mode == TRACK_ALLOCATION_SITE) {
    666     __ JumpIfJSArrayHasAllocationMemento(receiver, elements, fail);
    667   }
    668 
    669   // Check for empty arrays, which only require a map transition and no changes
    670   // to the backing store.
    671   __ lw(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
    672   __ LoadRoot(at, Heap::kEmptyFixedArrayRootIndex);
    673   __ Branch(&only_change_map, eq, at, Operand(elements));
    674 
    675   __ push(ra);
    676   __ lw(length, FieldMemOperand(elements, FixedArray::kLengthOffset));
    677   // elements: source FixedArray
    678   // length: number of elements (smi-tagged)
    679 
    680   // Allocate new FixedDoubleArray.
    681   __ sll(scratch, length, 2);
    682   __ Addu(scratch, scratch, FixedDoubleArray::kHeaderSize);
    683   __ Allocate(scratch, array, t3, scratch2, &gc_required, DOUBLE_ALIGNMENT);
    684   // array: destination FixedDoubleArray, tagged as heap object
    685 
    686   // Set destination FixedDoubleArray's length and map.
    687   __ LoadRoot(scratch2, Heap::kFixedDoubleArrayMapRootIndex);
    688   __ sw(length, FieldMemOperand(array, FixedDoubleArray::kLengthOffset));
    689   // Update receiver's map.
    690   __ sw(scratch2, FieldMemOperand(array, HeapObject::kMapOffset));
    691 
    692   __ sw(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
    693   __ RecordWriteField(receiver,
    694                       HeapObject::kMapOffset,
    695                       target_map,
    696                       scratch2,
    697                       kRAHasBeenSaved,
    698                       kDontSaveFPRegs,
    699                       OMIT_REMEMBERED_SET,
    700                       OMIT_SMI_CHECK);
    701   // Replace receiver's backing store with newly created FixedDoubleArray.
    702   __ Addu(scratch1, array, Operand(kHeapObjectTag - kHeapObjectTag));
    703   __ sw(scratch1, FieldMemOperand(receiver, JSObject::kElementsOffset));
    704   __ RecordWriteField(receiver,
    705                       JSObject::kElementsOffset,
    706                       scratch1,
    707                       scratch2,
    708                       kRAHasBeenSaved,
    709                       kDontSaveFPRegs,
    710                       EMIT_REMEMBERED_SET,
    711                       OMIT_SMI_CHECK);
    712 
    713 
    714   // Prepare for conversion loop.
    715   __ Addu(scratch1, elements,
    716       Operand(FixedArray::kHeaderSize - kHeapObjectTag));
    717   __ Addu(scratch3, array,
    718           Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag));
    719   __ Lsa(array_end, scratch3, length, 2);
    720 
    721   // Repurpose registers no longer in use.
    722   Register hole_lower = elements;
    723   Register hole_upper = length;
    724   __ li(hole_lower, Operand(kHoleNanLower32));
    725   __ li(hole_upper, Operand(kHoleNanUpper32));
    726 
    727   // scratch1: begin of source FixedArray element fields, not tagged
    728   // hole_lower: kHoleNanLower32
    729   // hole_upper: kHoleNanUpper32
    730   // array_end: end of destination FixedDoubleArray, not tagged
    731   // scratch3: begin of FixedDoubleArray element fields, not tagged
    732 
    733   __ Branch(&entry);
    734 
    735   __ bind(&only_change_map);
    736   __ sw(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
    737   __ RecordWriteField(receiver,
    738                       HeapObject::kMapOffset,
    739                       target_map,
    740                       scratch2,
    741                       kRAHasBeenSaved,
    742                       kDontSaveFPRegs,
    743                       OMIT_REMEMBERED_SET,
    744                       OMIT_SMI_CHECK);
    745   __ Branch(&done);
    746 
    747   // Call into runtime if GC is required.
    748   __ bind(&gc_required);
    749   __ lw(ra, MemOperand(sp, 0));
    750   __ Branch(USE_DELAY_SLOT, fail);
    751   __ addiu(sp, sp, kPointerSize);  // In delay slot.
    752 
    753   // Convert and copy elements.
    754   __ bind(&loop);
    755   __ lw(scratch2, MemOperand(scratch1));
    756   __ Addu(scratch1, scratch1, kIntSize);
    757   // scratch2: current element
    758   __ UntagAndJumpIfNotSmi(scratch2, scratch2, &convert_hole);
    759 
    760   // Normal smi, convert to double and store.
    761   __ mtc1(scratch2, f0);
    762   __ cvt_d_w(f0, f0);
    763   __ sdc1(f0, MemOperand(scratch3));
    764   __ Branch(USE_DELAY_SLOT, &entry);
    765   __ addiu(scratch3, scratch3, kDoubleSize);  // In delay slot.
    766 
    767   // Hole found, store the-hole NaN.
    768   __ bind(&convert_hole);
    769   if (FLAG_debug_code) {
    770     // Restore a "smi-untagged" heap object.
    771     __ SmiTag(scratch2);
    772     __ Or(scratch2, scratch2, Operand(1));
    773     __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
    774     __ Assert(eq, kObjectFoundInSmiOnlyArray, at, Operand(scratch2));
    775   }
    776   // mantissa
    777   __ sw(hole_lower, MemOperand(scratch3, Register::kMantissaOffset));
    778   // exponent
    779   __ sw(hole_upper, MemOperand(scratch3, Register::kExponentOffset));
    780   __ addiu(scratch3, scratch3, kDoubleSize);
    781 
    782   __ bind(&entry);
    783   __ Branch(&loop, lt, scratch3, Operand(array_end));
    784 
    785   __ bind(&done);
    786   __ pop(ra);
    787 }
    788 
    789 
    790 void ElementsTransitionGenerator::GenerateDoubleToObject(
    791     MacroAssembler* masm,
    792     Register receiver,
    793     Register key,
    794     Register value,
    795     Register target_map,
    796     AllocationSiteMode mode,
    797     Label* fail) {
    798   // Register ra contains the return address.
    799   Label entry, loop, convert_hole, gc_required, only_change_map;
    800   Register elements = t0;
    801   Register array = t2;
    802   Register length = t1;
    803   Register scratch = t5;
    804 
    805   // Verify input registers don't conflict with locals.
    806   DCHECK(!AreAliased(receiver, key, value, target_map,
    807                      elements, array, length, scratch));
    808 
    809   if (mode == TRACK_ALLOCATION_SITE) {
    810     __ JumpIfJSArrayHasAllocationMemento(receiver, elements, fail);
    811   }
    812 
    813   // Check for empty arrays, which only require a map transition and no changes
    814   // to the backing store.
    815   __ lw(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
    816   __ LoadRoot(at, Heap::kEmptyFixedArrayRootIndex);
    817   __ Branch(&only_change_map, eq, at, Operand(elements));
    818 
    819   __ MultiPush(
    820       value.bit() | key.bit() | receiver.bit() | target_map.bit() | ra.bit());
    821 
    822   __ lw(length, FieldMemOperand(elements, FixedArray::kLengthOffset));
    823   // elements: source FixedArray
    824   // length: number of elements (smi-tagged)
    825 
    826   // Allocate new FixedArray.
    827   // Re-use value and target_map registers, as they have been saved on the
    828   // stack.
    829   Register array_size = value;
    830   Register allocate_scratch = target_map;
    831   __ sll(array_size, length, 1);
    832   __ Addu(array_size, array_size, FixedDoubleArray::kHeaderSize);
    833   __ Allocate(array_size, array, allocate_scratch, scratch, &gc_required,
    834               NO_ALLOCATION_FLAGS);
    835   // array: destination FixedArray, not tagged as heap object
    836   // Set destination FixedDoubleArray's length and map.
    837   __ LoadRoot(scratch, Heap::kFixedArrayMapRootIndex);
    838   __ sw(length, FieldMemOperand(array, FixedDoubleArray::kLengthOffset));
    839   __ sw(scratch, FieldMemOperand(array, HeapObject::kMapOffset));
    840 
    841   // Prepare for conversion loop.
    842   Register src_elements = elements;
    843   Register dst_elements = target_map;
    844   Register dst_end = length;
    845   Register heap_number_map = scratch;
    846   __ Addu(src_elements, src_elements, Operand(
    847         FixedDoubleArray::kHeaderSize - kHeapObjectTag
    848         + Register::kExponentOffset));
    849   __ Addu(dst_elements, array,
    850           Operand(FixedArray::kHeaderSize - kHeapObjectTag));
    851   __ Lsa(dst_end, dst_elements, dst_end, 1);
    852 
    853   // Allocating heap numbers in the loop below can fail and cause a jump to
    854   // gc_required. We can't leave a partly initialized FixedArray behind,
    855   // so pessimistically fill it with holes now.
    856   Label initialization_loop, initialization_loop_entry;
    857   __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex);
    858   __ Branch(&initialization_loop_entry);
    859   __ bind(&initialization_loop);
    860   __ sw(scratch, MemOperand(dst_elements));
    861   __ Addu(dst_elements, dst_elements, Operand(kPointerSize));
    862   __ bind(&initialization_loop_entry);
    863   __ Branch(&initialization_loop, lt, dst_elements, Operand(dst_end));
    864 
    865   __ Addu(dst_elements, array,
    866           Operand(FixedArray::kHeaderSize - kHeapObjectTag));
    867   __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
    868   // Using offsetted addresses.
    869   // dst_elements: begin of destination FixedArray element fields, not tagged
    870   // src_elements: begin of source FixedDoubleArray element fields, not tagged,
    871   //               points to the exponent
    872   // dst_end: end of destination FixedArray, not tagged
    873   // array: destination FixedArray
    874   // heap_number_map: heap number map
    875   __ Branch(&entry);
    876 
    877   // Call into runtime if GC is required.
    878   __ bind(&gc_required);
    879   __ MultiPop(
    880       value.bit() | key.bit() | receiver.bit() | target_map.bit() | ra.bit());
    881 
    882   __ Branch(fail);
    883 
    884   __ bind(&loop);
    885   Register upper_bits = key;
    886   __ lw(upper_bits, MemOperand(src_elements));
    887   __ Addu(src_elements, src_elements, kDoubleSize);
    888   // upper_bits: current element's upper 32 bit
    889   // src_elements: address of next element's upper 32 bit
    890   __ Branch(&convert_hole, eq, a1, Operand(kHoleNanUpper32));
    891 
    892   // Non-hole double, copy value into a heap number.
    893   Register heap_number = receiver;
    894   Register scratch2 = value;
    895   Register scratch3 = t6;
    896   __ AllocateHeapNumber(heap_number, scratch2, scratch3, heap_number_map,
    897                         &gc_required);
    898   // heap_number: new heap number
    899   // Load mantissa of current element, src_elements
    900   // point to exponent of next element.
    901   __ lw(scratch2, MemOperand(src_elements, (Register::kMantissaOffset
    902       - Register::kExponentOffset - kDoubleSize)));
    903   __ sw(scratch2, FieldMemOperand(heap_number, HeapNumber::kMantissaOffset));
    904   __ sw(upper_bits, FieldMemOperand(heap_number, HeapNumber::kExponentOffset));
    905   __ mov(scratch2, dst_elements);
    906   __ sw(heap_number, MemOperand(dst_elements));
    907   __ Addu(dst_elements, dst_elements, kIntSize);
    908   __ RecordWrite(array,
    909                  scratch2,
    910                  heap_number,
    911                  kRAHasBeenSaved,
    912                  kDontSaveFPRegs,
    913                  EMIT_REMEMBERED_SET,
    914                  OMIT_SMI_CHECK);
    915   __ Branch(&entry);
    916 
    917   // Replace the-hole NaN with the-hole pointer.
    918   __ bind(&convert_hole);
    919   __ LoadRoot(scratch2, Heap::kTheHoleValueRootIndex);
    920   __ sw(scratch2, MemOperand(dst_elements));
    921   __ Addu(dst_elements, dst_elements, kIntSize);
    922 
    923   __ bind(&entry);
    924   __ Branch(&loop, lt, dst_elements, Operand(dst_end));
    925 
    926   __ MultiPop(receiver.bit() | target_map.bit() | value.bit() | key.bit());
    927   // Replace receiver's backing store with newly created and filled FixedArray.
    928   __ sw(array, FieldMemOperand(receiver, JSObject::kElementsOffset));
    929   __ RecordWriteField(receiver,
    930                       JSObject::kElementsOffset,
    931                       array,
    932                       scratch,
    933                       kRAHasBeenSaved,
    934                       kDontSaveFPRegs,
    935                       EMIT_REMEMBERED_SET,
    936                       OMIT_SMI_CHECK);
    937   __ pop(ra);
    938 
    939   __ bind(&only_change_map);
    940   // Update receiver's map.
    941   __ sw(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
    942   __ RecordWriteField(receiver,
    943                       HeapObject::kMapOffset,
    944                       target_map,
    945                       scratch,
    946                       kRAHasNotBeenSaved,
    947                       kDontSaveFPRegs,
    948                       OMIT_REMEMBERED_SET,
    949                       OMIT_SMI_CHECK);
    950 }
    951 
    952 
    953 void StringCharLoadGenerator::Generate(MacroAssembler* masm,
    954                                        Register string,
    955                                        Register index,
    956                                        Register result,
    957                                        Label* call_runtime) {
    958   // Fetch the instance type of the receiver into result register.
    959   __ lw(result, FieldMemOperand(string, HeapObject::kMapOffset));
    960   __ lbu(result, FieldMemOperand(result, Map::kInstanceTypeOffset));
    961 
    962   // We need special handling for indirect strings.
    963   Label check_sequential;
    964   __ And(at, result, Operand(kIsIndirectStringMask));
    965   __ Branch(&check_sequential, eq, at, Operand(zero_reg));
    966 
    967   // Dispatch on the indirect string shape: slice or cons.
    968   Label cons_string;
    969   __ And(at, result, Operand(kSlicedNotConsMask));
    970   __ Branch(&cons_string, eq, at, Operand(zero_reg));
    971 
    972   // Handle slices.
    973   Label indirect_string_loaded;
    974   __ lw(result, FieldMemOperand(string, SlicedString::kOffsetOffset));
    975   __ lw(string, FieldMemOperand(string, SlicedString::kParentOffset));
    976   __ sra(at, result, kSmiTagSize);
    977   __ Addu(index, index, at);
    978   __ jmp(&indirect_string_loaded);
    979 
    980   // Handle cons strings.
    981   // Check whether the right hand side is the empty string (i.e. if
    982   // this is really a flat string in a cons string). If that is not
    983   // the case we would rather go to the runtime system now to flatten
    984   // the string.
    985   __ bind(&cons_string);
    986   __ lw(result, FieldMemOperand(string, ConsString::kSecondOffset));
    987   __ LoadRoot(at, Heap::kempty_stringRootIndex);
    988   __ Branch(call_runtime, ne, result, Operand(at));
    989   // Get the first of the two strings and load its instance type.
    990   __ lw(string, FieldMemOperand(string, ConsString::kFirstOffset));
    991 
    992   __ bind(&indirect_string_loaded);
    993   __ lw(result, FieldMemOperand(string, HeapObject::kMapOffset));
    994   __ lbu(result, FieldMemOperand(result, Map::kInstanceTypeOffset));
    995 
    996   // Distinguish sequential and external strings. Only these two string
    997   // representations can reach here (slices and flat cons strings have been
    998   // reduced to the underlying sequential or external string).
    999   Label external_string, check_encoding;
   1000   __ bind(&check_sequential);
   1001   STATIC_ASSERT(kSeqStringTag == 0);
   1002   __ And(at, result, Operand(kStringRepresentationMask));
   1003   __ Branch(&external_string, ne, at, Operand(zero_reg));
   1004 
   1005   // Prepare sequential strings
   1006   STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
   1007   __ Addu(string,
   1008           string,
   1009           SeqTwoByteString::kHeaderSize - kHeapObjectTag);
   1010   __ jmp(&check_encoding);
   1011 
   1012   // Handle external strings.
   1013   __ bind(&external_string);
   1014   if (FLAG_debug_code) {
   1015     // Assert that we do not have a cons or slice (indirect strings) here.
   1016     // Sequential strings have already been ruled out.
   1017     __ And(at, result, Operand(kIsIndirectStringMask));
   1018     __ Assert(eq, kExternalStringExpectedButNotFound,
   1019         at, Operand(zero_reg));
   1020   }
   1021   // Rule out short external strings.
   1022   STATIC_ASSERT(kShortExternalStringTag != 0);
   1023   __ And(at, result, Operand(kShortExternalStringMask));
   1024   __ Branch(call_runtime, ne, at, Operand(zero_reg));
   1025   __ lw(string, FieldMemOperand(string, ExternalString::kResourceDataOffset));
   1026 
   1027   Label one_byte, done;
   1028   __ bind(&check_encoding);
   1029   STATIC_ASSERT(kTwoByteStringTag == 0);
   1030   __ And(at, result, Operand(kStringEncodingMask));
   1031   __ Branch(&one_byte, ne, at, Operand(zero_reg));
   1032   // Two-byte string.
   1033   __ Lsa(at, string, index, 1);
   1034   __ lhu(result, MemOperand(at));
   1035   __ jmp(&done);
   1036   __ bind(&one_byte);
   1037   // One_byte string.
   1038   __ Addu(at, string, index);
   1039   __ lbu(result, MemOperand(at));
   1040   __ bind(&done);
   1041 }
   1042 
   1043 #ifdef DEBUG
   1044 // nop(CODE_AGE_MARKER_NOP)
   1045 static const uint32_t kCodeAgePatchFirstInstruction = 0x00010180;
   1046 #endif
   1047 
   1048 
   1049 CodeAgingHelper::CodeAgingHelper(Isolate* isolate) {
   1050   USE(isolate);
   1051   DCHECK(young_sequence_.length() == kNoCodeAgeSequenceLength);
   1052   // Since patcher is a large object, allocate it dynamically when needed,
   1053   // to avoid overloading the stack in stress conditions.
   1054   // DONT_FLUSH is used because the CodeAgingHelper is initialized early in
   1055   // the process, before MIPS simulator ICache is setup.
   1056   std::unique_ptr<CodePatcher> patcher(
   1057       new CodePatcher(isolate, young_sequence_.start(),
   1058                       young_sequence_.length() / Assembler::kInstrSize,
   1059                       CodePatcher::DONT_FLUSH));
   1060   PredictableCodeSizeScope scope(patcher->masm(), young_sequence_.length());
   1061   patcher->masm()->PushStandardFrame(a1);
   1062   patcher->masm()->nop(Assembler::CODE_AGE_SEQUENCE_NOP);
   1063 }
   1064 
   1065 
   1066 #ifdef DEBUG
   1067 bool CodeAgingHelper::IsOld(byte* candidate) const {
   1068   return Memory::uint32_at(candidate) == kCodeAgePatchFirstInstruction;
   1069 }
   1070 #endif
   1071 
   1072 
   1073 bool Code::IsYoungSequence(Isolate* isolate, byte* sequence) {
   1074   bool result = isolate->code_aging_helper()->IsYoung(sequence);
   1075   DCHECK(result || isolate->code_aging_helper()->IsOld(sequence));
   1076   return result;
   1077 }
   1078 
   1079 
   1080 void Code::GetCodeAgeAndParity(Isolate* isolate, byte* sequence, Age* age,
   1081                                MarkingParity* parity) {
   1082   if (IsYoungSequence(isolate, sequence)) {
   1083     *age = kNoAgeCodeAge;
   1084     *parity = NO_MARKING_PARITY;
   1085   } else {
   1086     Address target_address = Assembler::target_address_at(
   1087         sequence + Assembler::kInstrSize);
   1088     Code* stub = GetCodeFromTargetAddress(target_address);
   1089     GetCodeAgeAndParity(stub, age, parity);
   1090   }
   1091 }
   1092 
   1093 
   1094 void Code::PatchPlatformCodeAge(Isolate* isolate,
   1095                                 byte* sequence,
   1096                                 Code::Age age,
   1097                                 MarkingParity parity) {
   1098   uint32_t young_length = isolate->code_aging_helper()->young_sequence_length();
   1099   if (age == kNoAgeCodeAge) {
   1100     isolate->code_aging_helper()->CopyYoungSequenceTo(sequence);
   1101     Assembler::FlushICache(isolate, sequence, young_length);
   1102   } else {
   1103     Code* stub = GetCodeAgeStub(isolate, age, parity);
   1104     CodePatcher patcher(isolate, sequence,
   1105                         young_length / Assembler::kInstrSize);
   1106     // Mark this code sequence for FindPlatformCodeAgeSequence().
   1107     patcher.masm()->nop(Assembler::CODE_AGE_MARKER_NOP);
   1108     // Load the stub address to t9 and call it,
   1109     // GetCodeAgeAndParity() extracts the stub address from this instruction.
   1110     patcher.masm()->li(
   1111         t9,
   1112         Operand(reinterpret_cast<uint32_t>(stub->instruction_start())),
   1113         CONSTANT_SIZE);
   1114     patcher.masm()->nop();  // Prevent jalr to jal optimization.
   1115     patcher.masm()->jalr(t9, a0);
   1116     patcher.masm()->nop();  // Branch delay slot nop.
   1117     patcher.masm()->nop();  // Pad the empty space.
   1118   }
   1119 }
   1120 
   1121 
   1122 #undef __
   1123 
   1124 }  // namespace internal
   1125 }  // namespace v8
   1126 
   1127 #endif  // V8_TARGET_ARCH_MIPS
   1128