1 // Copyright 2011 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include <limits.h> 6 #include <stdarg.h> 7 #include <stdlib.h> 8 #include <cmath> 9 10 #if V8_TARGET_ARCH_MIPS64 11 12 #include "src/assembler.h" 13 #include "src/base/bits.h" 14 #include "src/codegen.h" 15 #include "src/disasm.h" 16 #include "src/mips64/constants-mips64.h" 17 #include "src/mips64/simulator-mips64.h" 18 #include "src/ostreams.h" 19 #include "src/runtime/runtime-utils.h" 20 21 // Only build the simulator if not compiling for real MIPS hardware. 22 #if defined(USE_SIMULATOR) 23 24 namespace v8 { 25 namespace internal { 26 27 // Util functions. 28 inline bool HaveSameSign(int64_t a, int64_t b) { return ((a ^ b) >= 0); } 29 30 uint32_t get_fcsr_condition_bit(uint32_t cc) { 31 if (cc == 0) { 32 return 23; 33 } else { 34 return 24 + cc; 35 } 36 } 37 38 39 static int64_t MultiplyHighSigned(int64_t u, int64_t v) { 40 uint64_t u0, v0, w0; 41 int64_t u1, v1, w1, w2, t; 42 43 u0 = u & 0xffffffffL; 44 u1 = u >> 32; 45 v0 = v & 0xffffffffL; 46 v1 = v >> 32; 47 48 w0 = u0 * v0; 49 t = u1 * v0 + (w0 >> 32); 50 w1 = t & 0xffffffffL; 51 w2 = t >> 32; 52 w1 = u0 * v1 + w1; 53 54 return u1 * v1 + w2 + (w1 >> 32); 55 } 56 57 58 // This macro provides a platform independent use of sscanf. The reason for 59 // SScanF not being implemented in a platform independent was through 60 // ::v8::internal::OS in the same way as SNPrintF is that the Windows C Run-Time 61 // Library does not provide vsscanf. 62 #define SScanF sscanf // NOLINT 63 64 // The MipsDebugger class is used by the simulator while debugging simulated 65 // code. 66 class MipsDebugger { 67 public: 68 explicit MipsDebugger(Simulator* sim) : sim_(sim) { } 69 70 void Stop(Instruction* instr); 71 void Debug(); 72 // Print all registers with a nice formatting. 73 void PrintAllRegs(); 74 void PrintAllRegsIncludingFPU(); 75 76 private: 77 // We set the breakpoint code to 0xfffff to easily recognize it. 78 static const Instr kBreakpointInstr = SPECIAL | BREAK | 0xfffff << 6; 79 static const Instr kNopInstr = 0x0; 80 81 Simulator* sim_; 82 83 int64_t GetRegisterValue(int regnum); 84 int64_t GetFPURegisterValue(int regnum); 85 float GetFPURegisterValueFloat(int regnum); 86 double GetFPURegisterValueDouble(int regnum); 87 bool GetValue(const char* desc, int64_t* value); 88 89 // Set or delete a breakpoint. Returns true if successful. 90 bool SetBreakpoint(Instruction* breakpc); 91 bool DeleteBreakpoint(Instruction* breakpc); 92 93 // Undo and redo all breakpoints. This is needed to bracket disassembly and 94 // execution to skip past breakpoints when run from the debugger. 95 void UndoBreakpoints(); 96 void RedoBreakpoints(); 97 }; 98 99 inline void UNSUPPORTED() { printf("Sim: Unsupported instruction.\n"); } 100 101 void MipsDebugger::Stop(Instruction* instr) { 102 // Get the stop code. 103 uint32_t code = instr->Bits(25, 6); 104 PrintF("Simulator hit (%u)\n", code); 105 // TODO(yuyin): 2 -> 3? 106 sim_->set_pc(sim_->get_pc() + 3 * Instruction::kInstrSize); 107 Debug(); 108 } 109 110 int64_t MipsDebugger::GetRegisterValue(int regnum) { 111 if (regnum == kNumSimuRegisters) { 112 return sim_->get_pc(); 113 } else { 114 return sim_->get_register(regnum); 115 } 116 } 117 118 119 int64_t MipsDebugger::GetFPURegisterValue(int regnum) { 120 if (regnum == kNumFPURegisters) { 121 return sim_->get_pc(); 122 } else { 123 return sim_->get_fpu_register(regnum); 124 } 125 } 126 127 128 float MipsDebugger::GetFPURegisterValueFloat(int regnum) { 129 if (regnum == kNumFPURegisters) { 130 return sim_->get_pc(); 131 } else { 132 return sim_->get_fpu_register_float(regnum); 133 } 134 } 135 136 137 double MipsDebugger::GetFPURegisterValueDouble(int regnum) { 138 if (regnum == kNumFPURegisters) { 139 return sim_->get_pc(); 140 } else { 141 return sim_->get_fpu_register_double(regnum); 142 } 143 } 144 145 146 bool MipsDebugger::GetValue(const char* desc, int64_t* value) { 147 int regnum = Registers::Number(desc); 148 int fpuregnum = FPURegisters::Number(desc); 149 150 if (regnum != kInvalidRegister) { 151 *value = GetRegisterValue(regnum); 152 return true; 153 } else if (fpuregnum != kInvalidFPURegister) { 154 *value = GetFPURegisterValue(fpuregnum); 155 return true; 156 } else if (strncmp(desc, "0x", 2) == 0) { 157 return SScanF(desc + 2, "%" SCNx64, 158 reinterpret_cast<uint64_t*>(value)) == 1; 159 } else { 160 return SScanF(desc, "%" SCNu64, reinterpret_cast<uint64_t*>(value)) == 1; 161 } 162 return false; 163 } 164 165 166 bool MipsDebugger::SetBreakpoint(Instruction* breakpc) { 167 // Check if a breakpoint can be set. If not return without any side-effects. 168 if (sim_->break_pc_ != NULL) { 169 return false; 170 } 171 172 // Set the breakpoint. 173 sim_->break_pc_ = breakpc; 174 sim_->break_instr_ = breakpc->InstructionBits(); 175 // Not setting the breakpoint instruction in the code itself. It will be set 176 // when the debugger shell continues. 177 return true; 178 } 179 180 181 bool MipsDebugger::DeleteBreakpoint(Instruction* breakpc) { 182 if (sim_->break_pc_ != NULL) { 183 sim_->break_pc_->SetInstructionBits(sim_->break_instr_); 184 } 185 186 sim_->break_pc_ = NULL; 187 sim_->break_instr_ = 0; 188 return true; 189 } 190 191 192 void MipsDebugger::UndoBreakpoints() { 193 if (sim_->break_pc_ != NULL) { 194 sim_->break_pc_->SetInstructionBits(sim_->break_instr_); 195 } 196 } 197 198 199 void MipsDebugger::RedoBreakpoints() { 200 if (sim_->break_pc_ != NULL) { 201 sim_->break_pc_->SetInstructionBits(kBreakpointInstr); 202 } 203 } 204 205 206 void MipsDebugger::PrintAllRegs() { 207 #define REG_INFO(n) Registers::Name(n), GetRegisterValue(n), GetRegisterValue(n) 208 209 PrintF("\n"); 210 // at, v0, a0. 211 PrintF("%3s: 0x%016" PRIx64 " %14" PRId64 "\t%3s: 0x%016" PRIx64 " %14" PRId64 212 "\t%3s: 0x%016" PRIx64 " %14" PRId64 "\n", 213 REG_INFO(1), REG_INFO(2), REG_INFO(4)); 214 // v1, a1. 215 PrintF("%34s\t%3s: 0x%016" PRIx64 " %14" PRId64 " \t%3s: 0x%016" PRIx64 216 " %14" PRId64 " \n", 217 "", REG_INFO(3), REG_INFO(5)); 218 // a2. 219 PrintF("%34s\t%34s\t%3s: 0x%016" PRIx64 " %14" PRId64 " \n", "", "", 220 REG_INFO(6)); 221 // a3. 222 PrintF("%34s\t%34s\t%3s: 0x%016" PRIx64 " %14" PRId64 " \n", "", "", 223 REG_INFO(7)); 224 PrintF("\n"); 225 // a4-t3, s0-s7 226 for (int i = 0; i < 8; i++) { 227 PrintF("%3s: 0x%016" PRIx64 " %14" PRId64 " \t%3s: 0x%016" PRIx64 228 " %14" PRId64 " \n", 229 REG_INFO(8 + i), REG_INFO(16 + i)); 230 } 231 PrintF("\n"); 232 // t8, k0, LO. 233 PrintF("%3s: 0x%016" PRIx64 " %14" PRId64 " \t%3s: 0x%016" PRIx64 234 " %14" PRId64 " \t%3s: 0x%016" PRIx64 " %14" PRId64 " \n", 235 REG_INFO(24), REG_INFO(26), REG_INFO(32)); 236 // t9, k1, HI. 237 PrintF("%3s: 0x%016" PRIx64 " %14" PRId64 " \t%3s: 0x%016" PRIx64 238 " %14" PRId64 " \t%3s: 0x%016" PRIx64 " %14" PRId64 " \n", 239 REG_INFO(25), REG_INFO(27), REG_INFO(33)); 240 // sp, fp, gp. 241 PrintF("%3s: 0x%016" PRIx64 " %14" PRId64 " \t%3s: 0x%016" PRIx64 242 " %14" PRId64 " \t%3s: 0x%016" PRIx64 " %14" PRId64 " \n", 243 REG_INFO(29), REG_INFO(30), REG_INFO(28)); 244 // pc. 245 PrintF("%3s: 0x%016" PRIx64 " %14" PRId64 " \t%3s: 0x%016" PRIx64 246 " %14" PRId64 " \n", 247 REG_INFO(31), REG_INFO(34)); 248 249 #undef REG_INFO 250 #undef FPU_REG_INFO 251 } 252 253 254 void MipsDebugger::PrintAllRegsIncludingFPU() { 255 #define FPU_REG_INFO(n) FPURegisters::Name(n), \ 256 GetFPURegisterValue(n), \ 257 GetFPURegisterValueDouble(n) 258 259 PrintAllRegs(); 260 261 PrintF("\n\n"); 262 // f0, f1, f2, ... f31. 263 // TODO(plind): consider printing 2 columns for space efficiency. 264 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(0)); 265 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(1)); 266 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(2)); 267 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(3)); 268 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(4)); 269 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(5)); 270 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(6)); 271 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(7)); 272 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(8)); 273 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(9)); 274 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(10)); 275 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(11)); 276 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(12)); 277 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(13)); 278 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(14)); 279 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(15)); 280 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(16)); 281 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(17)); 282 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(18)); 283 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(19)); 284 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(20)); 285 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(21)); 286 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(22)); 287 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(23)); 288 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(24)); 289 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(25)); 290 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(26)); 291 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(27)); 292 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(28)); 293 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(29)); 294 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(30)); 295 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(31)); 296 297 #undef REG_INFO 298 #undef FPU_REG_INFO 299 } 300 301 302 void MipsDebugger::Debug() { 303 intptr_t last_pc = -1; 304 bool done = false; 305 306 #define COMMAND_SIZE 63 307 #define ARG_SIZE 255 308 309 #define STR(a) #a 310 #define XSTR(a) STR(a) 311 312 char cmd[COMMAND_SIZE + 1]; 313 char arg1[ARG_SIZE + 1]; 314 char arg2[ARG_SIZE + 1]; 315 char* argv[3] = { cmd, arg1, arg2 }; 316 317 // Make sure to have a proper terminating character if reaching the limit. 318 cmd[COMMAND_SIZE] = 0; 319 arg1[ARG_SIZE] = 0; 320 arg2[ARG_SIZE] = 0; 321 322 // Undo all set breakpoints while running in the debugger shell. This will 323 // make them invisible to all commands. 324 UndoBreakpoints(); 325 326 while (!done && (sim_->get_pc() != Simulator::end_sim_pc)) { 327 if (last_pc != sim_->get_pc()) { 328 disasm::NameConverter converter; 329 disasm::Disassembler dasm(converter); 330 // Use a reasonably large buffer. 331 v8::internal::EmbeddedVector<char, 256> buffer; 332 dasm.InstructionDecode(buffer, 333 reinterpret_cast<byte*>(sim_->get_pc())); 334 PrintF(" 0x%016" PRIx64 " %s\n", sim_->get_pc(), buffer.start()); 335 last_pc = sim_->get_pc(); 336 } 337 char* line = ReadLine("sim> "); 338 if (line == NULL) { 339 break; 340 } else { 341 char* last_input = sim_->last_debugger_input(); 342 if (strcmp(line, "\n") == 0 && last_input != NULL) { 343 line = last_input; 344 } else { 345 // Ownership is transferred to sim_; 346 sim_->set_last_debugger_input(line); 347 } 348 // Use sscanf to parse the individual parts of the command line. At the 349 // moment no command expects more than two parameters. 350 int argc = SScanF(line, 351 "%" XSTR(COMMAND_SIZE) "s " 352 "%" XSTR(ARG_SIZE) "s " 353 "%" XSTR(ARG_SIZE) "s", 354 cmd, arg1, arg2); 355 if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) { 356 Instruction* instr = reinterpret_cast<Instruction*>(sim_->get_pc()); 357 if (!(instr->IsTrap()) || 358 instr->InstructionBits() == rtCallRedirInstr) { 359 sim_->InstructionDecode( 360 reinterpret_cast<Instruction*>(sim_->get_pc())); 361 } else { 362 // Allow si to jump over generated breakpoints. 363 PrintF("/!\\ Jumping over generated breakpoint.\n"); 364 sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize); 365 } 366 } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) { 367 // Execute the one instruction we broke at with breakpoints disabled. 368 sim_->InstructionDecode(reinterpret_cast<Instruction*>(sim_->get_pc())); 369 // Leave the debugger shell. 370 done = true; 371 } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) { 372 if (argc == 2) { 373 int64_t value; 374 double dvalue; 375 if (strcmp(arg1, "all") == 0) { 376 PrintAllRegs(); 377 } else if (strcmp(arg1, "allf") == 0) { 378 PrintAllRegsIncludingFPU(); 379 } else { 380 int regnum = Registers::Number(arg1); 381 int fpuregnum = FPURegisters::Number(arg1); 382 383 if (regnum != kInvalidRegister) { 384 value = GetRegisterValue(regnum); 385 PrintF("%s: 0x%08" PRIx64 " %" PRId64 " \n", arg1, value, 386 value); 387 } else if (fpuregnum != kInvalidFPURegister) { 388 value = GetFPURegisterValue(fpuregnum); 389 dvalue = GetFPURegisterValueDouble(fpuregnum); 390 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", 391 FPURegisters::Name(fpuregnum), value, dvalue); 392 } else { 393 PrintF("%s unrecognized\n", arg1); 394 } 395 } 396 } else { 397 if (argc == 3) { 398 if (strcmp(arg2, "single") == 0) { 399 int64_t value; 400 float fvalue; 401 int fpuregnum = FPURegisters::Number(arg1); 402 403 if (fpuregnum != kInvalidFPURegister) { 404 value = GetFPURegisterValue(fpuregnum); 405 value &= 0xffffffffUL; 406 fvalue = GetFPURegisterValueFloat(fpuregnum); 407 PrintF("%s: 0x%08" PRIx64 " %11.4e\n", arg1, value, fvalue); 408 } else { 409 PrintF("%s unrecognized\n", arg1); 410 } 411 } else { 412 PrintF("print <fpu register> single\n"); 413 } 414 } else { 415 PrintF("print <register> or print <fpu register> single\n"); 416 } 417 } 418 } else if ((strcmp(cmd, "po") == 0) 419 || (strcmp(cmd, "printobject") == 0)) { 420 if (argc == 2) { 421 int64_t value; 422 OFStream os(stdout); 423 if (GetValue(arg1, &value)) { 424 Object* obj = reinterpret_cast<Object*>(value); 425 os << arg1 << ": \n"; 426 #ifdef DEBUG 427 obj->Print(os); 428 os << "\n"; 429 #else 430 os << Brief(obj) << "\n"; 431 #endif 432 } else { 433 os << arg1 << " unrecognized\n"; 434 } 435 } else { 436 PrintF("printobject <value>\n"); 437 } 438 } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) { 439 int64_t* cur = NULL; 440 int64_t* end = NULL; 441 int next_arg = 1; 442 443 if (strcmp(cmd, "stack") == 0) { 444 cur = reinterpret_cast<int64_t*>(sim_->get_register(Simulator::sp)); 445 } else { // Command "mem". 446 int64_t value; 447 if (!GetValue(arg1, &value)) { 448 PrintF("%s unrecognized\n", arg1); 449 continue; 450 } 451 cur = reinterpret_cast<int64_t*>(value); 452 next_arg++; 453 } 454 455 int64_t words; 456 if (argc == next_arg) { 457 words = 10; 458 } else { 459 if (!GetValue(argv[next_arg], &words)) { 460 words = 10; 461 } 462 } 463 end = cur + words; 464 465 while (cur < end) { 466 PrintF(" 0x%012" PRIxPTR " : 0x%016" PRIx64 " %14" PRId64 " ", 467 reinterpret_cast<intptr_t>(cur), *cur, *cur); 468 HeapObject* obj = reinterpret_cast<HeapObject*>(*cur); 469 int64_t value = *cur; 470 Heap* current_heap = sim_->isolate_->heap(); 471 if (((value & 1) == 0) || 472 current_heap->ContainsSlow(obj->address())) { 473 PrintF(" ("); 474 if ((value & 1) == 0) { 475 PrintF("smi %d", static_cast<int>(value >> 32)); 476 } else { 477 obj->ShortPrint(); 478 } 479 PrintF(")"); 480 } 481 PrintF("\n"); 482 cur++; 483 } 484 485 } else if ((strcmp(cmd, "disasm") == 0) || 486 (strcmp(cmd, "dpc") == 0) || 487 (strcmp(cmd, "di") == 0)) { 488 disasm::NameConverter converter; 489 disasm::Disassembler dasm(converter); 490 // Use a reasonably large buffer. 491 v8::internal::EmbeddedVector<char, 256> buffer; 492 493 byte* cur = NULL; 494 byte* end = NULL; 495 496 if (argc == 1) { 497 cur = reinterpret_cast<byte*>(sim_->get_pc()); 498 end = cur + (10 * Instruction::kInstrSize); 499 } else if (argc == 2) { 500 int regnum = Registers::Number(arg1); 501 if (regnum != kInvalidRegister || strncmp(arg1, "0x", 2) == 0) { 502 // The argument is an address or a register name. 503 int64_t value; 504 if (GetValue(arg1, &value)) { 505 cur = reinterpret_cast<byte*>(value); 506 // Disassemble 10 instructions at <arg1>. 507 end = cur + (10 * Instruction::kInstrSize); 508 } 509 } else { 510 // The argument is the number of instructions. 511 int64_t value; 512 if (GetValue(arg1, &value)) { 513 cur = reinterpret_cast<byte*>(sim_->get_pc()); 514 // Disassemble <arg1> instructions. 515 end = cur + (value * Instruction::kInstrSize); 516 } 517 } 518 } else { 519 int64_t value1; 520 int64_t value2; 521 if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) { 522 cur = reinterpret_cast<byte*>(value1); 523 end = cur + (value2 * Instruction::kInstrSize); 524 } 525 } 526 527 while (cur < end) { 528 dasm.InstructionDecode(buffer, cur); 529 PrintF(" 0x%08" PRIxPTR " %s\n", reinterpret_cast<intptr_t>(cur), 530 buffer.start()); 531 cur += Instruction::kInstrSize; 532 } 533 } else if (strcmp(cmd, "gdb") == 0) { 534 PrintF("relinquishing control to gdb\n"); 535 v8::base::OS::DebugBreak(); 536 PrintF("regaining control from gdb\n"); 537 } else if (strcmp(cmd, "break") == 0) { 538 if (argc == 2) { 539 int64_t value; 540 if (GetValue(arg1, &value)) { 541 if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) { 542 PrintF("setting breakpoint failed\n"); 543 } 544 } else { 545 PrintF("%s unrecognized\n", arg1); 546 } 547 } else { 548 PrintF("break <address>\n"); 549 } 550 } else if (strcmp(cmd, "del") == 0) { 551 if (!DeleteBreakpoint(NULL)) { 552 PrintF("deleting breakpoint failed\n"); 553 } 554 } else if (strcmp(cmd, "flags") == 0) { 555 PrintF("No flags on MIPS !\n"); 556 } else if (strcmp(cmd, "stop") == 0) { 557 int64_t value; 558 intptr_t stop_pc = sim_->get_pc() - 559 2 * Instruction::kInstrSize; 560 Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc); 561 Instruction* msg_address = 562 reinterpret_cast<Instruction*>(stop_pc + 563 Instruction::kInstrSize); 564 if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) { 565 // Remove the current stop. 566 if (sim_->IsStopInstruction(stop_instr)) { 567 stop_instr->SetInstructionBits(kNopInstr); 568 msg_address->SetInstructionBits(kNopInstr); 569 } else { 570 PrintF("Not at debugger stop.\n"); 571 } 572 } else if (argc == 3) { 573 // Print information about all/the specified breakpoint(s). 574 if (strcmp(arg1, "info") == 0) { 575 if (strcmp(arg2, "all") == 0) { 576 PrintF("Stop information:\n"); 577 for (uint32_t i = kMaxWatchpointCode + 1; 578 i <= kMaxStopCode; 579 i++) { 580 sim_->PrintStopInfo(i); 581 } 582 } else if (GetValue(arg2, &value)) { 583 sim_->PrintStopInfo(value); 584 } else { 585 PrintF("Unrecognized argument.\n"); 586 } 587 } else if (strcmp(arg1, "enable") == 0) { 588 // Enable all/the specified breakpoint(s). 589 if (strcmp(arg2, "all") == 0) { 590 for (uint32_t i = kMaxWatchpointCode + 1; 591 i <= kMaxStopCode; 592 i++) { 593 sim_->EnableStop(i); 594 } 595 } else if (GetValue(arg2, &value)) { 596 sim_->EnableStop(value); 597 } else { 598 PrintF("Unrecognized argument.\n"); 599 } 600 } else if (strcmp(arg1, "disable") == 0) { 601 // Disable all/the specified breakpoint(s). 602 if (strcmp(arg2, "all") == 0) { 603 for (uint32_t i = kMaxWatchpointCode + 1; 604 i <= kMaxStopCode; 605 i++) { 606 sim_->DisableStop(i); 607 } 608 } else if (GetValue(arg2, &value)) { 609 sim_->DisableStop(value); 610 } else { 611 PrintF("Unrecognized argument.\n"); 612 } 613 } 614 } else { 615 PrintF("Wrong usage. Use help command for more information.\n"); 616 } 617 } else if ((strcmp(cmd, "stat") == 0) || (strcmp(cmd, "st") == 0)) { 618 // Print registers and disassemble. 619 PrintAllRegs(); 620 PrintF("\n"); 621 622 disasm::NameConverter converter; 623 disasm::Disassembler dasm(converter); 624 // Use a reasonably large buffer. 625 v8::internal::EmbeddedVector<char, 256> buffer; 626 627 byte* cur = NULL; 628 byte* end = NULL; 629 630 if (argc == 1) { 631 cur = reinterpret_cast<byte*>(sim_->get_pc()); 632 end = cur + (10 * Instruction::kInstrSize); 633 } else if (argc == 2) { 634 int64_t value; 635 if (GetValue(arg1, &value)) { 636 cur = reinterpret_cast<byte*>(value); 637 // no length parameter passed, assume 10 instructions 638 end = cur + (10 * Instruction::kInstrSize); 639 } 640 } else { 641 int64_t value1; 642 int64_t value2; 643 if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) { 644 cur = reinterpret_cast<byte*>(value1); 645 end = cur + (value2 * Instruction::kInstrSize); 646 } 647 } 648 649 while (cur < end) { 650 dasm.InstructionDecode(buffer, cur); 651 PrintF(" 0x%08" PRIxPTR " %s\n", reinterpret_cast<intptr_t>(cur), 652 buffer.start()); 653 cur += Instruction::kInstrSize; 654 } 655 } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) { 656 PrintF("cont\n"); 657 PrintF(" continue execution (alias 'c')\n"); 658 PrintF("stepi\n"); 659 PrintF(" step one instruction (alias 'si')\n"); 660 PrintF("print <register>\n"); 661 PrintF(" print register content (alias 'p')\n"); 662 PrintF(" use register name 'all' to print all registers\n"); 663 PrintF("printobject <register>\n"); 664 PrintF(" print an object from a register (alias 'po')\n"); 665 PrintF("stack [<words>]\n"); 666 PrintF(" dump stack content, default dump 10 words)\n"); 667 PrintF("mem <address> [<words>]\n"); 668 PrintF(" dump memory content, default dump 10 words)\n"); 669 PrintF("flags\n"); 670 PrintF(" print flags\n"); 671 PrintF("disasm [<instructions>]\n"); 672 PrintF("disasm [<address/register>]\n"); 673 PrintF("disasm [[<address/register>] <instructions>]\n"); 674 PrintF(" disassemble code, default is 10 instructions\n"); 675 PrintF(" from pc (alias 'di')\n"); 676 PrintF("gdb\n"); 677 PrintF(" enter gdb\n"); 678 PrintF("break <address>\n"); 679 PrintF(" set a break point on the address\n"); 680 PrintF("del\n"); 681 PrintF(" delete the breakpoint\n"); 682 PrintF("stop feature:\n"); 683 PrintF(" Description:\n"); 684 PrintF(" Stops are debug instructions inserted by\n"); 685 PrintF(" the Assembler::stop() function.\n"); 686 PrintF(" When hitting a stop, the Simulator will\n"); 687 PrintF(" stop and and give control to the Debugger.\n"); 688 PrintF(" All stop codes are watched:\n"); 689 PrintF(" - They can be enabled / disabled: the Simulator\n"); 690 PrintF(" will / won't stop when hitting them.\n"); 691 PrintF(" - The Simulator keeps track of how many times they \n"); 692 PrintF(" are met. (See the info command.) Going over a\n"); 693 PrintF(" disabled stop still increases its counter. \n"); 694 PrintF(" Commands:\n"); 695 PrintF(" stop info all/<code> : print infos about number <code>\n"); 696 PrintF(" or all stop(s).\n"); 697 PrintF(" stop enable/disable all/<code> : enables / disables\n"); 698 PrintF(" all or number <code> stop(s)\n"); 699 PrintF(" stop unstop\n"); 700 PrintF(" ignore the stop instruction at the current location\n"); 701 PrintF(" from now on\n"); 702 } else { 703 PrintF("Unknown command: %s\n", cmd); 704 } 705 } 706 } 707 708 // Add all the breakpoints back to stop execution and enter the debugger 709 // shell when hit. 710 RedoBreakpoints(); 711 712 #undef COMMAND_SIZE 713 #undef ARG_SIZE 714 715 #undef STR 716 #undef XSTR 717 } 718 719 720 static bool ICacheMatch(void* one, void* two) { 721 DCHECK((reinterpret_cast<intptr_t>(one) & CachePage::kPageMask) == 0); 722 DCHECK((reinterpret_cast<intptr_t>(two) & CachePage::kPageMask) == 0); 723 return one == two; 724 } 725 726 727 static uint32_t ICacheHash(void* key) { 728 return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2; 729 } 730 731 732 static bool AllOnOnePage(uintptr_t start, size_t size) { 733 intptr_t start_page = (start & ~CachePage::kPageMask); 734 intptr_t end_page = ((start + size) & ~CachePage::kPageMask); 735 return start_page == end_page; 736 } 737 738 739 void Simulator::set_last_debugger_input(char* input) { 740 DeleteArray(last_debugger_input_); 741 last_debugger_input_ = input; 742 } 743 744 void Simulator::FlushICache(base::CustomMatcherHashMap* i_cache, 745 void* start_addr, size_t size) { 746 int64_t start = reinterpret_cast<int64_t>(start_addr); 747 int64_t intra_line = (start & CachePage::kLineMask); 748 start -= intra_line; 749 size += intra_line; 750 size = ((size - 1) | CachePage::kLineMask) + 1; 751 int offset = (start & CachePage::kPageMask); 752 while (!AllOnOnePage(start, size - 1)) { 753 int bytes_to_flush = CachePage::kPageSize - offset; 754 FlushOnePage(i_cache, start, bytes_to_flush); 755 start += bytes_to_flush; 756 size -= bytes_to_flush; 757 DCHECK_EQ((int64_t)0, start & CachePage::kPageMask); 758 offset = 0; 759 } 760 if (size != 0) { 761 FlushOnePage(i_cache, start, size); 762 } 763 } 764 765 CachePage* Simulator::GetCachePage(base::CustomMatcherHashMap* i_cache, 766 void* page) { 767 base::HashMap::Entry* entry = i_cache->LookupOrInsert(page, ICacheHash(page)); 768 if (entry->value == NULL) { 769 CachePage* new_page = new CachePage(); 770 entry->value = new_page; 771 } 772 return reinterpret_cast<CachePage*>(entry->value); 773 } 774 775 776 // Flush from start up to and not including start + size. 777 void Simulator::FlushOnePage(base::CustomMatcherHashMap* i_cache, 778 intptr_t start, size_t size) { 779 DCHECK(size <= CachePage::kPageSize); 780 DCHECK(AllOnOnePage(start, size - 1)); 781 DCHECK((start & CachePage::kLineMask) == 0); 782 DCHECK((size & CachePage::kLineMask) == 0); 783 void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask)); 784 int offset = (start & CachePage::kPageMask); 785 CachePage* cache_page = GetCachePage(i_cache, page); 786 char* valid_bytemap = cache_page->ValidityByte(offset); 787 memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift); 788 } 789 790 void Simulator::CheckICache(base::CustomMatcherHashMap* i_cache, 791 Instruction* instr) { 792 int64_t address = reinterpret_cast<int64_t>(instr); 793 void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask)); 794 void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask)); 795 int offset = (address & CachePage::kPageMask); 796 CachePage* cache_page = GetCachePage(i_cache, page); 797 char* cache_valid_byte = cache_page->ValidityByte(offset); 798 bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID); 799 char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask); 800 if (cache_hit) { 801 // Check that the data in memory matches the contents of the I-cache. 802 CHECK_EQ(0, memcmp(reinterpret_cast<void*>(instr), 803 cache_page->CachedData(offset), 804 Instruction::kInstrSize)); 805 } else { 806 // Cache miss. Load memory into the cache. 807 memcpy(cached_line, line, CachePage::kLineLength); 808 *cache_valid_byte = CachePage::LINE_VALID; 809 } 810 } 811 812 813 void Simulator::Initialize(Isolate* isolate) { 814 if (isolate->simulator_initialized()) return; 815 isolate->set_simulator_initialized(true); 816 ::v8::internal::ExternalReference::set_redirector(isolate, 817 &RedirectExternalReference); 818 } 819 820 821 Simulator::Simulator(Isolate* isolate) : isolate_(isolate) { 822 i_cache_ = isolate_->simulator_i_cache(); 823 if (i_cache_ == NULL) { 824 i_cache_ = new base::CustomMatcherHashMap(&ICacheMatch); 825 isolate_->set_simulator_i_cache(i_cache_); 826 } 827 Initialize(isolate); 828 // Set up simulator support first. Some of this information is needed to 829 // setup the architecture state. 830 stack_size_ = FLAG_sim_stack_size * KB; 831 stack_ = reinterpret_cast<char*>(malloc(stack_size_)); 832 pc_modified_ = false; 833 icount_ = 0; 834 break_count_ = 0; 835 break_pc_ = NULL; 836 break_instr_ = 0; 837 838 // Set up architecture state. 839 // All registers are initialized to zero to start with. 840 for (int i = 0; i < kNumSimuRegisters; i++) { 841 registers_[i] = 0; 842 } 843 for (int i = 0; i < kNumFPURegisters; i++) { 844 FPUregisters_[i] = 0; 845 } 846 847 if (kArchVariant == kMips64r6) { 848 FCSR_ = kFCSRNaN2008FlagMask; 849 } else { 850 FCSR_ = 0; 851 } 852 853 // The sp is initialized to point to the bottom (high address) of the 854 // allocated stack area. To be safe in potential stack underflows we leave 855 // some buffer below. 856 registers_[sp] = reinterpret_cast<int64_t>(stack_) + stack_size_ - 64; 857 // The ra and pc are initialized to a known bad value that will cause an 858 // access violation if the simulator ever tries to execute it. 859 registers_[pc] = bad_ra; 860 registers_[ra] = bad_ra; 861 862 last_debugger_input_ = NULL; 863 } 864 865 866 Simulator::~Simulator() { free(stack_); } 867 868 869 // When the generated code calls an external reference we need to catch that in 870 // the simulator. The external reference will be a function compiled for the 871 // host architecture. We need to call that function instead of trying to 872 // execute it with the simulator. We do that by redirecting the external 873 // reference to a swi (software-interrupt) instruction that is handled by 874 // the simulator. We write the original destination of the jump just at a known 875 // offset from the swi instruction so the simulator knows what to call. 876 class Redirection { 877 public: 878 Redirection(Isolate* isolate, void* external_function, 879 ExternalReference::Type type) 880 : external_function_(external_function), 881 swi_instruction_(rtCallRedirInstr), 882 type_(type), 883 next_(NULL) { 884 next_ = isolate->simulator_redirection(); 885 Simulator::current(isolate)-> 886 FlushICache(isolate->simulator_i_cache(), 887 reinterpret_cast<void*>(&swi_instruction_), 888 Instruction::kInstrSize); 889 isolate->set_simulator_redirection(this); 890 } 891 892 void* address_of_swi_instruction() { 893 return reinterpret_cast<void*>(&swi_instruction_); 894 } 895 896 void* external_function() { return external_function_; } 897 ExternalReference::Type type() { return type_; } 898 899 static Redirection* Get(Isolate* isolate, void* external_function, 900 ExternalReference::Type type) { 901 Redirection* current = isolate->simulator_redirection(); 902 for (; current != NULL; current = current->next_) { 903 if (current->external_function_ == external_function) return current; 904 } 905 return new Redirection(isolate, external_function, type); 906 } 907 908 static Redirection* FromSwiInstruction(Instruction* swi_instruction) { 909 char* addr_of_swi = reinterpret_cast<char*>(swi_instruction); 910 char* addr_of_redirection = 911 addr_of_swi - offsetof(Redirection, swi_instruction_); 912 return reinterpret_cast<Redirection*>(addr_of_redirection); 913 } 914 915 static void* ReverseRedirection(int64_t reg) { 916 Redirection* redirection = FromSwiInstruction( 917 reinterpret_cast<Instruction*>(reinterpret_cast<void*>(reg))); 918 return redirection->external_function(); 919 } 920 921 static void DeleteChain(Redirection* redirection) { 922 while (redirection != nullptr) { 923 Redirection* next = redirection->next_; 924 delete redirection; 925 redirection = next; 926 } 927 } 928 929 private: 930 void* external_function_; 931 uint32_t swi_instruction_; 932 ExternalReference::Type type_; 933 Redirection* next_; 934 }; 935 936 937 // static 938 void Simulator::TearDown(base::CustomMatcherHashMap* i_cache, 939 Redirection* first) { 940 Redirection::DeleteChain(first); 941 if (i_cache != nullptr) { 942 for (base::HashMap::Entry* entry = i_cache->Start(); entry != nullptr; 943 entry = i_cache->Next(entry)) { 944 delete static_cast<CachePage*>(entry->value); 945 } 946 delete i_cache; 947 } 948 } 949 950 951 void* Simulator::RedirectExternalReference(Isolate* isolate, 952 void* external_function, 953 ExternalReference::Type type) { 954 Redirection* redirection = Redirection::Get(isolate, external_function, type); 955 return redirection->address_of_swi_instruction(); 956 } 957 958 959 // Get the active Simulator for the current thread. 960 Simulator* Simulator::current(Isolate* isolate) { 961 v8::internal::Isolate::PerIsolateThreadData* isolate_data = 962 isolate->FindOrAllocatePerThreadDataForThisThread(); 963 DCHECK(isolate_data != NULL); 964 DCHECK(isolate_data != NULL); 965 966 Simulator* sim = isolate_data->simulator(); 967 if (sim == NULL) { 968 // TODO(146): delete the simulator object when a thread/isolate goes away. 969 sim = new Simulator(isolate); 970 isolate_data->set_simulator(sim); 971 } 972 return sim; 973 } 974 975 976 // Sets the register in the architecture state. It will also deal with updating 977 // Simulator internal state for special registers such as PC. 978 void Simulator::set_register(int reg, int64_t value) { 979 DCHECK((reg >= 0) && (reg < kNumSimuRegisters)); 980 if (reg == pc) { 981 pc_modified_ = true; 982 } 983 984 // Zero register always holds 0. 985 registers_[reg] = (reg == 0) ? 0 : value; 986 } 987 988 989 void Simulator::set_dw_register(int reg, const int* dbl) { 990 DCHECK((reg >= 0) && (reg < kNumSimuRegisters)); 991 registers_[reg] = dbl[1]; 992 registers_[reg] = registers_[reg] << 32; 993 registers_[reg] += dbl[0]; 994 } 995 996 997 void Simulator::set_fpu_register(int fpureg, int64_t value) { 998 DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); 999 FPUregisters_[fpureg] = value; 1000 } 1001 1002 1003 void Simulator::set_fpu_register_word(int fpureg, int32_t value) { 1004 // Set ONLY lower 32-bits, leaving upper bits untouched. 1005 DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); 1006 int32_t* pword; 1007 if (kArchEndian == kLittle) { 1008 pword = reinterpret_cast<int32_t*>(&FPUregisters_[fpureg]); 1009 } else { 1010 pword = reinterpret_cast<int32_t*>(&FPUregisters_[fpureg]) + 1; 1011 } 1012 *pword = value; 1013 } 1014 1015 1016 void Simulator::set_fpu_register_hi_word(int fpureg, int32_t value) { 1017 // Set ONLY upper 32-bits, leaving lower bits untouched. 1018 DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); 1019 int32_t* phiword; 1020 if (kArchEndian == kLittle) { 1021 phiword = (reinterpret_cast<int32_t*>(&FPUregisters_[fpureg])) + 1; 1022 } else { 1023 phiword = reinterpret_cast<int32_t*>(&FPUregisters_[fpureg]); 1024 } 1025 *phiword = value; 1026 } 1027 1028 1029 void Simulator::set_fpu_register_float(int fpureg, float value) { 1030 DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); 1031 *bit_cast<float*>(&FPUregisters_[fpureg]) = value; 1032 } 1033 1034 1035 void Simulator::set_fpu_register_double(int fpureg, double value) { 1036 DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); 1037 *bit_cast<double*>(&FPUregisters_[fpureg]) = value; 1038 } 1039 1040 1041 // Get the register from the architecture state. This function does handle 1042 // the special case of accessing the PC register. 1043 int64_t Simulator::get_register(int reg) const { 1044 DCHECK((reg >= 0) && (reg < kNumSimuRegisters)); 1045 if (reg == 0) 1046 return 0; 1047 else 1048 return registers_[reg] + ((reg == pc) ? Instruction::kPCReadOffset : 0); 1049 } 1050 1051 1052 double Simulator::get_double_from_register_pair(int reg) { 1053 // TODO(plind): bad ABI stuff, refactor or remove. 1054 DCHECK((reg >= 0) && (reg < kNumSimuRegisters) && ((reg % 2) == 0)); 1055 1056 double dm_val = 0.0; 1057 // Read the bits from the unsigned integer register_[] array 1058 // into the double precision floating point value and return it. 1059 char buffer[sizeof(registers_[0])]; 1060 memcpy(buffer, ®isters_[reg], sizeof(registers_[0])); 1061 memcpy(&dm_val, buffer, sizeof(registers_[0])); 1062 return(dm_val); 1063 } 1064 1065 1066 int64_t Simulator::get_fpu_register(int fpureg) const { 1067 DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); 1068 return FPUregisters_[fpureg]; 1069 } 1070 1071 1072 int32_t Simulator::get_fpu_register_word(int fpureg) const { 1073 DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); 1074 return static_cast<int32_t>(FPUregisters_[fpureg] & 0xffffffff); 1075 } 1076 1077 1078 int32_t Simulator::get_fpu_register_signed_word(int fpureg) const { 1079 DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); 1080 return static_cast<int32_t>(FPUregisters_[fpureg] & 0xffffffff); 1081 } 1082 1083 1084 int32_t Simulator::get_fpu_register_hi_word(int fpureg) const { 1085 DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); 1086 return static_cast<int32_t>((FPUregisters_[fpureg] >> 32) & 0xffffffff); 1087 } 1088 1089 1090 float Simulator::get_fpu_register_float(int fpureg) const { 1091 DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); 1092 return *bit_cast<float*>(const_cast<int64_t*>(&FPUregisters_[fpureg])); 1093 } 1094 1095 1096 double Simulator::get_fpu_register_double(int fpureg) const { 1097 DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); 1098 return *bit_cast<double*>(&FPUregisters_[fpureg]); 1099 } 1100 1101 1102 // Runtime FP routines take up to two double arguments and zero 1103 // or one integer arguments. All are constructed here, 1104 // from a0-a3 or f12 and f13 (n64), or f14 (O32). 1105 void Simulator::GetFpArgs(double* x, double* y, int32_t* z) { 1106 if (!IsMipsSoftFloatABI) { 1107 const int fparg2 = 13; 1108 *x = get_fpu_register_double(12); 1109 *y = get_fpu_register_double(fparg2); 1110 *z = static_cast<int32_t>(get_register(a2)); 1111 } else { 1112 // TODO(plind): bad ABI stuff, refactor or remove. 1113 // We use a char buffer to get around the strict-aliasing rules which 1114 // otherwise allow the compiler to optimize away the copy. 1115 char buffer[sizeof(*x)]; 1116 int32_t* reg_buffer = reinterpret_cast<int32_t*>(buffer); 1117 1118 // Registers a0 and a1 -> x. 1119 reg_buffer[0] = get_register(a0); 1120 reg_buffer[1] = get_register(a1); 1121 memcpy(x, buffer, sizeof(buffer)); 1122 // Registers a2 and a3 -> y. 1123 reg_buffer[0] = get_register(a2); 1124 reg_buffer[1] = get_register(a3); 1125 memcpy(y, buffer, sizeof(buffer)); 1126 // Register 2 -> z. 1127 reg_buffer[0] = get_register(a2); 1128 memcpy(z, buffer, sizeof(*z)); 1129 } 1130 } 1131 1132 1133 // The return value is either in v0/v1 or f0. 1134 void Simulator::SetFpResult(const double& result) { 1135 if (!IsMipsSoftFloatABI) { 1136 set_fpu_register_double(0, result); 1137 } else { 1138 char buffer[2 * sizeof(registers_[0])]; 1139 int64_t* reg_buffer = reinterpret_cast<int64_t*>(buffer); 1140 memcpy(buffer, &result, sizeof(buffer)); 1141 // Copy result to v0 and v1. 1142 set_register(v0, reg_buffer[0]); 1143 set_register(v1, reg_buffer[1]); 1144 } 1145 } 1146 1147 1148 // Helper functions for setting and testing the FCSR register's bits. 1149 void Simulator::set_fcsr_bit(uint32_t cc, bool value) { 1150 if (value) { 1151 FCSR_ |= (1 << cc); 1152 } else { 1153 FCSR_ &= ~(1 << cc); 1154 } 1155 } 1156 1157 1158 bool Simulator::test_fcsr_bit(uint32_t cc) { 1159 return FCSR_ & (1 << cc); 1160 } 1161 1162 1163 void Simulator::set_fcsr_rounding_mode(FPURoundingMode mode) { 1164 FCSR_ |= mode & kFPURoundingModeMask; 1165 } 1166 1167 1168 unsigned int Simulator::get_fcsr_rounding_mode() { 1169 return FCSR_ & kFPURoundingModeMask; 1170 } 1171 1172 1173 // Sets the rounding error codes in FCSR based on the result of the rounding. 1174 // Returns true if the operation was invalid. 1175 bool Simulator::set_fcsr_round_error(double original, double rounded) { 1176 bool ret = false; 1177 double max_int32 = std::numeric_limits<int32_t>::max(); 1178 double min_int32 = std::numeric_limits<int32_t>::min(); 1179 1180 if (!std::isfinite(original) || !std::isfinite(rounded)) { 1181 set_fcsr_bit(kFCSRInvalidOpFlagBit, true); 1182 ret = true; 1183 } 1184 1185 if (original != rounded) { 1186 set_fcsr_bit(kFCSRInexactFlagBit, true); 1187 } 1188 1189 if (rounded < DBL_MIN && rounded > -DBL_MIN && rounded != 0) { 1190 set_fcsr_bit(kFCSRUnderflowFlagBit, true); 1191 ret = true; 1192 } 1193 1194 if (rounded > max_int32 || rounded < min_int32) { 1195 set_fcsr_bit(kFCSROverflowFlagBit, true); 1196 // The reference is not really clear but it seems this is required: 1197 set_fcsr_bit(kFCSRInvalidOpFlagBit, true); 1198 ret = true; 1199 } 1200 1201 return ret; 1202 } 1203 1204 1205 // Sets the rounding error codes in FCSR based on the result of the rounding. 1206 // Returns true if the operation was invalid. 1207 bool Simulator::set_fcsr_round64_error(double original, double rounded) { 1208 bool ret = false; 1209 // The value of INT64_MAX (2^63-1) can't be represented as double exactly, 1210 // loading the most accurate representation into max_int64, which is 2^63. 1211 double max_int64 = std::numeric_limits<int64_t>::max(); 1212 double min_int64 = std::numeric_limits<int64_t>::min(); 1213 1214 if (!std::isfinite(original) || !std::isfinite(rounded)) { 1215 set_fcsr_bit(kFCSRInvalidOpFlagBit, true); 1216 ret = true; 1217 } 1218 1219 if (original != rounded) { 1220 set_fcsr_bit(kFCSRInexactFlagBit, true); 1221 } 1222 1223 if (rounded < DBL_MIN && rounded > -DBL_MIN && rounded != 0) { 1224 set_fcsr_bit(kFCSRUnderflowFlagBit, true); 1225 ret = true; 1226 } 1227 1228 if (rounded >= max_int64 || rounded < min_int64) { 1229 set_fcsr_bit(kFCSROverflowFlagBit, true); 1230 // The reference is not really clear but it seems this is required: 1231 set_fcsr_bit(kFCSRInvalidOpFlagBit, true); 1232 ret = true; 1233 } 1234 1235 return ret; 1236 } 1237 1238 1239 // Sets the rounding error codes in FCSR based on the result of the rounding. 1240 // Returns true if the operation was invalid. 1241 bool Simulator::set_fcsr_round_error(float original, float rounded) { 1242 bool ret = false; 1243 double max_int32 = std::numeric_limits<int32_t>::max(); 1244 double min_int32 = std::numeric_limits<int32_t>::min(); 1245 1246 if (!std::isfinite(original) || !std::isfinite(rounded)) { 1247 set_fcsr_bit(kFCSRInvalidOpFlagBit, true); 1248 ret = true; 1249 } 1250 1251 if (original != rounded) { 1252 set_fcsr_bit(kFCSRInexactFlagBit, true); 1253 } 1254 1255 if (rounded < FLT_MIN && rounded > -FLT_MIN && rounded != 0) { 1256 set_fcsr_bit(kFCSRUnderflowFlagBit, true); 1257 ret = true; 1258 } 1259 1260 if (rounded > max_int32 || rounded < min_int32) { 1261 set_fcsr_bit(kFCSROverflowFlagBit, true); 1262 // The reference is not really clear but it seems this is required: 1263 set_fcsr_bit(kFCSRInvalidOpFlagBit, true); 1264 ret = true; 1265 } 1266 1267 return ret; 1268 } 1269 1270 void Simulator::set_fpu_register_word_invalid_result(float original, 1271 float rounded) { 1272 if (FCSR_ & kFCSRNaN2008FlagMask) { 1273 double max_int32 = std::numeric_limits<int32_t>::max(); 1274 double min_int32 = std::numeric_limits<int32_t>::min(); 1275 if (std::isnan(original)) { 1276 set_fpu_register_word(fd_reg(), 0); 1277 } else if (rounded > max_int32) { 1278 set_fpu_register_word(fd_reg(), kFPUInvalidResult); 1279 } else if (rounded < min_int32) { 1280 set_fpu_register_word(fd_reg(), kFPUInvalidResultNegative); 1281 } else { 1282 UNREACHABLE(); 1283 } 1284 } else { 1285 set_fpu_register_word(fd_reg(), kFPUInvalidResult); 1286 } 1287 } 1288 1289 1290 void Simulator::set_fpu_register_invalid_result(float original, float rounded) { 1291 if (FCSR_ & kFCSRNaN2008FlagMask) { 1292 double max_int32 = std::numeric_limits<int32_t>::max(); 1293 double min_int32 = std::numeric_limits<int32_t>::min(); 1294 if (std::isnan(original)) { 1295 set_fpu_register(fd_reg(), 0); 1296 } else if (rounded > max_int32) { 1297 set_fpu_register(fd_reg(), kFPUInvalidResult); 1298 } else if (rounded < min_int32) { 1299 set_fpu_register(fd_reg(), kFPUInvalidResultNegative); 1300 } else { 1301 UNREACHABLE(); 1302 } 1303 } else { 1304 set_fpu_register(fd_reg(), kFPUInvalidResult); 1305 } 1306 } 1307 1308 1309 void Simulator::set_fpu_register_invalid_result64(float original, 1310 float rounded) { 1311 if (FCSR_ & kFCSRNaN2008FlagMask) { 1312 // The value of INT64_MAX (2^63-1) can't be represented as double exactly, 1313 // loading the most accurate representation into max_int64, which is 2^63. 1314 double max_int64 = std::numeric_limits<int64_t>::max(); 1315 double min_int64 = std::numeric_limits<int64_t>::min(); 1316 if (std::isnan(original)) { 1317 set_fpu_register(fd_reg(), 0); 1318 } else if (rounded >= max_int64) { 1319 set_fpu_register(fd_reg(), kFPU64InvalidResult); 1320 } else if (rounded < min_int64) { 1321 set_fpu_register(fd_reg(), kFPU64InvalidResultNegative); 1322 } else { 1323 UNREACHABLE(); 1324 } 1325 } else { 1326 set_fpu_register(fd_reg(), kFPU64InvalidResult); 1327 } 1328 } 1329 1330 1331 void Simulator::set_fpu_register_word_invalid_result(double original, 1332 double rounded) { 1333 if (FCSR_ & kFCSRNaN2008FlagMask) { 1334 double max_int32 = std::numeric_limits<int32_t>::max(); 1335 double min_int32 = std::numeric_limits<int32_t>::min(); 1336 if (std::isnan(original)) { 1337 set_fpu_register_word(fd_reg(), 0); 1338 } else if (rounded > max_int32) { 1339 set_fpu_register_word(fd_reg(), kFPUInvalidResult); 1340 } else if (rounded < min_int32) { 1341 set_fpu_register_word(fd_reg(), kFPUInvalidResultNegative); 1342 } else { 1343 UNREACHABLE(); 1344 } 1345 } else { 1346 set_fpu_register_word(fd_reg(), kFPUInvalidResult); 1347 } 1348 } 1349 1350 1351 void Simulator::set_fpu_register_invalid_result(double original, 1352 double rounded) { 1353 if (FCSR_ & kFCSRNaN2008FlagMask) { 1354 double max_int32 = std::numeric_limits<int32_t>::max(); 1355 double min_int32 = std::numeric_limits<int32_t>::min(); 1356 if (std::isnan(original)) { 1357 set_fpu_register(fd_reg(), 0); 1358 } else if (rounded > max_int32) { 1359 set_fpu_register(fd_reg(), kFPUInvalidResult); 1360 } else if (rounded < min_int32) { 1361 set_fpu_register(fd_reg(), kFPUInvalidResultNegative); 1362 } else { 1363 UNREACHABLE(); 1364 } 1365 } else { 1366 set_fpu_register(fd_reg(), kFPUInvalidResult); 1367 } 1368 } 1369 1370 1371 void Simulator::set_fpu_register_invalid_result64(double original, 1372 double rounded) { 1373 if (FCSR_ & kFCSRNaN2008FlagMask) { 1374 // The value of INT64_MAX (2^63-1) can't be represented as double exactly, 1375 // loading the most accurate representation into max_int64, which is 2^63. 1376 double max_int64 = std::numeric_limits<int64_t>::max(); 1377 double min_int64 = std::numeric_limits<int64_t>::min(); 1378 if (std::isnan(original)) { 1379 set_fpu_register(fd_reg(), 0); 1380 } else if (rounded >= max_int64) { 1381 set_fpu_register(fd_reg(), kFPU64InvalidResult); 1382 } else if (rounded < min_int64) { 1383 set_fpu_register(fd_reg(), kFPU64InvalidResultNegative); 1384 } else { 1385 UNREACHABLE(); 1386 } 1387 } else { 1388 set_fpu_register(fd_reg(), kFPU64InvalidResult); 1389 } 1390 } 1391 1392 1393 // Sets the rounding error codes in FCSR based on the result of the rounding. 1394 // Returns true if the operation was invalid. 1395 bool Simulator::set_fcsr_round64_error(float original, float rounded) { 1396 bool ret = false; 1397 // The value of INT64_MAX (2^63-1) can't be represented as double exactly, 1398 // loading the most accurate representation into max_int64, which is 2^63. 1399 double max_int64 = std::numeric_limits<int64_t>::max(); 1400 double min_int64 = std::numeric_limits<int64_t>::min(); 1401 1402 if (!std::isfinite(original) || !std::isfinite(rounded)) { 1403 set_fcsr_bit(kFCSRInvalidOpFlagBit, true); 1404 ret = true; 1405 } 1406 1407 if (original != rounded) { 1408 set_fcsr_bit(kFCSRInexactFlagBit, true); 1409 } 1410 1411 if (rounded < FLT_MIN && rounded > -FLT_MIN && rounded != 0) { 1412 set_fcsr_bit(kFCSRUnderflowFlagBit, true); 1413 ret = true; 1414 } 1415 1416 if (rounded >= max_int64 || rounded < min_int64) { 1417 set_fcsr_bit(kFCSROverflowFlagBit, true); 1418 // The reference is not really clear but it seems this is required: 1419 set_fcsr_bit(kFCSRInvalidOpFlagBit, true); 1420 ret = true; 1421 } 1422 1423 return ret; 1424 } 1425 1426 1427 // For cvt instructions only 1428 void Simulator::round_according_to_fcsr(double toRound, double& rounded, 1429 int32_t& rounded_int, double fs) { 1430 // 0 RN (round to nearest): Round a result to the nearest 1431 // representable value; if the result is exactly halfway between 1432 // two representable values, round to zero. Behave like round_w_d. 1433 1434 // 1 RZ (round toward zero): Round a result to the closest 1435 // representable value whose absolute value is less than or 1436 // equal to the infinitely accurate result. Behave like trunc_w_d. 1437 1438 // 2 RP (round up, or toward +infinity): Round a result to the 1439 // next representable value up. Behave like ceil_w_d. 1440 1441 // 3 RN (round down, or toward infinity): Round a result to 1442 // the next representable value down. Behave like floor_w_d. 1443 switch (FCSR_ & 3) { 1444 case kRoundToNearest: 1445 rounded = std::floor(fs + 0.5); 1446 rounded_int = static_cast<int32_t>(rounded); 1447 if ((rounded_int & 1) != 0 && rounded_int - fs == 0.5) { 1448 // If the number is halfway between two integers, 1449 // round to the even one. 1450 rounded_int--; 1451 } 1452 break; 1453 case kRoundToZero: 1454 rounded = trunc(fs); 1455 rounded_int = static_cast<int32_t>(rounded); 1456 break; 1457 case kRoundToPlusInf: 1458 rounded = std::ceil(fs); 1459 rounded_int = static_cast<int32_t>(rounded); 1460 break; 1461 case kRoundToMinusInf: 1462 rounded = std::floor(fs); 1463 rounded_int = static_cast<int32_t>(rounded); 1464 break; 1465 } 1466 } 1467 1468 1469 void Simulator::round64_according_to_fcsr(double toRound, double& rounded, 1470 int64_t& rounded_int, double fs) { 1471 // 0 RN (round to nearest): Round a result to the nearest 1472 // representable value; if the result is exactly halfway between 1473 // two representable values, round to zero. Behave like round_w_d. 1474 1475 // 1 RZ (round toward zero): Round a result to the closest 1476 // representable value whose absolute value is less than or. 1477 // equal to the infinitely accurate result. Behave like trunc_w_d. 1478 1479 // 2 RP (round up, or toward +infinity): Round a result to the 1480 // next representable value up. Behave like ceil_w_d. 1481 1482 // 3 RN (round down, or toward infinity): Round a result to 1483 // the next representable value down. Behave like floor_w_d. 1484 switch (FCSR_ & 3) { 1485 case kRoundToNearest: 1486 rounded = std::floor(fs + 0.5); 1487 rounded_int = static_cast<int64_t>(rounded); 1488 if ((rounded_int & 1) != 0 && rounded_int - fs == 0.5) { 1489 // If the number is halfway between two integers, 1490 // round to the even one. 1491 rounded_int--; 1492 } 1493 break; 1494 case kRoundToZero: 1495 rounded = trunc(fs); 1496 rounded_int = static_cast<int64_t>(rounded); 1497 break; 1498 case kRoundToPlusInf: 1499 rounded = std::ceil(fs); 1500 rounded_int = static_cast<int64_t>(rounded); 1501 break; 1502 case kRoundToMinusInf: 1503 rounded = std::floor(fs); 1504 rounded_int = static_cast<int64_t>(rounded); 1505 break; 1506 } 1507 } 1508 1509 1510 // for cvt instructions only 1511 void Simulator::round_according_to_fcsr(float toRound, float& rounded, 1512 int32_t& rounded_int, float fs) { 1513 // 0 RN (round to nearest): Round a result to the nearest 1514 // representable value; if the result is exactly halfway between 1515 // two representable values, round to zero. Behave like round_w_d. 1516 1517 // 1 RZ (round toward zero): Round a result to the closest 1518 // representable value whose absolute value is less than or 1519 // equal to the infinitely accurate result. Behave like trunc_w_d. 1520 1521 // 2 RP (round up, or toward +infinity): Round a result to the 1522 // next representable value up. Behave like ceil_w_d. 1523 1524 // 3 RN (round down, or toward infinity): Round a result to 1525 // the next representable value down. Behave like floor_w_d. 1526 switch (FCSR_ & 3) { 1527 case kRoundToNearest: 1528 rounded = std::floor(fs + 0.5); 1529 rounded_int = static_cast<int32_t>(rounded); 1530 if ((rounded_int & 1) != 0 && rounded_int - fs == 0.5) { 1531 // If the number is halfway between two integers, 1532 // round to the even one. 1533 rounded_int--; 1534 } 1535 break; 1536 case kRoundToZero: 1537 rounded = trunc(fs); 1538 rounded_int = static_cast<int32_t>(rounded); 1539 break; 1540 case kRoundToPlusInf: 1541 rounded = std::ceil(fs); 1542 rounded_int = static_cast<int32_t>(rounded); 1543 break; 1544 case kRoundToMinusInf: 1545 rounded = std::floor(fs); 1546 rounded_int = static_cast<int32_t>(rounded); 1547 break; 1548 } 1549 } 1550 1551 1552 void Simulator::round64_according_to_fcsr(float toRound, float& rounded, 1553 int64_t& rounded_int, float fs) { 1554 // 0 RN (round to nearest): Round a result to the nearest 1555 // representable value; if the result is exactly halfway between 1556 // two representable values, round to zero. Behave like round_w_d. 1557 1558 // 1 RZ (round toward zero): Round a result to the closest 1559 // representable value whose absolute value is less than or. 1560 // equal to the infinitely accurate result. Behave like trunc_w_d. 1561 1562 // 2 RP (round up, or toward +infinity): Round a result to the 1563 // next representable value up. Behave like ceil_w_d. 1564 1565 // 3 RN (round down, or toward infinity): Round a result to 1566 // the next representable value down. Behave like floor_w_d. 1567 switch (FCSR_ & 3) { 1568 case kRoundToNearest: 1569 rounded = std::floor(fs + 0.5); 1570 rounded_int = static_cast<int64_t>(rounded); 1571 if ((rounded_int & 1) != 0 && rounded_int - fs == 0.5) { 1572 // If the number is halfway between two integers, 1573 // round to the even one. 1574 rounded_int--; 1575 } 1576 break; 1577 case kRoundToZero: 1578 rounded = trunc(fs); 1579 rounded_int = static_cast<int64_t>(rounded); 1580 break; 1581 case kRoundToPlusInf: 1582 rounded = std::ceil(fs); 1583 rounded_int = static_cast<int64_t>(rounded); 1584 break; 1585 case kRoundToMinusInf: 1586 rounded = std::floor(fs); 1587 rounded_int = static_cast<int64_t>(rounded); 1588 break; 1589 } 1590 } 1591 1592 1593 // Raw access to the PC register. 1594 void Simulator::set_pc(int64_t value) { 1595 pc_modified_ = true; 1596 registers_[pc] = value; 1597 } 1598 1599 1600 bool Simulator::has_bad_pc() const { 1601 return ((registers_[pc] == bad_ra) || (registers_[pc] == end_sim_pc)); 1602 } 1603 1604 1605 // Raw access to the PC register without the special adjustment when reading. 1606 int64_t Simulator::get_pc() const { 1607 return registers_[pc]; 1608 } 1609 1610 1611 // The MIPS cannot do unaligned reads and writes. On some MIPS platforms an 1612 // interrupt is caused. On others it does a funky rotation thing. For now we 1613 // simply disallow unaligned reads, but at some point we may want to move to 1614 // emulating the rotate behaviour. Note that simulator runs have the runtime 1615 // system running directly on the host system and only generated code is 1616 // executed in the simulator. Since the host is typically IA32 we will not 1617 // get the correct MIPS-like behaviour on unaligned accesses. 1618 1619 // TODO(plind): refactor this messy debug code when we do unaligned access. 1620 void Simulator::DieOrDebug() { 1621 if (1) { // Flag for this was removed. 1622 MipsDebugger dbg(this); 1623 dbg.Debug(); 1624 } else { 1625 base::OS::Abort(); 1626 } 1627 } 1628 1629 1630 void Simulator::TraceRegWr(int64_t value) { 1631 if (::v8::internal::FLAG_trace_sim) { 1632 SNPrintF(trace_buf_, "%016" PRIx64 " ", value); 1633 } 1634 } 1635 1636 1637 // TODO(plind): consider making icount_ printing a flag option. 1638 void Simulator::TraceMemRd(int64_t addr, int64_t value) { 1639 if (::v8::internal::FLAG_trace_sim) { 1640 SNPrintF(trace_buf_, 1641 "%016" PRIx64 " <-- [%016" PRIx64 " ] (%" PRId64 " )", value, 1642 addr, icount_); 1643 } 1644 } 1645 1646 1647 void Simulator::TraceMemWr(int64_t addr, int64_t value, TraceType t) { 1648 if (::v8::internal::FLAG_trace_sim) { 1649 switch (t) { 1650 case BYTE: 1651 SNPrintF(trace_buf_, " %02x --> [%016" PRIx64 " ]", 1652 static_cast<int8_t>(value), addr); 1653 break; 1654 case HALF: 1655 SNPrintF(trace_buf_, " %04x --> [%016" PRIx64 " ]", 1656 static_cast<int16_t>(value), addr); 1657 break; 1658 case WORD: 1659 SNPrintF(trace_buf_, " %08x --> [%016" PRIx64 " ]", 1660 static_cast<int32_t>(value), addr); 1661 break; 1662 case DWORD: 1663 SNPrintF(trace_buf_, 1664 "%016" PRIx64 " --> [%016" PRIx64 " ] (%" PRId64 " )", 1665 value, addr, icount_); 1666 break; 1667 } 1668 } 1669 } 1670 1671 1672 // TODO(plind): sign-extend and zero-extend not implmented properly 1673 // on all the ReadXX functions, I don't think re-interpret cast does it. 1674 int32_t Simulator::ReadW(int64_t addr, Instruction* instr) { 1675 if (addr >=0 && addr < 0x400) { 1676 // This has to be a NULL-dereference, drop into debugger. 1677 PrintF("Memory read from bad address: 0x%08" PRIx64 " , pc=0x%08" PRIxPTR 1678 " \n", 1679 addr, reinterpret_cast<intptr_t>(instr)); 1680 DieOrDebug(); 1681 } 1682 if ((addr & 0x3) == 0 || kArchVariant == kMips64r6) { 1683 int32_t* ptr = reinterpret_cast<int32_t*>(addr); 1684 TraceMemRd(addr, static_cast<int64_t>(*ptr)); 1685 return *ptr; 1686 } 1687 PrintF("Unaligned read at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR "\n", addr, 1688 reinterpret_cast<intptr_t>(instr)); 1689 DieOrDebug(); 1690 return 0; 1691 } 1692 1693 1694 uint32_t Simulator::ReadWU(int64_t addr, Instruction* instr) { 1695 if (addr >=0 && addr < 0x400) { 1696 // This has to be a NULL-dereference, drop into debugger. 1697 PrintF("Memory read from bad address: 0x%08" PRIx64 " , pc=0x%08" PRIxPTR 1698 " \n", 1699 addr, reinterpret_cast<intptr_t>(instr)); 1700 DieOrDebug(); 1701 } 1702 if ((addr & 0x3) == 0 || kArchVariant == kMips64r6) { 1703 uint32_t* ptr = reinterpret_cast<uint32_t*>(addr); 1704 TraceMemRd(addr, static_cast<int64_t>(*ptr)); 1705 return *ptr; 1706 } 1707 PrintF("Unaligned read at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR "\n", addr, 1708 reinterpret_cast<intptr_t>(instr)); 1709 DieOrDebug(); 1710 return 0; 1711 } 1712 1713 1714 void Simulator::WriteW(int64_t addr, int32_t value, Instruction* instr) { 1715 if (addr >= 0 && addr < 0x400) { 1716 // This has to be a NULL-dereference, drop into debugger. 1717 PrintF("Memory write to bad address: 0x%08" PRIx64 " , pc=0x%08" PRIxPTR 1718 " \n", 1719 addr, reinterpret_cast<intptr_t>(instr)); 1720 DieOrDebug(); 1721 } 1722 if ((addr & 0x3) == 0 || kArchVariant == kMips64r6) { 1723 TraceMemWr(addr, value, WORD); 1724 int* ptr = reinterpret_cast<int*>(addr); 1725 *ptr = value; 1726 return; 1727 } 1728 PrintF("Unaligned write at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR "\n", addr, 1729 reinterpret_cast<intptr_t>(instr)); 1730 DieOrDebug(); 1731 } 1732 1733 1734 int64_t Simulator::Read2W(int64_t addr, Instruction* instr) { 1735 if (addr >=0 && addr < 0x400) { 1736 // This has to be a NULL-dereference, drop into debugger. 1737 PrintF("Memory read from bad address: 0x%08" PRIx64 " , pc=0x%08" PRIxPTR 1738 " \n", 1739 addr, reinterpret_cast<intptr_t>(instr)); 1740 DieOrDebug(); 1741 } 1742 if ((addr & kPointerAlignmentMask) == 0 || kArchVariant == kMips64r6) { 1743 int64_t* ptr = reinterpret_cast<int64_t*>(addr); 1744 TraceMemRd(addr, *ptr); 1745 return *ptr; 1746 } 1747 PrintF("Unaligned read at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR "\n", addr, 1748 reinterpret_cast<intptr_t>(instr)); 1749 DieOrDebug(); 1750 return 0; 1751 } 1752 1753 1754 void Simulator::Write2W(int64_t addr, int64_t value, Instruction* instr) { 1755 if (addr >= 0 && addr < 0x400) { 1756 // This has to be a NULL-dereference, drop into debugger. 1757 PrintF("Memory write to bad address: 0x%08" PRIx64 " , pc=0x%08" PRIxPTR 1758 "\n", 1759 addr, reinterpret_cast<intptr_t>(instr)); 1760 DieOrDebug(); 1761 } 1762 if ((addr & kPointerAlignmentMask) == 0 || kArchVariant == kMips64r6) { 1763 TraceMemWr(addr, value, DWORD); 1764 int64_t* ptr = reinterpret_cast<int64_t*>(addr); 1765 *ptr = value; 1766 return; 1767 } 1768 PrintF("Unaligned write at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR "\n", addr, 1769 reinterpret_cast<intptr_t>(instr)); 1770 DieOrDebug(); 1771 } 1772 1773 1774 double Simulator::ReadD(int64_t addr, Instruction* instr) { 1775 if ((addr & kDoubleAlignmentMask) == 0 || kArchVariant == kMips64r6) { 1776 double* ptr = reinterpret_cast<double*>(addr); 1777 return *ptr; 1778 } 1779 PrintF("Unaligned (double) read at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR "\n", 1780 addr, reinterpret_cast<intptr_t>(instr)); 1781 base::OS::Abort(); 1782 return 0; 1783 } 1784 1785 1786 void Simulator::WriteD(int64_t addr, double value, Instruction* instr) { 1787 if ((addr & kDoubleAlignmentMask) == 0 || kArchVariant == kMips64r6) { 1788 double* ptr = reinterpret_cast<double*>(addr); 1789 *ptr = value; 1790 return; 1791 } 1792 PrintF("Unaligned (double) write at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR 1793 "\n", 1794 addr, reinterpret_cast<intptr_t>(instr)); 1795 DieOrDebug(); 1796 } 1797 1798 1799 uint16_t Simulator::ReadHU(int64_t addr, Instruction* instr) { 1800 if ((addr & 1) == 0 || kArchVariant == kMips64r6) { 1801 uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); 1802 TraceMemRd(addr, static_cast<int64_t>(*ptr)); 1803 return *ptr; 1804 } 1805 PrintF("Unaligned unsigned halfword read at 0x%08" PRIx64 1806 " , pc=0x%08" V8PRIxPTR "\n", 1807 addr, reinterpret_cast<intptr_t>(instr)); 1808 DieOrDebug(); 1809 return 0; 1810 } 1811 1812 1813 int16_t Simulator::ReadH(int64_t addr, Instruction* instr) { 1814 if ((addr & 1) == 0 || kArchVariant == kMips64r6) { 1815 int16_t* ptr = reinterpret_cast<int16_t*>(addr); 1816 TraceMemRd(addr, static_cast<int64_t>(*ptr)); 1817 return *ptr; 1818 } 1819 PrintF("Unaligned signed halfword read at 0x%08" PRIx64 1820 " , pc=0x%08" V8PRIxPTR "\n", 1821 addr, reinterpret_cast<intptr_t>(instr)); 1822 DieOrDebug(); 1823 return 0; 1824 } 1825 1826 1827 void Simulator::WriteH(int64_t addr, uint16_t value, Instruction* instr) { 1828 if ((addr & 1) == 0 || kArchVariant == kMips64r6) { 1829 TraceMemWr(addr, value, HALF); 1830 uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); 1831 *ptr = value; 1832 return; 1833 } 1834 PrintF("Unaligned unsigned halfword write at 0x%08" PRIx64 1835 " , pc=0x%08" V8PRIxPTR "\n", 1836 addr, reinterpret_cast<intptr_t>(instr)); 1837 DieOrDebug(); 1838 } 1839 1840 1841 void Simulator::WriteH(int64_t addr, int16_t value, Instruction* instr) { 1842 if ((addr & 1) == 0 || kArchVariant == kMips64r6) { 1843 TraceMemWr(addr, value, HALF); 1844 int16_t* ptr = reinterpret_cast<int16_t*>(addr); 1845 *ptr = value; 1846 return; 1847 } 1848 PrintF("Unaligned halfword write at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR 1849 "\n", 1850 addr, reinterpret_cast<intptr_t>(instr)); 1851 DieOrDebug(); 1852 } 1853 1854 1855 uint32_t Simulator::ReadBU(int64_t addr) { 1856 uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); 1857 TraceMemRd(addr, static_cast<int64_t>(*ptr)); 1858 return *ptr & 0xff; 1859 } 1860 1861 1862 int32_t Simulator::ReadB(int64_t addr) { 1863 int8_t* ptr = reinterpret_cast<int8_t*>(addr); 1864 TraceMemRd(addr, static_cast<int64_t>(*ptr)); 1865 return *ptr; 1866 } 1867 1868 1869 void Simulator::WriteB(int64_t addr, uint8_t value) { 1870 TraceMemWr(addr, value, BYTE); 1871 uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); 1872 *ptr = value; 1873 } 1874 1875 1876 void Simulator::WriteB(int64_t addr, int8_t value) { 1877 TraceMemWr(addr, value, BYTE); 1878 int8_t* ptr = reinterpret_cast<int8_t*>(addr); 1879 *ptr = value; 1880 } 1881 1882 1883 // Returns the limit of the stack area to enable checking for stack overflows. 1884 uintptr_t Simulator::StackLimit(uintptr_t c_limit) const { 1885 // The simulator uses a separate JS stack. If we have exhausted the C stack, 1886 // we also drop down the JS limit to reflect the exhaustion on the JS stack. 1887 if (GetCurrentStackPosition() < c_limit) { 1888 return reinterpret_cast<uintptr_t>(get_sp()); 1889 } 1890 1891 // Otherwise the limit is the JS stack. Leave a safety margin of 1024 bytes 1892 // to prevent overrunning the stack when pushing values. 1893 return reinterpret_cast<uintptr_t>(stack_) + 1024; 1894 } 1895 1896 1897 // Unsupported instructions use Format to print an error and stop execution. 1898 void Simulator::Format(Instruction* instr, const char* format) { 1899 PrintF("Simulator found unsupported instruction:\n 0x%08" PRIxPTR " : %s\n", 1900 reinterpret_cast<intptr_t>(instr), format); 1901 UNIMPLEMENTED_MIPS(); 1902 } 1903 1904 1905 // Calls into the V8 runtime are based on this very simple interface. 1906 // Note: To be able to return two values from some calls the code in runtime.cc 1907 // uses the ObjectPair which is essentially two 32-bit values stuffed into a 1908 // 64-bit value. With the code below we assume that all runtime calls return 1909 // 64 bits of result. If they don't, the v1 result register contains a bogus 1910 // value, which is fine because it is caller-saved. 1911 1912 typedef ObjectPair (*SimulatorRuntimeCall)(int64_t arg0, 1913 int64_t arg1, 1914 int64_t arg2, 1915 int64_t arg3, 1916 int64_t arg4, 1917 int64_t arg5); 1918 1919 typedef ObjectTriple (*SimulatorRuntimeTripleCall)(int64_t arg0, int64_t arg1, 1920 int64_t arg2, int64_t arg3, 1921 int64_t arg4); 1922 1923 // These prototypes handle the four types of FP calls. 1924 typedef int64_t (*SimulatorRuntimeCompareCall)(double darg0, double darg1); 1925 typedef double (*SimulatorRuntimeFPFPCall)(double darg0, double darg1); 1926 typedef double (*SimulatorRuntimeFPCall)(double darg0); 1927 typedef double (*SimulatorRuntimeFPIntCall)(double darg0, int32_t arg0); 1928 1929 // This signature supports direct call in to API function native callback 1930 // (refer to InvocationCallback in v8.h). 1931 typedef void (*SimulatorRuntimeDirectApiCall)(int64_t arg0); 1932 typedef void (*SimulatorRuntimeProfilingApiCall)(int64_t arg0, void* arg1); 1933 1934 // This signature supports direct call to accessor getter callback. 1935 typedef void (*SimulatorRuntimeDirectGetterCall)(int64_t arg0, int64_t arg1); 1936 typedef void (*SimulatorRuntimeProfilingGetterCall)( 1937 int64_t arg0, int64_t arg1, void* arg2); 1938 1939 // Software interrupt instructions are used by the simulator to call into the 1940 // C-based V8 runtime. They are also used for debugging with simulator. 1941 void Simulator::SoftwareInterrupt() { 1942 // There are several instructions that could get us here, 1943 // the break_ instruction, or several variants of traps. All 1944 // Are "SPECIAL" class opcode, and are distinuished by function. 1945 int32_t func = instr_.FunctionFieldRaw(); 1946 uint32_t code = (func == BREAK) ? instr_.Bits(25, 6) : -1; 1947 // We first check if we met a call_rt_redirected. 1948 if (instr_.InstructionBits() == rtCallRedirInstr) { 1949 Redirection* redirection = Redirection::FromSwiInstruction(instr_.instr()); 1950 int64_t arg0 = get_register(a0); 1951 int64_t arg1 = get_register(a1); 1952 int64_t arg2 = get_register(a2); 1953 int64_t arg3 = get_register(a3); 1954 int64_t arg4, arg5; 1955 1956 arg4 = get_register(a4); // Abi n64 register a4. 1957 arg5 = get_register(a5); // Abi n64 register a5. 1958 1959 bool fp_call = 1960 (redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) || 1961 (redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) || 1962 (redirection->type() == ExternalReference::BUILTIN_FP_CALL) || 1963 (redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL); 1964 1965 if (!IsMipsSoftFloatABI) { 1966 // With the hard floating point calling convention, double 1967 // arguments are passed in FPU registers. Fetch the arguments 1968 // from there and call the builtin using soft floating point 1969 // convention. 1970 switch (redirection->type()) { 1971 case ExternalReference::BUILTIN_FP_FP_CALL: 1972 case ExternalReference::BUILTIN_COMPARE_CALL: 1973 arg0 = get_fpu_register(f12); 1974 arg1 = get_fpu_register(f13); 1975 arg2 = get_fpu_register(f14); 1976 arg3 = get_fpu_register(f15); 1977 break; 1978 case ExternalReference::BUILTIN_FP_CALL: 1979 arg0 = get_fpu_register(f12); 1980 arg1 = get_fpu_register(f13); 1981 break; 1982 case ExternalReference::BUILTIN_FP_INT_CALL: 1983 arg0 = get_fpu_register(f12); 1984 arg1 = get_fpu_register(f13); 1985 arg2 = get_register(a2); 1986 break; 1987 default: 1988 break; 1989 } 1990 } 1991 1992 // This is dodgy but it works because the C entry stubs are never moved. 1993 // See comment in codegen-arm.cc and bug 1242173. 1994 int64_t saved_ra = get_register(ra); 1995 1996 intptr_t external = 1997 reinterpret_cast<intptr_t>(redirection->external_function()); 1998 1999 // Based on CpuFeatures::IsSupported(FPU), Mips will use either hardware 2000 // FPU, or gcc soft-float routines. Hardware FPU is simulated in this 2001 // simulator. Soft-float has additional abstraction of ExternalReference, 2002 // to support serialization. 2003 if (fp_call) { 2004 double dval0, dval1; // one or two double parameters 2005 int32_t ival; // zero or one integer parameters 2006 int64_t iresult = 0; // integer return value 2007 double dresult = 0; // double return value 2008 GetFpArgs(&dval0, &dval1, &ival); 2009 SimulatorRuntimeCall generic_target = 2010 reinterpret_cast<SimulatorRuntimeCall>(external); 2011 if (::v8::internal::FLAG_trace_sim) { 2012 switch (redirection->type()) { 2013 case ExternalReference::BUILTIN_FP_FP_CALL: 2014 case ExternalReference::BUILTIN_COMPARE_CALL: 2015 PrintF("Call to host function at %p with args %f, %f", 2016 static_cast<void*>(FUNCTION_ADDR(generic_target)), dval0, 2017 dval1); 2018 break; 2019 case ExternalReference::BUILTIN_FP_CALL: 2020 PrintF("Call to host function at %p with arg %f", 2021 static_cast<void*>(FUNCTION_ADDR(generic_target)), dval0); 2022 break; 2023 case ExternalReference::BUILTIN_FP_INT_CALL: 2024 PrintF("Call to host function at %p with args %f, %d", 2025 static_cast<void*>(FUNCTION_ADDR(generic_target)), dval0, 2026 ival); 2027 break; 2028 default: 2029 UNREACHABLE(); 2030 break; 2031 } 2032 } 2033 switch (redirection->type()) { 2034 case ExternalReference::BUILTIN_COMPARE_CALL: { 2035 SimulatorRuntimeCompareCall target = 2036 reinterpret_cast<SimulatorRuntimeCompareCall>(external); 2037 iresult = target(dval0, dval1); 2038 set_register(v0, static_cast<int64_t>(iresult)); 2039 // set_register(v1, static_cast<int64_t>(iresult >> 32)); 2040 break; 2041 } 2042 case ExternalReference::BUILTIN_FP_FP_CALL: { 2043 SimulatorRuntimeFPFPCall target = 2044 reinterpret_cast<SimulatorRuntimeFPFPCall>(external); 2045 dresult = target(dval0, dval1); 2046 SetFpResult(dresult); 2047 break; 2048 } 2049 case ExternalReference::BUILTIN_FP_CALL: { 2050 SimulatorRuntimeFPCall target = 2051 reinterpret_cast<SimulatorRuntimeFPCall>(external); 2052 dresult = target(dval0); 2053 SetFpResult(dresult); 2054 break; 2055 } 2056 case ExternalReference::BUILTIN_FP_INT_CALL: { 2057 SimulatorRuntimeFPIntCall target = 2058 reinterpret_cast<SimulatorRuntimeFPIntCall>(external); 2059 dresult = target(dval0, ival); 2060 SetFpResult(dresult); 2061 break; 2062 } 2063 default: 2064 UNREACHABLE(); 2065 break; 2066 } 2067 if (::v8::internal::FLAG_trace_sim) { 2068 switch (redirection->type()) { 2069 case ExternalReference::BUILTIN_COMPARE_CALL: 2070 PrintF("Returned %08x\n", static_cast<int32_t>(iresult)); 2071 break; 2072 case ExternalReference::BUILTIN_FP_FP_CALL: 2073 case ExternalReference::BUILTIN_FP_CALL: 2074 case ExternalReference::BUILTIN_FP_INT_CALL: 2075 PrintF("Returned %f\n", dresult); 2076 break; 2077 default: 2078 UNREACHABLE(); 2079 break; 2080 } 2081 } 2082 } else if (redirection->type() == ExternalReference::DIRECT_API_CALL) { 2083 if (::v8::internal::FLAG_trace_sim) { 2084 PrintF("Call to host function at %p args %08" PRIx64 " \n", 2085 reinterpret_cast<void*>(external), arg0); 2086 } 2087 SimulatorRuntimeDirectApiCall target = 2088 reinterpret_cast<SimulatorRuntimeDirectApiCall>(external); 2089 target(arg0); 2090 } else if ( 2091 redirection->type() == ExternalReference::PROFILING_API_CALL) { 2092 if (::v8::internal::FLAG_trace_sim) { 2093 PrintF("Call to host function at %p args %08" PRIx64 " %08" PRIx64 2094 " \n", 2095 reinterpret_cast<void*>(external), arg0, arg1); 2096 } 2097 SimulatorRuntimeProfilingApiCall target = 2098 reinterpret_cast<SimulatorRuntimeProfilingApiCall>(external); 2099 target(arg0, Redirection::ReverseRedirection(arg1)); 2100 } else if ( 2101 redirection->type() == ExternalReference::DIRECT_GETTER_CALL) { 2102 if (::v8::internal::FLAG_trace_sim) { 2103 PrintF("Call to host function at %p args %08" PRIx64 " %08" PRIx64 2104 " \n", 2105 reinterpret_cast<void*>(external), arg0, arg1); 2106 } 2107 SimulatorRuntimeDirectGetterCall target = 2108 reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external); 2109 target(arg0, arg1); 2110 } else if ( 2111 redirection->type() == ExternalReference::PROFILING_GETTER_CALL) { 2112 if (::v8::internal::FLAG_trace_sim) { 2113 PrintF("Call to host function at %p args %08" PRIx64 " %08" PRIx64 2114 " %08" PRIx64 " \n", 2115 reinterpret_cast<void*>(external), arg0, arg1, arg2); 2116 } 2117 SimulatorRuntimeProfilingGetterCall target = 2118 reinterpret_cast<SimulatorRuntimeProfilingGetterCall>(external); 2119 target(arg0, arg1, Redirection::ReverseRedirection(arg2)); 2120 } else if (redirection->type() == ExternalReference::BUILTIN_CALL_TRIPLE) { 2121 // builtin call returning ObjectTriple. 2122 SimulatorRuntimeTripleCall target = 2123 reinterpret_cast<SimulatorRuntimeTripleCall>(external); 2124 if (::v8::internal::FLAG_trace_sim) { 2125 PrintF( 2126 "Call to host triple returning runtime function %p " 2127 "args %016" PRIx64 ", %016" PRIx64 ", %016" PRIx64 ", %016" PRIx64 2128 ", %016" PRIx64 "\n", 2129 static_cast<void*>(FUNCTION_ADDR(target)), arg1, arg2, arg3, arg4, 2130 arg5); 2131 } 2132 // arg0 is a hidden argument pointing to the return location, so don't 2133 // pass it to the target function. 2134 ObjectTriple result = target(arg1, arg2, arg3, arg4, arg5); 2135 if (::v8::internal::FLAG_trace_sim) { 2136 PrintF("Returned { %p, %p, %p }\n", static_cast<void*>(result.x), 2137 static_cast<void*>(result.y), static_cast<void*>(result.z)); 2138 } 2139 // Return is passed back in address pointed to by hidden first argument. 2140 ObjectTriple* sim_result = reinterpret_cast<ObjectTriple*>(arg0); 2141 *sim_result = result; 2142 set_register(v0, arg0); 2143 } else { 2144 DCHECK(redirection->type() == ExternalReference::BUILTIN_CALL || 2145 redirection->type() == ExternalReference::BUILTIN_CALL_PAIR); 2146 SimulatorRuntimeCall target = 2147 reinterpret_cast<SimulatorRuntimeCall>(external); 2148 if (::v8::internal::FLAG_trace_sim) { 2149 PrintF( 2150 "Call to host function at %p " 2151 "args %08" PRIx64 " , %08" PRIx64 " , %08" PRIx64 " , %08" PRIx64 2152 " , %08" PRIx64 " , %08" PRIx64 " \n", 2153 static_cast<void*>(FUNCTION_ADDR(target)), arg0, arg1, arg2, arg3, 2154 arg4, arg5); 2155 } 2156 // int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5); 2157 // set_register(v0, static_cast<int32_t>(result)); 2158 // set_register(v1, static_cast<int32_t>(result >> 32)); 2159 ObjectPair result = target(arg0, arg1, arg2, arg3, arg4, arg5); 2160 set_register(v0, (int64_t)(result.x)); 2161 set_register(v1, (int64_t)(result.y)); 2162 } 2163 if (::v8::internal::FLAG_trace_sim) { 2164 PrintF("Returned %08" PRIx64 " : %08" PRIx64 " \n", get_register(v1), 2165 get_register(v0)); 2166 } 2167 set_register(ra, saved_ra); 2168 set_pc(get_register(ra)); 2169 2170 } else if (func == BREAK && code <= kMaxStopCode) { 2171 if (IsWatchpoint(code)) { 2172 PrintWatchpoint(code); 2173 } else { 2174 IncreaseStopCounter(code); 2175 HandleStop(code, instr_.instr()); 2176 } 2177 } else { 2178 // All remaining break_ codes, and all traps are handled here. 2179 MipsDebugger dbg(this); 2180 dbg.Debug(); 2181 } 2182 } 2183 2184 2185 // Stop helper functions. 2186 bool Simulator::IsWatchpoint(uint64_t code) { 2187 return (code <= kMaxWatchpointCode); 2188 } 2189 2190 2191 void Simulator::PrintWatchpoint(uint64_t code) { 2192 MipsDebugger dbg(this); 2193 ++break_count_; 2194 PrintF("\n---- break %" PRId64 " marker: %3d (instr count: %8" PRId64 2195 " ) ----------" 2196 "----------------------------------", 2197 code, break_count_, icount_); 2198 dbg.PrintAllRegs(); // Print registers and continue running. 2199 } 2200 2201 2202 void Simulator::HandleStop(uint64_t code, Instruction* instr) { 2203 // Stop if it is enabled, otherwise go on jumping over the stop 2204 // and the message address. 2205 if (IsEnabledStop(code)) { 2206 MipsDebugger dbg(this); 2207 dbg.Stop(instr); 2208 } else { 2209 set_pc(get_pc() + 2 * Instruction::kInstrSize); 2210 } 2211 } 2212 2213 2214 bool Simulator::IsStopInstruction(Instruction* instr) { 2215 int32_t func = instr->FunctionFieldRaw(); 2216 uint32_t code = static_cast<uint32_t>(instr->Bits(25, 6)); 2217 return (func == BREAK) && code > kMaxWatchpointCode && code <= kMaxStopCode; 2218 } 2219 2220 2221 bool Simulator::IsEnabledStop(uint64_t code) { 2222 DCHECK(code <= kMaxStopCode); 2223 DCHECK(code > kMaxWatchpointCode); 2224 return !(watched_stops_[code].count & kStopDisabledBit); 2225 } 2226 2227 2228 void Simulator::EnableStop(uint64_t code) { 2229 if (!IsEnabledStop(code)) { 2230 watched_stops_[code].count &= ~kStopDisabledBit; 2231 } 2232 } 2233 2234 2235 void Simulator::DisableStop(uint64_t code) { 2236 if (IsEnabledStop(code)) { 2237 watched_stops_[code].count |= kStopDisabledBit; 2238 } 2239 } 2240 2241 2242 void Simulator::IncreaseStopCounter(uint64_t code) { 2243 DCHECK(code <= kMaxStopCode); 2244 if ((watched_stops_[code].count & ~(1 << 31)) == 0x7fffffff) { 2245 PrintF("Stop counter for code %" PRId64 2246 " has overflowed.\n" 2247 "Enabling this code and reseting the counter to 0.\n", 2248 code); 2249 watched_stops_[code].count = 0; 2250 EnableStop(code); 2251 } else { 2252 watched_stops_[code].count++; 2253 } 2254 } 2255 2256 2257 // Print a stop status. 2258 void Simulator::PrintStopInfo(uint64_t code) { 2259 if (code <= kMaxWatchpointCode) { 2260 PrintF("That is a watchpoint, not a stop.\n"); 2261 return; 2262 } else if (code > kMaxStopCode) { 2263 PrintF("Code too large, only %u stops can be used\n", kMaxStopCode + 1); 2264 return; 2265 } 2266 const char* state = IsEnabledStop(code) ? "Enabled" : "Disabled"; 2267 int32_t count = watched_stops_[code].count & ~kStopDisabledBit; 2268 // Don't print the state of unused breakpoints. 2269 if (count != 0) { 2270 if (watched_stops_[code].desc) { 2271 PrintF("stop %" PRId64 " - 0x%" PRIx64 " : \t%s, \tcounter = %i, \t%s\n", 2272 code, code, state, count, watched_stops_[code].desc); 2273 } else { 2274 PrintF("stop %" PRId64 " - 0x%" PRIx64 " : \t%s, \tcounter = %i\n", code, 2275 code, state, count); 2276 } 2277 } 2278 } 2279 2280 2281 void Simulator::SignalException(Exception e) { 2282 V8_Fatal(__FILE__, __LINE__, "Error: Exception %i raised.", 2283 static_cast<int>(e)); 2284 } 2285 2286 // Min/Max template functions for Double and Single arguments. 2287 2288 template <typename T> 2289 static T FPAbs(T a); 2290 2291 template <> 2292 double FPAbs<double>(double a) { 2293 return fabs(a); 2294 } 2295 2296 template <> 2297 float FPAbs<float>(float a) { 2298 return fabsf(a); 2299 } 2300 2301 template <typename T> 2302 static bool FPUProcessNaNsAndZeros(T a, T b, MaxMinKind kind, T& result) { 2303 if (std::isnan(a) && std::isnan(b)) { 2304 result = a; 2305 } else if (std::isnan(a)) { 2306 result = b; 2307 } else if (std::isnan(b)) { 2308 result = a; 2309 } else if (b == a) { 2310 // Handle -0.0 == 0.0 case. 2311 // std::signbit() returns int 0 or 1 so substracting MaxMinKind::kMax 2312 // negates the result. 2313 result = std::signbit(b) - static_cast<int>(kind) ? b : a; 2314 } else { 2315 return false; 2316 } 2317 return true; 2318 } 2319 2320 template <typename T> 2321 static T FPUMin(T a, T b) { 2322 T result; 2323 if (FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMin, result)) { 2324 return result; 2325 } else { 2326 return b < a ? b : a; 2327 } 2328 } 2329 2330 template <typename T> 2331 static T FPUMax(T a, T b) { 2332 T result; 2333 if (FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMax, result)) { 2334 return result; 2335 } else { 2336 return b > a ? b : a; 2337 } 2338 } 2339 2340 template <typename T> 2341 static T FPUMinA(T a, T b) { 2342 T result; 2343 if (!FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMin, result)) { 2344 if (FPAbs(a) < FPAbs(b)) { 2345 result = a; 2346 } else if (FPAbs(b) < FPAbs(a)) { 2347 result = b; 2348 } else { 2349 result = a < b ? a : b; 2350 } 2351 } 2352 return result; 2353 } 2354 2355 template <typename T> 2356 static T FPUMaxA(T a, T b) { 2357 T result; 2358 if (!FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMin, result)) { 2359 if (FPAbs(a) > FPAbs(b)) { 2360 result = a; 2361 } else if (FPAbs(b) > FPAbs(a)) { 2362 result = b; 2363 } else { 2364 result = a > b ? a : b; 2365 } 2366 } 2367 return result; 2368 } 2369 2370 enum class KeepSign : bool { no = false, yes }; 2371 2372 template <typename T, typename std::enable_if<std::is_floating_point<T>::value, 2373 int>::type = 0> 2374 T FPUCanonalizeNaNArg(T result, T arg, KeepSign keepSign = KeepSign::no) { 2375 DCHECK(std::isnan(arg)); 2376 T qNaN = std::numeric_limits<T>::quiet_NaN(); 2377 if (keepSign == KeepSign::yes) { 2378 return std::copysign(qNaN, result); 2379 } 2380 return qNaN; 2381 } 2382 2383 template <typename T> 2384 T FPUCanonalizeNaNArgs(T result, KeepSign keepSign, T first) { 2385 if (std::isnan(first)) { 2386 return FPUCanonalizeNaNArg(result, first, keepSign); 2387 } 2388 return result; 2389 } 2390 2391 template <typename T, typename... Args> 2392 T FPUCanonalizeNaNArgs(T result, KeepSign keepSign, T first, Args... args) { 2393 if (std::isnan(first)) { 2394 return FPUCanonalizeNaNArg(result, first, keepSign); 2395 } 2396 return FPUCanonalizeNaNArgs(result, keepSign, args...); 2397 } 2398 2399 template <typename Func, typename T, typename... Args> 2400 T FPUCanonalizeOperation(Func f, T first, Args... args) { 2401 return FPUCanonalizeOperation(f, KeepSign::no, first, args...); 2402 } 2403 2404 template <typename Func, typename T, typename... Args> 2405 T FPUCanonalizeOperation(Func f, KeepSign keepSign, T first, Args... args) { 2406 T result = f(first, args...); 2407 if (std::isnan(result)) { 2408 result = FPUCanonalizeNaNArgs(result, keepSign, first, args...); 2409 } 2410 return result; 2411 } 2412 2413 // Handle execution based on instruction types. 2414 2415 void Simulator::DecodeTypeRegisterSRsType() { 2416 float fs, ft, fd; 2417 fs = get_fpu_register_float(fs_reg()); 2418 ft = get_fpu_register_float(ft_reg()); 2419 fd = get_fpu_register_float(fd_reg()); 2420 int32_t ft_int = bit_cast<int32_t>(ft); 2421 int32_t fd_int = bit_cast<int32_t>(fd); 2422 uint32_t cc, fcsr_cc; 2423 cc = instr_.FCccValue(); 2424 fcsr_cc = get_fcsr_condition_bit(cc); 2425 switch (instr_.FunctionFieldRaw()) { 2426 case RINT: { 2427 DCHECK(kArchVariant == kMips64r6); 2428 float result, temp_result; 2429 double temp; 2430 float upper = std::ceil(fs); 2431 float lower = std::floor(fs); 2432 switch (get_fcsr_rounding_mode()) { 2433 case kRoundToNearest: 2434 if (upper - fs < fs - lower) { 2435 result = upper; 2436 } else if (upper - fs > fs - lower) { 2437 result = lower; 2438 } else { 2439 temp_result = upper / 2; 2440 float reminder = modf(temp_result, &temp); 2441 if (reminder == 0) { 2442 result = upper; 2443 } else { 2444 result = lower; 2445 } 2446 } 2447 break; 2448 case kRoundToZero: 2449 result = (fs > 0 ? lower : upper); 2450 break; 2451 case kRoundToPlusInf: 2452 result = upper; 2453 break; 2454 case kRoundToMinusInf: 2455 result = lower; 2456 break; 2457 } 2458 set_fpu_register_float(fd_reg(), result); 2459 if (result != fs) { 2460 set_fcsr_bit(kFCSRInexactFlagBit, true); 2461 } 2462 break; 2463 } 2464 case ADD_S: 2465 set_fpu_register_float( 2466 fd_reg(), 2467 FPUCanonalizeOperation([](float lhs, float rhs) { return lhs + rhs; }, 2468 fs, ft)); 2469 break; 2470 case SUB_S: 2471 set_fpu_register_float( 2472 fd_reg(), 2473 FPUCanonalizeOperation([](float lhs, float rhs) { return lhs - rhs; }, 2474 fs, ft)); 2475 break; 2476 case MADDF_S: 2477 DCHECK(kArchVariant == kMips64r6); 2478 set_fpu_register_float(fd_reg(), fd + (fs * ft)); 2479 break; 2480 case MSUBF_S: 2481 DCHECK(kArchVariant == kMips64r6); 2482 set_fpu_register_float(fd_reg(), fd - (fs * ft)); 2483 break; 2484 case MUL_S: 2485 set_fpu_register_float( 2486 fd_reg(), 2487 FPUCanonalizeOperation([](float lhs, float rhs) { return lhs * rhs; }, 2488 fs, ft)); 2489 break; 2490 case DIV_S: 2491 set_fpu_register_float( 2492 fd_reg(), 2493 FPUCanonalizeOperation([](float lhs, float rhs) { return lhs / rhs; }, 2494 fs, ft)); 2495 break; 2496 case ABS_S: 2497 set_fpu_register_float( 2498 fd_reg(), 2499 FPUCanonalizeOperation([](float fs) { return FPAbs(fs); }, fs)); 2500 break; 2501 case MOV_S: 2502 set_fpu_register_float(fd_reg(), fs); 2503 break; 2504 case NEG_S: 2505 set_fpu_register_float( 2506 fd_reg(), FPUCanonalizeOperation([](float src) { return -src; }, 2507 KeepSign::yes, fs)); 2508 break; 2509 case SQRT_S: 2510 set_fpu_register_float( 2511 fd_reg(), 2512 FPUCanonalizeOperation([](float src) { return std::sqrt(src); }, fs)); 2513 break; 2514 case RSQRT_S: 2515 set_fpu_register_float( 2516 fd_reg(), FPUCanonalizeOperation( 2517 [](float src) { return 1.0 / std::sqrt(src); }, fs)); 2518 break; 2519 case RECIP_S: 2520 set_fpu_register_float( 2521 fd_reg(), 2522 FPUCanonalizeOperation([](float src) { return 1.0 / src; }, fs)); 2523 break; 2524 case C_F_D: 2525 set_fcsr_bit(fcsr_cc, false); 2526 break; 2527 case C_UN_D: 2528 set_fcsr_bit(fcsr_cc, std::isnan(fs) || std::isnan(ft)); 2529 break; 2530 case C_EQ_D: 2531 set_fcsr_bit(fcsr_cc, (fs == ft)); 2532 break; 2533 case C_UEQ_D: 2534 set_fcsr_bit(fcsr_cc, (fs == ft) || (std::isnan(fs) || std::isnan(ft))); 2535 break; 2536 case C_OLT_D: 2537 set_fcsr_bit(fcsr_cc, (fs < ft)); 2538 break; 2539 case C_ULT_D: 2540 set_fcsr_bit(fcsr_cc, (fs < ft) || (std::isnan(fs) || std::isnan(ft))); 2541 break; 2542 case C_OLE_D: 2543 set_fcsr_bit(fcsr_cc, (fs <= ft)); 2544 break; 2545 case C_ULE_D: 2546 set_fcsr_bit(fcsr_cc, (fs <= ft) || (std::isnan(fs) || std::isnan(ft))); 2547 break; 2548 case CVT_D_S: 2549 set_fpu_register_double(fd_reg(), static_cast<double>(fs)); 2550 break; 2551 case CLASS_S: { // Mips64r6 instruction 2552 // Convert float input to uint32_t for easier bit manipulation 2553 uint32_t classed = bit_cast<uint32_t>(fs); 2554 2555 // Extracting sign, exponent and mantissa from the input float 2556 uint32_t sign = (classed >> 31) & 1; 2557 uint32_t exponent = (classed >> 23) & 0x000000ff; 2558 uint32_t mantissa = classed & 0x007fffff; 2559 uint32_t result; 2560 float fResult; 2561 2562 // Setting flags if input float is negative infinity, 2563 // positive infinity, negative zero or positive zero 2564 bool negInf = (classed == 0xFF800000); 2565 bool posInf = (classed == 0x7F800000); 2566 bool negZero = (classed == 0x80000000); 2567 bool posZero = (classed == 0x00000000); 2568 2569 bool signalingNan; 2570 bool quietNan; 2571 bool negSubnorm; 2572 bool posSubnorm; 2573 bool negNorm; 2574 bool posNorm; 2575 2576 // Setting flags if float is NaN 2577 signalingNan = false; 2578 quietNan = false; 2579 if (!negInf && !posInf && (exponent == 0xff)) { 2580 quietNan = ((mantissa & 0x00200000) == 0) && 2581 ((mantissa & (0x00200000 - 1)) == 0); 2582 signalingNan = !quietNan; 2583 } 2584 2585 // Setting flags if float is subnormal number 2586 posSubnorm = false; 2587 negSubnorm = false; 2588 if ((exponent == 0) && (mantissa != 0)) { 2589 DCHECK(sign == 0 || sign == 1); 2590 posSubnorm = (sign == 0); 2591 negSubnorm = (sign == 1); 2592 } 2593 2594 // Setting flags if float is normal number 2595 posNorm = false; 2596 negNorm = false; 2597 if (!posSubnorm && !negSubnorm && !posInf && !negInf && !signalingNan && 2598 !quietNan && !negZero && !posZero) { 2599 DCHECK(sign == 0 || sign == 1); 2600 posNorm = (sign == 0); 2601 negNorm = (sign == 1); 2602 } 2603 2604 // Calculating result according to description of CLASS.S instruction 2605 result = (posZero << 9) | (posSubnorm << 8) | (posNorm << 7) | 2606 (posInf << 6) | (negZero << 5) | (negSubnorm << 4) | 2607 (negNorm << 3) | (negInf << 2) | (quietNan << 1) | signalingNan; 2608 2609 DCHECK(result != 0); 2610 2611 fResult = bit_cast<float>(result); 2612 set_fpu_register_float(fd_reg(), fResult); 2613 2614 break; 2615 } 2616 case CVT_L_S: { 2617 float rounded; 2618 int64_t result; 2619 round64_according_to_fcsr(fs, rounded, result, fs); 2620 set_fpu_register(fd_reg(), result); 2621 if (set_fcsr_round64_error(fs, rounded)) { 2622 set_fpu_register_invalid_result64(fs, rounded); 2623 } 2624 break; 2625 } 2626 case CVT_W_S: { 2627 float rounded; 2628 int32_t result; 2629 round_according_to_fcsr(fs, rounded, result, fs); 2630 set_fpu_register_word(fd_reg(), result); 2631 if (set_fcsr_round_error(fs, rounded)) { 2632 set_fpu_register_word_invalid_result(fs, rounded); 2633 } 2634 break; 2635 } 2636 case TRUNC_W_S: { // Truncate single to word (round towards 0). 2637 float rounded = trunc(fs); 2638 int32_t result = static_cast<int32_t>(rounded); 2639 set_fpu_register_word(fd_reg(), result); 2640 if (set_fcsr_round_error(fs, rounded)) { 2641 set_fpu_register_word_invalid_result(fs, rounded); 2642 } 2643 } break; 2644 case TRUNC_L_S: { // Mips64r2 instruction. 2645 float rounded = trunc(fs); 2646 int64_t result = static_cast<int64_t>(rounded); 2647 set_fpu_register(fd_reg(), result); 2648 if (set_fcsr_round64_error(fs, rounded)) { 2649 set_fpu_register_invalid_result64(fs, rounded); 2650 } 2651 break; 2652 } 2653 case ROUND_W_S: { 2654 float rounded = std::floor(fs + 0.5); 2655 int32_t result = static_cast<int32_t>(rounded); 2656 if ((result & 1) != 0 && result - fs == 0.5) { 2657 // If the number is halfway between two integers, 2658 // round to the even one. 2659 result--; 2660 } 2661 set_fpu_register_word(fd_reg(), result); 2662 if (set_fcsr_round_error(fs, rounded)) { 2663 set_fpu_register_word_invalid_result(fs, rounded); 2664 } 2665 break; 2666 } 2667 case ROUND_L_S: { // Mips64r2 instruction. 2668 float rounded = std::floor(fs + 0.5); 2669 int64_t result = static_cast<int64_t>(rounded); 2670 if ((result & 1) != 0 && result - fs == 0.5) { 2671 // If the number is halfway between two integers, 2672 // round to the even one. 2673 result--; 2674 } 2675 int64_t i64 = static_cast<int64_t>(result); 2676 set_fpu_register(fd_reg(), i64); 2677 if (set_fcsr_round64_error(fs, rounded)) { 2678 set_fpu_register_invalid_result64(fs, rounded); 2679 } 2680 break; 2681 } 2682 case FLOOR_L_S: { // Mips64r2 instruction. 2683 float rounded = floor(fs); 2684 int64_t result = static_cast<int64_t>(rounded); 2685 set_fpu_register(fd_reg(), result); 2686 if (set_fcsr_round64_error(fs, rounded)) { 2687 set_fpu_register_invalid_result64(fs, rounded); 2688 } 2689 break; 2690 } 2691 case FLOOR_W_S: // Round double to word towards negative infinity. 2692 { 2693 float rounded = std::floor(fs); 2694 int32_t result = static_cast<int32_t>(rounded); 2695 set_fpu_register_word(fd_reg(), result); 2696 if (set_fcsr_round_error(fs, rounded)) { 2697 set_fpu_register_word_invalid_result(fs, rounded); 2698 } 2699 } break; 2700 case CEIL_W_S: // Round double to word towards positive infinity. 2701 { 2702 float rounded = std::ceil(fs); 2703 int32_t result = static_cast<int32_t>(rounded); 2704 set_fpu_register_word(fd_reg(), result); 2705 if (set_fcsr_round_error(fs, rounded)) { 2706 set_fpu_register_invalid_result(fs, rounded); 2707 } 2708 } break; 2709 case CEIL_L_S: { // Mips64r2 instruction. 2710 float rounded = ceil(fs); 2711 int64_t result = static_cast<int64_t>(rounded); 2712 set_fpu_register(fd_reg(), result); 2713 if (set_fcsr_round64_error(fs, rounded)) { 2714 set_fpu_register_invalid_result64(fs, rounded); 2715 } 2716 break; 2717 } 2718 case MINA: 2719 DCHECK(kArchVariant == kMips64r6); 2720 set_fpu_register_float(fd_reg(), FPUMinA(ft, fs)); 2721 break; 2722 case MAXA: 2723 DCHECK(kArchVariant == kMips64r6); 2724 set_fpu_register_float(fd_reg(), FPUMaxA(ft, fs)); 2725 break; 2726 case MIN: 2727 DCHECK(kArchVariant == kMips64r6); 2728 set_fpu_register_float(fd_reg(), FPUMin(ft, fs)); 2729 break; 2730 case MAX: 2731 DCHECK(kArchVariant == kMips64r6); 2732 set_fpu_register_float(fd_reg(), FPUMax(ft, fs)); 2733 break; 2734 case SEL: 2735 DCHECK(kArchVariant == kMips64r6); 2736 set_fpu_register_float(fd_reg(), (fd_int & 0x1) == 0 ? fs : ft); 2737 break; 2738 case SELEQZ_C: 2739 DCHECK(kArchVariant == kMips64r6); 2740 set_fpu_register_float(fd_reg(), (ft_int & 0x1) == 0 2741 ? get_fpu_register_float(fs_reg()) 2742 : 0.0); 2743 break; 2744 case SELNEZ_C: 2745 DCHECK(kArchVariant == kMips64r6); 2746 set_fpu_register_float(fd_reg(), (ft_int & 0x1) != 0 2747 ? get_fpu_register_float(fs_reg()) 2748 : 0.0); 2749 break; 2750 case MOVZ_C: { 2751 DCHECK(kArchVariant == kMips64r2); 2752 if (rt() == 0) { 2753 set_fpu_register_float(fd_reg(), fs); 2754 } 2755 break; 2756 } 2757 case MOVN_C: { 2758 DCHECK(kArchVariant == kMips64r2); 2759 if (rt() != 0) { 2760 set_fpu_register_float(fd_reg(), fs); 2761 } 2762 break; 2763 } 2764 case MOVF: { 2765 // Same function field for MOVT.D and MOVF.D 2766 uint32_t ft_cc = (ft_reg() >> 2) & 0x7; 2767 ft_cc = get_fcsr_condition_bit(ft_cc); 2768 2769 if (instr_.Bit(16)) { // Read Tf bit. 2770 // MOVT.D 2771 if (test_fcsr_bit(ft_cc)) set_fpu_register_float(fd_reg(), fs); 2772 } else { 2773 // MOVF.D 2774 if (!test_fcsr_bit(ft_cc)) set_fpu_register_float(fd_reg(), fs); 2775 } 2776 break; 2777 } 2778 default: 2779 // TRUNC_W_S ROUND_W_S ROUND_L_S FLOOR_W_S FLOOR_L_S 2780 // CEIL_W_S CEIL_L_S CVT_PS_S are unimplemented. 2781 UNREACHABLE(); 2782 } 2783 } 2784 2785 2786 void Simulator::DecodeTypeRegisterDRsType() { 2787 double ft, fs, fd; 2788 uint32_t cc, fcsr_cc; 2789 fs = get_fpu_register_double(fs_reg()); 2790 ft = (instr_.FunctionFieldRaw() != MOVF) ? get_fpu_register_double(ft_reg()) 2791 : 0.0; 2792 fd = get_fpu_register_double(fd_reg()); 2793 cc = instr_.FCccValue(); 2794 fcsr_cc = get_fcsr_condition_bit(cc); 2795 int64_t ft_int = bit_cast<int64_t>(ft); 2796 int64_t fd_int = bit_cast<int64_t>(fd); 2797 switch (instr_.FunctionFieldRaw()) { 2798 case RINT: { 2799 DCHECK(kArchVariant == kMips64r6); 2800 double result, temp, temp_result; 2801 double upper = std::ceil(fs); 2802 double lower = std::floor(fs); 2803 switch (get_fcsr_rounding_mode()) { 2804 case kRoundToNearest: 2805 if (upper - fs < fs - lower) { 2806 result = upper; 2807 } else if (upper - fs > fs - lower) { 2808 result = lower; 2809 } else { 2810 temp_result = upper / 2; 2811 double reminder = modf(temp_result, &temp); 2812 if (reminder == 0) { 2813 result = upper; 2814 } else { 2815 result = lower; 2816 } 2817 } 2818 break; 2819 case kRoundToZero: 2820 result = (fs > 0 ? lower : upper); 2821 break; 2822 case kRoundToPlusInf: 2823 result = upper; 2824 break; 2825 case kRoundToMinusInf: 2826 result = lower; 2827 break; 2828 } 2829 set_fpu_register_double(fd_reg(), result); 2830 if (result != fs) { 2831 set_fcsr_bit(kFCSRInexactFlagBit, true); 2832 } 2833 break; 2834 } 2835 case SEL: 2836 DCHECK(kArchVariant == kMips64r6); 2837 set_fpu_register_double(fd_reg(), (fd_int & 0x1) == 0 ? fs : ft); 2838 break; 2839 case SELEQZ_C: 2840 DCHECK(kArchVariant == kMips64r6); 2841 set_fpu_register_double(fd_reg(), (ft_int & 0x1) == 0 ? fs : 0.0); 2842 break; 2843 case SELNEZ_C: 2844 DCHECK(kArchVariant == kMips64r6); 2845 set_fpu_register_double(fd_reg(), (ft_int & 0x1) != 0 ? fs : 0.0); 2846 break; 2847 case MOVZ_C: { 2848 DCHECK(kArchVariant == kMips64r2); 2849 if (rt() == 0) { 2850 set_fpu_register_double(fd_reg(), fs); 2851 } 2852 break; 2853 } 2854 case MOVN_C: { 2855 DCHECK(kArchVariant == kMips64r2); 2856 if (rt() != 0) { 2857 set_fpu_register_double(fd_reg(), fs); 2858 } 2859 break; 2860 } 2861 case MOVF: { 2862 // Same function field for MOVT.D and MOVF.D 2863 uint32_t ft_cc = (ft_reg() >> 2) & 0x7; 2864 ft_cc = get_fcsr_condition_bit(ft_cc); 2865 if (instr_.Bit(16)) { // Read Tf bit. 2866 // MOVT.D 2867 if (test_fcsr_bit(ft_cc)) set_fpu_register_double(fd_reg(), fs); 2868 } else { 2869 // MOVF.D 2870 if (!test_fcsr_bit(ft_cc)) set_fpu_register_double(fd_reg(), fs); 2871 } 2872 break; 2873 } 2874 case MINA: 2875 DCHECK(kArchVariant == kMips64r6); 2876 set_fpu_register_double(fd_reg(), FPUMinA(ft, fs)); 2877 break; 2878 case MAXA: 2879 DCHECK(kArchVariant == kMips64r6); 2880 set_fpu_register_double(fd_reg(), FPUMaxA(ft, fs)); 2881 break; 2882 case MIN: 2883 DCHECK(kArchVariant == kMips64r6); 2884 set_fpu_register_double(fd_reg(), FPUMin(ft, fs)); 2885 break; 2886 case MAX: 2887 DCHECK(kArchVariant == kMips64r6); 2888 set_fpu_register_double(fd_reg(), FPUMax(ft, fs)); 2889 break; 2890 case ADD_D: 2891 set_fpu_register_double( 2892 fd_reg(), 2893 FPUCanonalizeOperation( 2894 [](double lhs, double rhs) { return lhs + rhs; }, fs, ft)); 2895 break; 2896 case SUB_D: 2897 set_fpu_register_double( 2898 fd_reg(), 2899 FPUCanonalizeOperation( 2900 [](double lhs, double rhs) { return lhs - rhs; }, fs, ft)); 2901 break; 2902 case MADDF_D: 2903 DCHECK(kArchVariant == kMips64r6); 2904 set_fpu_register_double(fd_reg(), fd + (fs * ft)); 2905 break; 2906 case MSUBF_D: 2907 DCHECK(kArchVariant == kMips64r6); 2908 set_fpu_register_double(fd_reg(), fd - (fs * ft)); 2909 break; 2910 case MUL_D: 2911 set_fpu_register_double( 2912 fd_reg(), 2913 FPUCanonalizeOperation( 2914 [](double lhs, double rhs) { return lhs * rhs; }, fs, ft)); 2915 break; 2916 case DIV_D: 2917 set_fpu_register_double( 2918 fd_reg(), 2919 FPUCanonalizeOperation( 2920 [](double lhs, double rhs) { return lhs / rhs; }, fs, ft)); 2921 break; 2922 case ABS_D: 2923 set_fpu_register_double( 2924 fd_reg(), 2925 FPUCanonalizeOperation([](double fs) { return FPAbs(fs); }, fs)); 2926 break; 2927 case MOV_D: 2928 set_fpu_register_double(fd_reg(), fs); 2929 break; 2930 case NEG_D: 2931 set_fpu_register_double( 2932 fd_reg(), FPUCanonalizeOperation([](double src) { return -src; }, 2933 KeepSign::yes, fs)); 2934 break; 2935 case SQRT_D: 2936 set_fpu_register_double( 2937 fd_reg(), 2938 FPUCanonalizeOperation([](double fs) { return std::sqrt(fs); }, fs)); 2939 break; 2940 case RSQRT_D: 2941 set_fpu_register_double( 2942 fd_reg(), FPUCanonalizeOperation( 2943 [](double fs) { return 1.0 / std::sqrt(fs); }, fs)); 2944 break; 2945 case RECIP_D: 2946 set_fpu_register_double( 2947 fd_reg(), 2948 FPUCanonalizeOperation([](double fs) { return 1.0 / fs; }, fs)); 2949 break; 2950 case C_UN_D: 2951 set_fcsr_bit(fcsr_cc, std::isnan(fs) || std::isnan(ft)); 2952 break; 2953 case C_EQ_D: 2954 set_fcsr_bit(fcsr_cc, (fs == ft)); 2955 break; 2956 case C_UEQ_D: 2957 set_fcsr_bit(fcsr_cc, (fs == ft) || (std::isnan(fs) || std::isnan(ft))); 2958 break; 2959 case C_OLT_D: 2960 set_fcsr_bit(fcsr_cc, (fs < ft)); 2961 break; 2962 case C_ULT_D: 2963 set_fcsr_bit(fcsr_cc, (fs < ft) || (std::isnan(fs) || std::isnan(ft))); 2964 break; 2965 case C_OLE_D: 2966 set_fcsr_bit(fcsr_cc, (fs <= ft)); 2967 break; 2968 case C_ULE_D: 2969 set_fcsr_bit(fcsr_cc, (fs <= ft) || (std::isnan(fs) || std::isnan(ft))); 2970 break; 2971 case CVT_W_D: { // Convert double to word. 2972 double rounded; 2973 int32_t result; 2974 round_according_to_fcsr(fs, rounded, result, fs); 2975 set_fpu_register_word(fd_reg(), result); 2976 if (set_fcsr_round_error(fs, rounded)) { 2977 set_fpu_register_word_invalid_result(fs, rounded); 2978 } 2979 break; 2980 } 2981 case ROUND_W_D: // Round double to word (round half to even). 2982 { 2983 double rounded = std::floor(fs + 0.5); 2984 int32_t result = static_cast<int32_t>(rounded); 2985 if ((result & 1) != 0 && result - fs == 0.5) { 2986 // If the number is halfway between two integers, 2987 // round to the even one. 2988 result--; 2989 } 2990 set_fpu_register_word(fd_reg(), result); 2991 if (set_fcsr_round_error(fs, rounded)) { 2992 set_fpu_register_invalid_result(fs, rounded); 2993 } 2994 } break; 2995 case TRUNC_W_D: // Truncate double to word (round towards 0). 2996 { 2997 double rounded = trunc(fs); 2998 int32_t result = static_cast<int32_t>(rounded); 2999 set_fpu_register_word(fd_reg(), result); 3000 if (set_fcsr_round_error(fs, rounded)) { 3001 set_fpu_register_invalid_result(fs, rounded); 3002 } 3003 } break; 3004 case FLOOR_W_D: // Round double to word towards negative infinity. 3005 { 3006 double rounded = std::floor(fs); 3007 int32_t result = static_cast<int32_t>(rounded); 3008 set_fpu_register_word(fd_reg(), result); 3009 if (set_fcsr_round_error(fs, rounded)) { 3010 set_fpu_register_invalid_result(fs, rounded); 3011 } 3012 } break; 3013 case CEIL_W_D: // Round double to word towards positive infinity. 3014 { 3015 double rounded = std::ceil(fs); 3016 int32_t result = static_cast<int32_t>(rounded); 3017 set_fpu_register_word(fd_reg(), result); 3018 if (set_fcsr_round_error(fs, rounded)) { 3019 set_fpu_register_invalid_result(fs, rounded); 3020 } 3021 } break; 3022 case CVT_S_D: // Convert double to float (single). 3023 set_fpu_register_float(fd_reg(), static_cast<float>(fs)); 3024 break; 3025 case CVT_L_D: { // Mips64r2: Truncate double to 64-bit long-word. 3026 double rounded; 3027 int64_t result; 3028 round64_according_to_fcsr(fs, rounded, result, fs); 3029 set_fpu_register(fd_reg(), result); 3030 if (set_fcsr_round64_error(fs, rounded)) { 3031 set_fpu_register_invalid_result64(fs, rounded); 3032 } 3033 break; 3034 } 3035 case ROUND_L_D: { // Mips64r2 instruction. 3036 double rounded = std::floor(fs + 0.5); 3037 int64_t result = static_cast<int64_t>(rounded); 3038 if ((result & 1) != 0 && result - fs == 0.5) { 3039 // If the number is halfway between two integers, 3040 // round to the even one. 3041 result--; 3042 } 3043 int64_t i64 = static_cast<int64_t>(result); 3044 set_fpu_register(fd_reg(), i64); 3045 if (set_fcsr_round64_error(fs, rounded)) { 3046 set_fpu_register_invalid_result64(fs, rounded); 3047 } 3048 break; 3049 } 3050 case TRUNC_L_D: { // Mips64r2 instruction. 3051 double rounded = trunc(fs); 3052 int64_t result = static_cast<int64_t>(rounded); 3053 set_fpu_register(fd_reg(), result); 3054 if (set_fcsr_round64_error(fs, rounded)) { 3055 set_fpu_register_invalid_result64(fs, rounded); 3056 } 3057 break; 3058 } 3059 case FLOOR_L_D: { // Mips64r2 instruction. 3060 double rounded = floor(fs); 3061 int64_t result = static_cast<int64_t>(rounded); 3062 set_fpu_register(fd_reg(), result); 3063 if (set_fcsr_round64_error(fs, rounded)) { 3064 set_fpu_register_invalid_result64(fs, rounded); 3065 } 3066 break; 3067 } 3068 case CEIL_L_D: { // Mips64r2 instruction. 3069 double rounded = ceil(fs); 3070 int64_t result = static_cast<int64_t>(rounded); 3071 set_fpu_register(fd_reg(), result); 3072 if (set_fcsr_round64_error(fs, rounded)) { 3073 set_fpu_register_invalid_result64(fs, rounded); 3074 } 3075 break; 3076 } 3077 case CLASS_D: { // Mips64r6 instruction 3078 // Convert double input to uint64_t for easier bit manipulation 3079 uint64_t classed = bit_cast<uint64_t>(fs); 3080 3081 // Extracting sign, exponent and mantissa from the input double 3082 uint32_t sign = (classed >> 63) & 1; 3083 uint32_t exponent = (classed >> 52) & 0x00000000000007ff; 3084 uint64_t mantissa = classed & 0x000fffffffffffff; 3085 uint64_t result; 3086 double dResult; 3087 3088 // Setting flags if input double is negative infinity, 3089 // positive infinity, negative zero or positive zero 3090 bool negInf = (classed == 0xFFF0000000000000); 3091 bool posInf = (classed == 0x7FF0000000000000); 3092 bool negZero = (classed == 0x8000000000000000); 3093 bool posZero = (classed == 0x0000000000000000); 3094 3095 bool signalingNan; 3096 bool quietNan; 3097 bool negSubnorm; 3098 bool posSubnorm; 3099 bool negNorm; 3100 bool posNorm; 3101 3102 // Setting flags if double is NaN 3103 signalingNan = false; 3104 quietNan = false; 3105 if (!negInf && !posInf && exponent == 0x7ff) { 3106 quietNan = ((mantissa & 0x0008000000000000) != 0) && 3107 ((mantissa & (0x0008000000000000 - 1)) == 0); 3108 signalingNan = !quietNan; 3109 } 3110 3111 // Setting flags if double is subnormal number 3112 posSubnorm = false; 3113 negSubnorm = false; 3114 if ((exponent == 0) && (mantissa != 0)) { 3115 DCHECK(sign == 0 || sign == 1); 3116 posSubnorm = (sign == 0); 3117 negSubnorm = (sign == 1); 3118 } 3119 3120 // Setting flags if double is normal number 3121 posNorm = false; 3122 negNorm = false; 3123 if (!posSubnorm && !negSubnorm && !posInf && !negInf && !signalingNan && 3124 !quietNan && !negZero && !posZero) { 3125 DCHECK(sign == 0 || sign == 1); 3126 posNorm = (sign == 0); 3127 negNorm = (sign == 1); 3128 } 3129 3130 // Calculating result according to description of CLASS.D instruction 3131 result = (posZero << 9) | (posSubnorm << 8) | (posNorm << 7) | 3132 (posInf << 6) | (negZero << 5) | (negSubnorm << 4) | 3133 (negNorm << 3) | (negInf << 2) | (quietNan << 1) | signalingNan; 3134 3135 DCHECK(result != 0); 3136 3137 dResult = bit_cast<double>(result); 3138 set_fpu_register_double(fd_reg(), dResult); 3139 3140 break; 3141 } 3142 case C_F_D: { 3143 set_fcsr_bit(fcsr_cc, false); 3144 break; 3145 } 3146 default: 3147 UNREACHABLE(); 3148 } 3149 } 3150 3151 3152 void Simulator::DecodeTypeRegisterWRsType() { 3153 float fs = get_fpu_register_float(fs_reg()); 3154 float ft = get_fpu_register_float(ft_reg()); 3155 int64_t alu_out = 0x12345678; 3156 switch (instr_.FunctionFieldRaw()) { 3157 case CVT_S_W: // Convert word to float (single). 3158 alu_out = get_fpu_register_signed_word(fs_reg()); 3159 set_fpu_register_float(fd_reg(), static_cast<float>(alu_out)); 3160 break; 3161 case CVT_D_W: // Convert word to double. 3162 alu_out = get_fpu_register_signed_word(fs_reg()); 3163 set_fpu_register_double(fd_reg(), static_cast<double>(alu_out)); 3164 break; 3165 case CMP_AF: 3166 set_fpu_register_word(fd_reg(), 0); 3167 break; 3168 case CMP_UN: 3169 if (std::isnan(fs) || std::isnan(ft)) { 3170 set_fpu_register_word(fd_reg(), -1); 3171 } else { 3172 set_fpu_register_word(fd_reg(), 0); 3173 } 3174 break; 3175 case CMP_EQ: 3176 if (fs == ft) { 3177 set_fpu_register_word(fd_reg(), -1); 3178 } else { 3179 set_fpu_register_word(fd_reg(), 0); 3180 } 3181 break; 3182 case CMP_UEQ: 3183 if ((fs == ft) || (std::isnan(fs) || std::isnan(ft))) { 3184 set_fpu_register_word(fd_reg(), -1); 3185 } else { 3186 set_fpu_register_word(fd_reg(), 0); 3187 } 3188 break; 3189 case CMP_LT: 3190 if (fs < ft) { 3191 set_fpu_register_word(fd_reg(), -1); 3192 } else { 3193 set_fpu_register_word(fd_reg(), 0); 3194 } 3195 break; 3196 case CMP_ULT: 3197 if ((fs < ft) || (std::isnan(fs) || std::isnan(ft))) { 3198 set_fpu_register_word(fd_reg(), -1); 3199 } else { 3200 set_fpu_register_word(fd_reg(), 0); 3201 } 3202 break; 3203 case CMP_LE: 3204 if (fs <= ft) { 3205 set_fpu_register_word(fd_reg(), -1); 3206 } else { 3207 set_fpu_register_word(fd_reg(), 0); 3208 } 3209 break; 3210 case CMP_ULE: 3211 if ((fs <= ft) || (std::isnan(fs) || std::isnan(ft))) { 3212 set_fpu_register_word(fd_reg(), -1); 3213 } else { 3214 set_fpu_register_word(fd_reg(), 0); 3215 } 3216 break; 3217 case CMP_OR: 3218 if (!std::isnan(fs) && !std::isnan(ft)) { 3219 set_fpu_register_word(fd_reg(), -1); 3220 } else { 3221 set_fpu_register_word(fd_reg(), 0); 3222 } 3223 break; 3224 case CMP_UNE: 3225 if ((fs != ft) || (std::isnan(fs) || std::isnan(ft))) { 3226 set_fpu_register_word(fd_reg(), -1); 3227 } else { 3228 set_fpu_register_word(fd_reg(), 0); 3229 } 3230 break; 3231 case CMP_NE: 3232 if (fs != ft) { 3233 set_fpu_register_word(fd_reg(), -1); 3234 } else { 3235 set_fpu_register_word(fd_reg(), 0); 3236 } 3237 break; 3238 default: 3239 UNREACHABLE(); 3240 } 3241 } 3242 3243 3244 void Simulator::DecodeTypeRegisterLRsType() { 3245 double fs = get_fpu_register_double(fs_reg()); 3246 double ft = get_fpu_register_double(ft_reg()); 3247 int64_t i64; 3248 switch (instr_.FunctionFieldRaw()) { 3249 case CVT_D_L: // Mips32r2 instruction. 3250 i64 = get_fpu_register(fs_reg()); 3251 set_fpu_register_double(fd_reg(), static_cast<double>(i64)); 3252 break; 3253 case CVT_S_L: 3254 i64 = get_fpu_register(fs_reg()); 3255 set_fpu_register_float(fd_reg(), static_cast<float>(i64)); 3256 break; 3257 case CMP_AF: 3258 set_fpu_register(fd_reg(), 0); 3259 break; 3260 case CMP_UN: 3261 if (std::isnan(fs) || std::isnan(ft)) { 3262 set_fpu_register(fd_reg(), -1); 3263 } else { 3264 set_fpu_register(fd_reg(), 0); 3265 } 3266 break; 3267 case CMP_EQ: 3268 if (fs == ft) { 3269 set_fpu_register(fd_reg(), -1); 3270 } else { 3271 set_fpu_register(fd_reg(), 0); 3272 } 3273 break; 3274 case CMP_UEQ: 3275 if ((fs == ft) || (std::isnan(fs) || std::isnan(ft))) { 3276 set_fpu_register(fd_reg(), -1); 3277 } else { 3278 set_fpu_register(fd_reg(), 0); 3279 } 3280 break; 3281 case CMP_LT: 3282 if (fs < ft) { 3283 set_fpu_register(fd_reg(), -1); 3284 } else { 3285 set_fpu_register(fd_reg(), 0); 3286 } 3287 break; 3288 case CMP_ULT: 3289 if ((fs < ft) || (std::isnan(fs) || std::isnan(ft))) { 3290 set_fpu_register(fd_reg(), -1); 3291 } else { 3292 set_fpu_register(fd_reg(), 0); 3293 } 3294 break; 3295 case CMP_LE: 3296 if (fs <= ft) { 3297 set_fpu_register(fd_reg(), -1); 3298 } else { 3299 set_fpu_register(fd_reg(), 0); 3300 } 3301 break; 3302 case CMP_ULE: 3303 if ((fs <= ft) || (std::isnan(fs) || std::isnan(ft))) { 3304 set_fpu_register(fd_reg(), -1); 3305 } else { 3306 set_fpu_register(fd_reg(), 0); 3307 } 3308 break; 3309 case CMP_OR: 3310 if (!std::isnan(fs) && !std::isnan(ft)) { 3311 set_fpu_register(fd_reg(), -1); 3312 } else { 3313 set_fpu_register(fd_reg(), 0); 3314 } 3315 break; 3316 case CMP_UNE: 3317 if ((fs != ft) || (std::isnan(fs) || std::isnan(ft))) { 3318 set_fpu_register(fd_reg(), -1); 3319 } else { 3320 set_fpu_register(fd_reg(), 0); 3321 } 3322 break; 3323 case CMP_NE: 3324 if (fs != ft && (!std::isnan(fs) && !std::isnan(ft))) { 3325 set_fpu_register(fd_reg(), -1); 3326 } else { 3327 set_fpu_register(fd_reg(), 0); 3328 } 3329 break; 3330 default: 3331 UNREACHABLE(); 3332 } 3333 } 3334 3335 3336 void Simulator::DecodeTypeRegisterCOP1() { 3337 switch (instr_.RsFieldRaw()) { 3338 case BC1: // Branch on coprocessor condition. 3339 case BC1EQZ: 3340 case BC1NEZ: 3341 UNREACHABLE(); 3342 break; 3343 case CFC1: 3344 // At the moment only FCSR is supported. 3345 DCHECK(fs_reg() == kFCSRRegister); 3346 set_register(rt_reg(), FCSR_); 3347 break; 3348 case MFC1: 3349 set_register(rt_reg(), 3350 static_cast<int64_t>(get_fpu_register_word(fs_reg()))); 3351 break; 3352 case DMFC1: 3353 set_register(rt_reg(), get_fpu_register(fs_reg())); 3354 break; 3355 case MFHC1: 3356 set_register(rt_reg(), get_fpu_register_hi_word(fs_reg())); 3357 break; 3358 case CTC1: { 3359 // At the moment only FCSR is supported. 3360 DCHECK(fs_reg() == kFCSRRegister); 3361 uint32_t reg = static_cast<uint32_t>(rt()); 3362 if (kArchVariant == kMips64r6) { 3363 FCSR_ = reg | kFCSRNaN2008FlagMask; 3364 } else { 3365 DCHECK(kArchVariant == kMips64r2); 3366 FCSR_ = reg & ~kFCSRNaN2008FlagMask; 3367 } 3368 break; 3369 } 3370 case MTC1: 3371 // Hardware writes upper 32-bits to zero on mtc1. 3372 set_fpu_register_hi_word(fs_reg(), 0); 3373 set_fpu_register_word(fs_reg(), static_cast<int32_t>(rt())); 3374 break; 3375 case DMTC1: 3376 set_fpu_register(fs_reg(), rt()); 3377 break; 3378 case MTHC1: 3379 set_fpu_register_hi_word(fs_reg(), static_cast<int32_t>(rt())); 3380 break; 3381 case S: 3382 DecodeTypeRegisterSRsType(); 3383 break; 3384 case D: 3385 DecodeTypeRegisterDRsType(); 3386 break; 3387 case W: 3388 DecodeTypeRegisterWRsType(); 3389 break; 3390 case L: 3391 DecodeTypeRegisterLRsType(); 3392 break; 3393 default: 3394 UNREACHABLE(); 3395 } 3396 } 3397 3398 3399 void Simulator::DecodeTypeRegisterCOP1X() { 3400 switch (instr_.FunctionFieldRaw()) { 3401 case MADD_S: { 3402 DCHECK(kArchVariant == kMips64r2); 3403 float fr, ft, fs; 3404 fr = get_fpu_register_float(fr_reg()); 3405 fs = get_fpu_register_float(fs_reg()); 3406 ft = get_fpu_register_float(ft_reg()); 3407 set_fpu_register_float(fd_reg(), fs * ft + fr); 3408 break; 3409 } 3410 case MSUB_S: { 3411 DCHECK(kArchVariant == kMips64r2); 3412 float fr, ft, fs; 3413 fr = get_fpu_register_float(fr_reg()); 3414 fs = get_fpu_register_float(fs_reg()); 3415 ft = get_fpu_register_float(ft_reg()); 3416 set_fpu_register_float(fd_reg(), fs * ft - fr); 3417 break; 3418 } 3419 case MADD_D: { 3420 DCHECK(kArchVariant == kMips64r2); 3421 double fr, ft, fs; 3422 fr = get_fpu_register_double(fr_reg()); 3423 fs = get_fpu_register_double(fs_reg()); 3424 ft = get_fpu_register_double(ft_reg()); 3425 set_fpu_register_double(fd_reg(), fs * ft + fr); 3426 break; 3427 } 3428 case MSUB_D: { 3429 DCHECK(kArchVariant == kMips64r2); 3430 double fr, ft, fs; 3431 fr = get_fpu_register_double(fr_reg()); 3432 fs = get_fpu_register_double(fs_reg()); 3433 ft = get_fpu_register_double(ft_reg()); 3434 set_fpu_register_double(fd_reg(), fs * ft - fr); 3435 break; 3436 } 3437 default: 3438 UNREACHABLE(); 3439 } 3440 } 3441 3442 3443 void Simulator::DecodeTypeRegisterSPECIAL() { 3444 int64_t i64hilo; 3445 uint64_t u64hilo; 3446 int64_t alu_out; 3447 bool do_interrupt = false; 3448 3449 switch (instr_.FunctionFieldRaw()) { 3450 case SELEQZ_S: 3451 DCHECK(kArchVariant == kMips64r6); 3452 set_register(rd_reg(), rt() == 0 ? rs() : 0); 3453 break; 3454 case SELNEZ_S: 3455 DCHECK(kArchVariant == kMips64r6); 3456 set_register(rd_reg(), rt() != 0 ? rs() : 0); 3457 break; 3458 case JR: { 3459 int64_t next_pc = rs(); 3460 int64_t current_pc = get_pc(); 3461 Instruction* branch_delay_instr = 3462 reinterpret_cast<Instruction*>(current_pc + Instruction::kInstrSize); 3463 BranchDelayInstructionDecode(branch_delay_instr); 3464 set_pc(next_pc); 3465 pc_modified_ = true; 3466 break; 3467 } 3468 case JALR: { 3469 int64_t next_pc = rs(); 3470 int64_t current_pc = get_pc(); 3471 int32_t return_addr_reg = rd_reg(); 3472 Instruction* branch_delay_instr = 3473 reinterpret_cast<Instruction*>(current_pc + Instruction::kInstrSize); 3474 BranchDelayInstructionDecode(branch_delay_instr); 3475 set_register(return_addr_reg, current_pc + 2 * Instruction::kInstrSize); 3476 set_pc(next_pc); 3477 pc_modified_ = true; 3478 break; 3479 } 3480 case SLL: 3481 SetResult(rd_reg(), static_cast<int32_t>(rt()) << sa()); 3482 break; 3483 case DSLL: 3484 SetResult(rd_reg(), rt() << sa()); 3485 break; 3486 case DSLL32: 3487 SetResult(rd_reg(), rt() << sa() << 32); 3488 break; 3489 case SRL: 3490 if (rs_reg() == 0) { 3491 // Regular logical right shift of a word by a fixed number of 3492 // bits instruction. RS field is always equal to 0. 3493 // Sign-extend the 32-bit result. 3494 alu_out = static_cast<int32_t>(static_cast<uint32_t>(rt_u()) >> sa()); 3495 } else if (rs_reg() == 1) { 3496 // Logical right-rotate of a word by a fixed number of bits. This 3497 // is special case of SRL instruction, added in MIPS32 Release 2. 3498 // RS field is equal to 00001. 3499 alu_out = static_cast<int32_t>( 3500 base::bits::RotateRight32(static_cast<const uint32_t>(rt_u()), 3501 static_cast<const uint32_t>(sa()))); 3502 } else { 3503 UNREACHABLE(); 3504 } 3505 SetResult(rd_reg(), alu_out); 3506 break; 3507 case DSRL: 3508 if (rs_reg() == 0) { 3509 // Regular logical right shift of a word by a fixed number of 3510 // bits instruction. RS field is always equal to 0. 3511 // Sign-extend the 64-bit result. 3512 alu_out = static_cast<int64_t>(rt_u() >> sa()); 3513 } else if (rs_reg() == 1) { 3514 // Logical right-rotate of a word by a fixed number of bits. This 3515 // is special case of SRL instruction, added in MIPS32 Release 2. 3516 // RS field is equal to 00001. 3517 alu_out = static_cast<int64_t>(base::bits::RotateRight64(rt_u(), sa())); 3518 } else { 3519 UNREACHABLE(); 3520 } 3521 SetResult(rd_reg(), alu_out); 3522 break; 3523 case DSRL32: 3524 if (rs_reg() == 0) { 3525 // Regular logical right shift of a word by a fixed number of 3526 // bits instruction. RS field is always equal to 0. 3527 // Sign-extend the 64-bit result. 3528 alu_out = static_cast<int64_t>(rt_u() >> sa() >> 32); 3529 } else if (rs_reg() == 1) { 3530 // Logical right-rotate of a word by a fixed number of bits. This 3531 // is special case of SRL instruction, added in MIPS32 Release 2. 3532 // RS field is equal to 00001. 3533 alu_out = 3534 static_cast<int64_t>(base::bits::RotateRight64(rt_u(), sa() + 32)); 3535 } else { 3536 UNREACHABLE(); 3537 } 3538 SetResult(rd_reg(), alu_out); 3539 break; 3540 case SRA: 3541 SetResult(rd_reg(), (int32_t)rt() >> sa()); 3542 break; 3543 case DSRA: 3544 SetResult(rd_reg(), rt() >> sa()); 3545 break; 3546 case DSRA32: 3547 SetResult(rd_reg(), rt() >> sa() >> 32); 3548 break; 3549 case SLLV: 3550 SetResult(rd_reg(), (int32_t)rt() << rs()); 3551 break; 3552 case DSLLV: 3553 SetResult(rd_reg(), rt() << rs()); 3554 break; 3555 case SRLV: 3556 if (sa() == 0) { 3557 // Regular logical right-shift of a word by a variable number of 3558 // bits instruction. SA field is always equal to 0. 3559 alu_out = static_cast<int32_t>((uint32_t)rt_u() >> rs()); 3560 } else { 3561 // Logical right-rotate of a word by a variable number of bits. 3562 // This is special case od SRLV instruction, added in MIPS32 3563 // Release 2. SA field is equal to 00001. 3564 alu_out = static_cast<int32_t>( 3565 base::bits::RotateRight32(static_cast<const uint32_t>(rt_u()), 3566 static_cast<const uint32_t>(rs_u()))); 3567 } 3568 SetResult(rd_reg(), alu_out); 3569 break; 3570 case DSRLV: 3571 if (sa() == 0) { 3572 // Regular logical right-shift of a word by a variable number of 3573 // bits instruction. SA field is always equal to 0. 3574 alu_out = static_cast<int64_t>(rt_u() >> rs()); 3575 } else { 3576 // Logical right-rotate of a word by a variable number of bits. 3577 // This is special case od SRLV instruction, added in MIPS32 3578 // Release 2. SA field is equal to 00001. 3579 alu_out = 3580 static_cast<int64_t>(base::bits::RotateRight64(rt_u(), rs_u())); 3581 } 3582 SetResult(rd_reg(), alu_out); 3583 break; 3584 case SRAV: 3585 SetResult(rd_reg(), (int32_t)rt() >> rs()); 3586 break; 3587 case DSRAV: 3588 SetResult(rd_reg(), rt() >> rs()); 3589 break; 3590 case LSA: { 3591 DCHECK(kArchVariant == kMips64r6); 3592 int8_t sa = lsa_sa() + 1; 3593 int32_t _rt = static_cast<int32_t>(rt()); 3594 int32_t _rs = static_cast<int32_t>(rs()); 3595 int32_t res = _rs << sa; 3596 res += _rt; 3597 SetResult(rd_reg(), static_cast<int64_t>(res)); 3598 break; 3599 } 3600 case DLSA: 3601 DCHECK(kArchVariant == kMips64r6); 3602 SetResult(rd_reg(), (rs() << (lsa_sa() + 1)) + rt()); 3603 break; 3604 case MFHI: // MFHI == CLZ on R6. 3605 if (kArchVariant != kMips64r6) { 3606 DCHECK(sa() == 0); 3607 alu_out = get_register(HI); 3608 } else { 3609 // MIPS spec: If no bits were set in GPR rs(), the result written to 3610 // GPR rd() is 32. 3611 DCHECK(sa() == 1); 3612 alu_out = base::bits::CountLeadingZeros32(static_cast<int32_t>(rs_u())); 3613 } 3614 SetResult(rd_reg(), alu_out); 3615 break; 3616 case MFLO: // MFLO == DCLZ on R6. 3617 if (kArchVariant != kMips64r6) { 3618 DCHECK(sa() == 0); 3619 alu_out = get_register(LO); 3620 } else { 3621 // MIPS spec: If no bits were set in GPR rs(), the result written to 3622 // GPR rd() is 64. 3623 DCHECK(sa() == 1); 3624 alu_out = base::bits::CountLeadingZeros64(static_cast<int64_t>(rs_u())); 3625 } 3626 SetResult(rd_reg(), alu_out); 3627 break; 3628 // Instructions using HI and LO registers. 3629 case MULT: { // MULT == D_MUL_MUH. 3630 int32_t rs_lo = static_cast<int32_t>(rs()); 3631 int32_t rt_lo = static_cast<int32_t>(rt()); 3632 i64hilo = static_cast<int64_t>(rs_lo) * static_cast<int64_t>(rt_lo); 3633 if (kArchVariant != kMips64r6) { 3634 set_register(LO, static_cast<int32_t>(i64hilo & 0xffffffff)); 3635 set_register(HI, static_cast<int32_t>(i64hilo >> 32)); 3636 } else { 3637 switch (sa()) { 3638 case MUL_OP: 3639 set_register(rd_reg(), static_cast<int32_t>(i64hilo & 0xffffffff)); 3640 break; 3641 case MUH_OP: 3642 set_register(rd_reg(), static_cast<int32_t>(i64hilo >> 32)); 3643 break; 3644 default: 3645 UNIMPLEMENTED_MIPS(); 3646 break; 3647 } 3648 } 3649 break; 3650 } 3651 case MULTU: 3652 u64hilo = static_cast<uint64_t>(rs_u() & 0xffffffff) * 3653 static_cast<uint64_t>(rt_u() & 0xffffffff); 3654 if (kArchVariant != kMips64r6) { 3655 set_register(LO, static_cast<int32_t>(u64hilo & 0xffffffff)); 3656 set_register(HI, static_cast<int32_t>(u64hilo >> 32)); 3657 } else { 3658 switch (sa()) { 3659 case MUL_OP: 3660 set_register(rd_reg(), static_cast<int32_t>(u64hilo & 0xffffffff)); 3661 break; 3662 case MUH_OP: 3663 set_register(rd_reg(), static_cast<int32_t>(u64hilo >> 32)); 3664 break; 3665 default: 3666 UNIMPLEMENTED_MIPS(); 3667 break; 3668 } 3669 } 3670 break; 3671 case DMULT: // DMULT == D_MUL_MUH. 3672 if (kArchVariant != kMips64r6) { 3673 set_register(LO, rs() * rt()); 3674 set_register(HI, MultiplyHighSigned(rs(), rt())); 3675 } else { 3676 switch (sa()) { 3677 case MUL_OP: 3678 set_register(rd_reg(), rs() * rt()); 3679 break; 3680 case MUH_OP: 3681 set_register(rd_reg(), MultiplyHighSigned(rs(), rt())); 3682 break; 3683 default: 3684 UNIMPLEMENTED_MIPS(); 3685 break; 3686 } 3687 } 3688 break; 3689 case DMULTU: 3690 UNIMPLEMENTED_MIPS(); 3691 break; 3692 case DIV: 3693 case DDIV: { 3694 const int64_t int_min_value = 3695 instr_.FunctionFieldRaw() == DIV ? INT_MIN : LONG_MIN; 3696 switch (kArchVariant) { 3697 case kMips64r2: 3698 // Divide by zero and overflow was not checked in the 3699 // configuration step - div and divu do not raise exceptions. On 3700 // division by 0 the result will be UNPREDICTABLE. On overflow 3701 // (INT_MIN/-1), return INT_MIN which is what the hardware does. 3702 if (rs() == int_min_value && rt() == -1) { 3703 set_register(LO, int_min_value); 3704 set_register(HI, 0); 3705 } else if (rt() != 0) { 3706 set_register(LO, rs() / rt()); 3707 set_register(HI, rs() % rt()); 3708 } 3709 break; 3710 case kMips64r6: 3711 switch (sa()) { 3712 case DIV_OP: 3713 if (rs() == int_min_value && rt() == -1) { 3714 set_register(rd_reg(), int_min_value); 3715 } else if (rt() != 0) { 3716 set_register(rd_reg(), rs() / rt()); 3717 } 3718 break; 3719 case MOD_OP: 3720 if (rs() == int_min_value && rt() == -1) { 3721 set_register(rd_reg(), 0); 3722 } else if (rt() != 0) { 3723 set_register(rd_reg(), rs() % rt()); 3724 } 3725 break; 3726 default: 3727 UNIMPLEMENTED_MIPS(); 3728 break; 3729 } 3730 break; 3731 default: 3732 break; 3733 } 3734 break; 3735 } 3736 case DIVU: 3737 switch (kArchVariant) { 3738 case kMips64r6: { 3739 uint32_t rt_u_32 = static_cast<uint32_t>(rt_u()); 3740 uint32_t rs_u_32 = static_cast<uint32_t>(rs_u()); 3741 switch (sa()) { 3742 case DIV_OP: 3743 if (rt_u_32 != 0) { 3744 set_register(rd_reg(), rs_u_32 / rt_u_32); 3745 } 3746 break; 3747 case MOD_OP: 3748 if (rt_u() != 0) { 3749 set_register(rd_reg(), rs_u_32 % rt_u_32); 3750 } 3751 break; 3752 default: 3753 UNIMPLEMENTED_MIPS(); 3754 break; 3755 } 3756 } break; 3757 default: { 3758 if (rt_u() != 0) { 3759 uint32_t rt_u_32 = static_cast<uint32_t>(rt_u()); 3760 uint32_t rs_u_32 = static_cast<uint32_t>(rs_u()); 3761 set_register(LO, rs_u_32 / rt_u_32); 3762 set_register(HI, rs_u_32 % rt_u_32); 3763 } 3764 } 3765 } 3766 break; 3767 case DDIVU: 3768 switch (kArchVariant) { 3769 case kMips64r6: { 3770 switch (instr_.SaValue()) { 3771 case DIV_OP: 3772 if (rt_u() != 0) { 3773 set_register(rd_reg(), rs_u() / rt_u()); 3774 } 3775 break; 3776 case MOD_OP: 3777 if (rt_u() != 0) { 3778 set_register(rd_reg(), rs_u() % rt_u()); 3779 } 3780 break; 3781 default: 3782 UNIMPLEMENTED_MIPS(); 3783 break; 3784 } 3785 } break; 3786 default: { 3787 if (rt_u() != 0) { 3788 set_register(LO, rs_u() / rt_u()); 3789 set_register(HI, rs_u() % rt_u()); 3790 } 3791 } 3792 } 3793 break; 3794 case ADD: 3795 case DADD: 3796 if (HaveSameSign(rs(), rt())) { 3797 if (rs() > 0) { 3798 if (rs() > (Registers::kMaxValue - rt())) { 3799 SignalException(kIntegerOverflow); 3800 } 3801 } else if (rs() < 0) { 3802 if (rs() < (Registers::kMinValue - rt())) { 3803 SignalException(kIntegerUnderflow); 3804 } 3805 } 3806 } 3807 SetResult(rd_reg(), rs() + rt()); 3808 break; 3809 case ADDU: { 3810 int32_t alu32_out = static_cast<int32_t>(rs() + rt()); 3811 // Sign-extend result of 32bit operation into 64bit register. 3812 SetResult(rd_reg(), static_cast<int64_t>(alu32_out)); 3813 break; 3814 } 3815 case DADDU: 3816 SetResult(rd_reg(), rs() + rt()); 3817 break; 3818 case SUB: 3819 case DSUB: 3820 if (!HaveSameSign(rs(), rt())) { 3821 if (rs() > 0) { 3822 if (rs() > (Registers::kMaxValue + rt())) { 3823 SignalException(kIntegerOverflow); 3824 } 3825 } else if (rs() < 0) { 3826 if (rs() < (Registers::kMinValue + rt())) { 3827 SignalException(kIntegerUnderflow); 3828 } 3829 } 3830 } 3831 SetResult(rd_reg(), rs() - rt()); 3832 break; 3833 case SUBU: { 3834 int32_t alu32_out = static_cast<int32_t>(rs() - rt()); 3835 // Sign-extend result of 32bit operation into 64bit register. 3836 SetResult(rd_reg(), static_cast<int64_t>(alu32_out)); 3837 break; 3838 } 3839 case DSUBU: 3840 SetResult(rd_reg(), rs() - rt()); 3841 break; 3842 case AND: 3843 SetResult(rd_reg(), rs() & rt()); 3844 break; 3845 case OR: 3846 SetResult(rd_reg(), rs() | rt()); 3847 break; 3848 case XOR: 3849 SetResult(rd_reg(), rs() ^ rt()); 3850 break; 3851 case NOR: 3852 SetResult(rd_reg(), ~(rs() | rt())); 3853 break; 3854 case SLT: 3855 SetResult(rd_reg(), rs() < rt() ? 1 : 0); 3856 break; 3857 case SLTU: 3858 SetResult(rd_reg(), rs_u() < rt_u() ? 1 : 0); 3859 break; 3860 // Break and trap instructions. 3861 case BREAK: 3862 do_interrupt = true; 3863 break; 3864 case TGE: 3865 do_interrupt = rs() >= rt(); 3866 break; 3867 case TGEU: 3868 do_interrupt = rs_u() >= rt_u(); 3869 break; 3870 case TLT: 3871 do_interrupt = rs() < rt(); 3872 break; 3873 case TLTU: 3874 do_interrupt = rs_u() < rt_u(); 3875 break; 3876 case TEQ: 3877 do_interrupt = rs() == rt(); 3878 break; 3879 case TNE: 3880 do_interrupt = rs() != rt(); 3881 break; 3882 case SYNC: 3883 // TODO(palfia): Ignore sync instruction for now. 3884 break; 3885 // Conditional moves. 3886 case MOVN: 3887 if (rt()) { 3888 SetResult(rd_reg(), rs()); 3889 } 3890 break; 3891 case MOVCI: { 3892 uint32_t cc = instr_.FBccValue(); 3893 uint32_t fcsr_cc = get_fcsr_condition_bit(cc); 3894 if (instr_.Bit(16)) { // Read Tf bit. 3895 if (test_fcsr_bit(fcsr_cc)) set_register(rd_reg(), rs()); 3896 } else { 3897 if (!test_fcsr_bit(fcsr_cc)) set_register(rd_reg(), rs()); 3898 } 3899 break; 3900 } 3901 case MOVZ: 3902 if (!rt()) { 3903 SetResult(rd_reg(), rs()); 3904 } 3905 break; 3906 default: 3907 UNREACHABLE(); 3908 } 3909 if (do_interrupt) { 3910 SoftwareInterrupt(); 3911 } 3912 } 3913 3914 3915 void Simulator::DecodeTypeRegisterSPECIAL2() { 3916 int64_t alu_out; 3917 switch (instr_.FunctionFieldRaw()) { 3918 case MUL: 3919 alu_out = static_cast<int32_t>(rs_u()) * static_cast<int32_t>(rt_u()); 3920 SetResult(rd_reg(), alu_out); 3921 // HI and LO are UNPREDICTABLE after the operation. 3922 set_register(LO, Unpredictable); 3923 set_register(HI, Unpredictable); 3924 break; 3925 case CLZ: 3926 // MIPS32 spec: If no bits were set in GPR rs(), the result written to 3927 // GPR rd is 32. 3928 alu_out = base::bits::CountLeadingZeros32(static_cast<uint32_t>(rs_u())); 3929 SetResult(rd_reg(), alu_out); 3930 break; 3931 case DCLZ: 3932 // MIPS64 spec: If no bits were set in GPR rs(), the result written to 3933 // GPR rd is 64. 3934 alu_out = base::bits::CountLeadingZeros64(static_cast<uint64_t>(rs_u())); 3935 SetResult(rd_reg(), alu_out); 3936 break; 3937 default: 3938 alu_out = 0x12345678; 3939 UNREACHABLE(); 3940 } 3941 } 3942 3943 3944 void Simulator::DecodeTypeRegisterSPECIAL3() { 3945 int64_t alu_out; 3946 switch (instr_.FunctionFieldRaw()) { 3947 case INS: { // Mips64r2 instruction. 3948 // Interpret rd field as 5-bit msb of insert. 3949 uint16_t msb = rd_reg(); 3950 // Interpret sa field as 5-bit lsb of insert. 3951 uint16_t lsb = sa(); 3952 uint16_t size = msb - lsb + 1; 3953 uint64_t mask = (1ULL << size) - 1; 3954 alu_out = static_cast<int32_t>((rt_u() & ~(mask << lsb)) | 3955 ((rs_u() & mask) << lsb)); 3956 SetResult(rt_reg(), alu_out); 3957 break; 3958 } 3959 case DINS: { // Mips64r2 instruction. 3960 // Interpret rd field as 5-bit msb of insert. 3961 uint16_t msb = rd_reg(); 3962 // Interpret sa field as 5-bit lsb of insert. 3963 uint16_t lsb = sa(); 3964 uint16_t size = msb - lsb + 1; 3965 uint64_t mask = (1ULL << size) - 1; 3966 alu_out = (rt_u() & ~(mask << lsb)) | ((rs_u() & mask) << lsb); 3967 SetResult(rt_reg(), alu_out); 3968 break; 3969 } 3970 case EXT: { // Mips64r2 instruction. 3971 // Interpret rd field as 5-bit msb of extract. 3972 uint16_t msb = rd_reg(); 3973 // Interpret sa field as 5-bit lsb of extract. 3974 uint16_t lsb = sa(); 3975 uint16_t size = msb + 1; 3976 uint64_t mask = (1ULL << size) - 1; 3977 alu_out = static_cast<int32_t>((rs_u() & (mask << lsb)) >> lsb); 3978 SetResult(rt_reg(), alu_out); 3979 break; 3980 } 3981 case DEXT: { // Mips64r2 instruction. 3982 // Interpret rd field as 5-bit msb of extract. 3983 uint16_t msb = rd_reg(); 3984 // Interpret sa field as 5-bit lsb of extract. 3985 uint16_t lsb = sa(); 3986 uint16_t size = msb + 1; 3987 uint64_t mask = (1ULL << size) - 1; 3988 alu_out = static_cast<int64_t>((rs_u() & (mask << lsb)) >> lsb); 3989 SetResult(rt_reg(), alu_out); 3990 break; 3991 } 3992 case DEXTM: { 3993 // Interpret rd field as 5-bit msb of extract. 3994 uint16_t msb = rd_reg(); 3995 // Interpret sa field as 5-bit lsb of extract. 3996 uint16_t lsb = sa(); 3997 uint16_t size = msb + 33; 3998 uint64_t mask = (1ULL << size) - 1; 3999 alu_out = static_cast<int64_t>((rs_u() & (mask << lsb)) >> lsb); 4000 SetResult(rt_reg(), alu_out); 4001 break; 4002 } 4003 case DEXTU: { 4004 // Interpret rd field as 5-bit msb of extract. 4005 uint16_t msb = rd_reg(); 4006 // Interpret sa field as 5-bit lsb of extract. 4007 uint16_t lsb = sa() + 32; 4008 uint16_t size = msb + 1; 4009 uint64_t mask = (1ULL << size) - 1; 4010 alu_out = static_cast<int64_t>((rs_u() & (mask << lsb)) >> lsb); 4011 SetResult(rt_reg(), alu_out); 4012 break; 4013 } 4014 case BSHFL: { 4015 int32_t sa = instr_.SaFieldRaw() >> kSaShift; 4016 switch (sa) { 4017 case BITSWAP: { 4018 uint32_t input = static_cast<uint32_t>(rt()); 4019 uint32_t output = 0; 4020 uint8_t i_byte, o_byte; 4021 4022 // Reverse the bit in byte for each individual byte 4023 for (int i = 0; i < 4; i++) { 4024 output = output >> 8; 4025 i_byte = input & 0xff; 4026 4027 // Fast way to reverse bits in byte 4028 // Devised by Sean Anderson, July 13, 2001 4029 o_byte = static_cast<uint8_t>(((i_byte * 0x0802LU & 0x22110LU) | 4030 (i_byte * 0x8020LU & 0x88440LU)) * 4031 0x10101LU >> 4032 16); 4033 4034 output = output | (static_cast<uint32_t>(o_byte << 24)); 4035 input = input >> 8; 4036 } 4037 4038 alu_out = static_cast<int64_t>(static_cast<int32_t>(output)); 4039 break; 4040 } 4041 case SEB: { 4042 uint8_t input = static_cast<uint8_t>(rt()); 4043 uint32_t output = input; 4044 uint32_t mask = 0x00000080; 4045 4046 // Extending sign 4047 if (mask & input) { 4048 output |= 0xFFFFFF00; 4049 } 4050 4051 alu_out = static_cast<int32_t>(output); 4052 break; 4053 } 4054 case SEH: { 4055 uint16_t input = static_cast<uint16_t>(rt()); 4056 uint32_t output = input; 4057 uint32_t mask = 0x00008000; 4058 4059 // Extending sign 4060 if (mask & input) { 4061 output |= 0xFFFF0000; 4062 } 4063 4064 alu_out = static_cast<int32_t>(output); 4065 break; 4066 } 4067 case WSBH: { 4068 uint32_t input = static_cast<uint32_t>(rt()); 4069 uint64_t output = 0; 4070 4071 uint32_t mask = 0xFF000000; 4072 for (int i = 0; i < 4; i++) { 4073 uint32_t tmp = mask & input; 4074 if (i % 2 == 0) { 4075 tmp = tmp >> 8; 4076 } else { 4077 tmp = tmp << 8; 4078 } 4079 output = output | tmp; 4080 mask = mask >> 8; 4081 } 4082 mask = 0x80000000; 4083 4084 // Extending sign 4085 if (mask & output) { 4086 output |= 0xFFFFFFFF00000000; 4087 } 4088 4089 alu_out = static_cast<int64_t>(output); 4090 break; 4091 } 4092 default: { 4093 const uint8_t bp2 = instr_.Bp2Value(); 4094 sa >>= kBp2Bits; 4095 switch (sa) { 4096 case ALIGN: { 4097 if (bp2 == 0) { 4098 alu_out = static_cast<int32_t>(rt()); 4099 } else { 4100 uint64_t rt_hi = rt() << (8 * bp2); 4101 uint64_t rs_lo = rs() >> (8 * (4 - bp2)); 4102 alu_out = static_cast<int32_t>(rt_hi | rs_lo); 4103 } 4104 break; 4105 } 4106 default: 4107 alu_out = 0x12345678; 4108 UNREACHABLE(); 4109 break; 4110 } 4111 break; 4112 } 4113 } 4114 SetResult(rd_reg(), alu_out); 4115 break; 4116 } 4117 case DBSHFL: { 4118 int32_t sa = instr_.SaFieldRaw() >> kSaShift; 4119 switch (sa) { 4120 case DBITSWAP: { 4121 switch (sa) { 4122 case DBITSWAP_SA: { // Mips64r6 4123 uint64_t input = static_cast<uint64_t>(rt()); 4124 uint64_t output = 0; 4125 uint8_t i_byte, o_byte; 4126 4127 // Reverse the bit in byte for each individual byte 4128 for (int i = 0; i < 8; i++) { 4129 output = output >> 8; 4130 i_byte = input & 0xff; 4131 4132 // Fast way to reverse bits in byte 4133 // Devised by Sean Anderson, July 13, 2001 4134 o_byte = 4135 static_cast<uint8_t>(((i_byte * 0x0802LU & 0x22110LU) | 4136 (i_byte * 0x8020LU & 0x88440LU)) * 4137 0x10101LU >> 4138 16); 4139 4140 output = output | ((static_cast<uint64_t>(o_byte) << 56)); 4141 input = input >> 8; 4142 } 4143 4144 alu_out = static_cast<int64_t>(output); 4145 break; 4146 } 4147 } 4148 break; 4149 } 4150 case DSBH: { 4151 uint64_t input = static_cast<uint64_t>(rt()); 4152 uint64_t output = 0; 4153 4154 uint64_t mask = 0xFF00000000000000; 4155 for (int i = 0; i < 8; i++) { 4156 uint64_t tmp = mask & input; 4157 if (i % 2 == 0) 4158 tmp = tmp >> 8; 4159 else 4160 tmp = tmp << 8; 4161 4162 output = output | tmp; 4163 mask = mask >> 8; 4164 } 4165 4166 alu_out = static_cast<int64_t>(output); 4167 break; 4168 } 4169 case DSHD: { 4170 uint64_t input = static_cast<uint64_t>(rt()); 4171 uint64_t output = 0; 4172 4173 uint64_t mask = 0xFFFF000000000000; 4174 for (int i = 0; i < 4; i++) { 4175 uint64_t tmp = mask & input; 4176 if (i == 0) 4177 tmp = tmp >> 48; 4178 else if (i == 1) 4179 tmp = tmp >> 16; 4180 else if (i == 2) 4181 tmp = tmp << 16; 4182 else 4183 tmp = tmp << 48; 4184 output = output | tmp; 4185 mask = mask >> 16; 4186 } 4187 4188 alu_out = static_cast<int64_t>(output); 4189 break; 4190 } 4191 default: { 4192 const uint8_t bp3 = instr_.Bp3Value(); 4193 sa >>= kBp3Bits; 4194 switch (sa) { 4195 case DALIGN: { 4196 if (bp3 == 0) { 4197 alu_out = static_cast<int64_t>(rt()); 4198 } else { 4199 uint64_t rt_hi = rt() << (8 * bp3); 4200 uint64_t rs_lo = rs() >> (8 * (8 - bp3)); 4201 alu_out = static_cast<int64_t>(rt_hi | rs_lo); 4202 } 4203 break; 4204 } 4205 default: 4206 alu_out = 0x12345678; 4207 UNREACHABLE(); 4208 break; 4209 } 4210 break; 4211 } 4212 } 4213 SetResult(rd_reg(), alu_out); 4214 break; 4215 } 4216 default: 4217 UNREACHABLE(); 4218 } 4219 } 4220 4221 void Simulator::DecodeTypeRegister() { 4222 // ---------- Execution. 4223 switch (instr_.OpcodeFieldRaw()) { 4224 case COP1: 4225 DecodeTypeRegisterCOP1(); 4226 break; 4227 case COP1X: 4228 DecodeTypeRegisterCOP1X(); 4229 break; 4230 case SPECIAL: 4231 DecodeTypeRegisterSPECIAL(); 4232 break; 4233 case SPECIAL2: 4234 DecodeTypeRegisterSPECIAL2(); 4235 break; 4236 case SPECIAL3: 4237 DecodeTypeRegisterSPECIAL3(); 4238 break; 4239 // Unimplemented opcodes raised an error in the configuration step before, 4240 // so we can use the default here to set the destination register in common 4241 // cases. 4242 default: 4243 UNREACHABLE(); 4244 } 4245 } 4246 4247 4248 // Type 2: instructions using a 16, 21 or 26 bits immediate. (e.g. beq, beqc). 4249 void Simulator::DecodeTypeImmediate() { 4250 // Instruction fields. 4251 Opcode op = instr_.OpcodeFieldRaw(); 4252 int32_t rs_reg = instr_.RsValue(); 4253 int64_t rs = get_register(instr_.RsValue()); 4254 uint64_t rs_u = static_cast<uint64_t>(rs); 4255 int32_t rt_reg = instr_.RtValue(); // Destination register. 4256 int64_t rt = get_register(rt_reg); 4257 int16_t imm16 = instr_.Imm16Value(); 4258 int32_t imm18 = instr_.Imm18Value(); 4259 4260 int32_t ft_reg = instr_.FtValue(); // Destination register. 4261 4262 // Zero extended immediate. 4263 uint64_t oe_imm16 = 0xffff & imm16; 4264 // Sign extended immediate. 4265 int64_t se_imm16 = imm16; 4266 int64_t se_imm18 = imm18 | ((imm18 & 0x20000) ? 0xfffffffffffc0000 : 0); 4267 4268 // Next pc. 4269 int64_t next_pc = bad_ra; 4270 4271 // Used for conditional branch instructions. 4272 bool execute_branch_delay_instruction = false; 4273 4274 // Used for arithmetic instructions. 4275 int64_t alu_out = 0; 4276 4277 // Used for memory instructions. 4278 int64_t addr = 0x0; 4279 // Alignment for 32-bit integers used in LWL, LWR, etc. 4280 const int kInt32AlignmentMask = sizeof(uint32_t) - 1; 4281 // Alignment for 64-bit integers used in LDL, LDR, etc. 4282 const int kInt64AlignmentMask = sizeof(uint64_t) - 1; 4283 4284 // Branch instructions common part. 4285 auto BranchAndLinkHelper = 4286 [this, &next_pc, &execute_branch_delay_instruction](bool do_branch) { 4287 execute_branch_delay_instruction = true; 4288 int64_t current_pc = get_pc(); 4289 if (do_branch) { 4290 int16_t imm16 = instr_.Imm16Value(); 4291 next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize; 4292 set_register(31, current_pc + 2 * Instruction::kInstrSize); 4293 } else { 4294 next_pc = current_pc + 2 * Instruction::kInstrSize; 4295 } 4296 }; 4297 4298 auto BranchHelper = [this, &next_pc, 4299 &execute_branch_delay_instruction](bool do_branch) { 4300 execute_branch_delay_instruction = true; 4301 int64_t current_pc = get_pc(); 4302 if (do_branch) { 4303 int16_t imm16 = instr_.Imm16Value(); 4304 next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize; 4305 } else { 4306 next_pc = current_pc + 2 * Instruction::kInstrSize; 4307 } 4308 }; 4309 4310 auto BranchAndLinkCompactHelper = [this, &next_pc](bool do_branch, int bits) { 4311 int64_t current_pc = get_pc(); 4312 CheckForbiddenSlot(current_pc); 4313 if (do_branch) { 4314 int32_t imm = instr_.ImmValue(bits); 4315 imm <<= 32 - bits; 4316 imm >>= 32 - bits; 4317 next_pc = current_pc + (imm << 2) + Instruction::kInstrSize; 4318 set_register(31, current_pc + Instruction::kInstrSize); 4319 } 4320 }; 4321 4322 auto BranchCompactHelper = [this, &next_pc](bool do_branch, int bits) { 4323 int64_t current_pc = get_pc(); 4324 CheckForbiddenSlot(current_pc); 4325 if (do_branch) { 4326 int32_t imm = instr_.ImmValue(bits); 4327 imm <<= 32 - bits; 4328 imm >>= 32 - bits; 4329 next_pc = get_pc() + (imm << 2) + Instruction::kInstrSize; 4330 } 4331 }; 4332 4333 switch (op) { 4334 // ------------- COP1. Coprocessor instructions. 4335 case COP1: 4336 switch (instr_.RsFieldRaw()) { 4337 case BC1: { // Branch on coprocessor condition. 4338 uint32_t cc = instr_.FBccValue(); 4339 uint32_t fcsr_cc = get_fcsr_condition_bit(cc); 4340 uint32_t cc_value = test_fcsr_bit(fcsr_cc); 4341 bool do_branch = (instr_.FBtrueValue()) ? cc_value : !cc_value; 4342 BranchHelper(do_branch); 4343 break; 4344 } 4345 case BC1EQZ: 4346 BranchHelper(!(get_fpu_register(ft_reg) & 0x1)); 4347 break; 4348 case BC1NEZ: 4349 BranchHelper(get_fpu_register(ft_reg) & 0x1); 4350 break; 4351 default: 4352 UNREACHABLE(); 4353 } 4354 break; 4355 // ------------- REGIMM class. 4356 case REGIMM: 4357 switch (instr_.RtFieldRaw()) { 4358 case BLTZ: 4359 BranchHelper(rs < 0); 4360 break; 4361 case BGEZ: 4362 BranchHelper(rs >= 0); 4363 break; 4364 case BLTZAL: 4365 BranchAndLinkHelper(rs < 0); 4366 break; 4367 case BGEZAL: 4368 BranchAndLinkHelper(rs >= 0); 4369 break; 4370 case DAHI: 4371 SetResult(rs_reg, rs + (se_imm16 << 32)); 4372 break; 4373 case DATI: 4374 SetResult(rs_reg, rs + (se_imm16 << 48)); 4375 break; 4376 default: 4377 UNREACHABLE(); 4378 } 4379 break; // case REGIMM. 4380 // ------------- Branch instructions. 4381 // When comparing to zero, the encoding of rt field is always 0, so we don't 4382 // need to replace rt with zero. 4383 case BEQ: 4384 BranchHelper(rs == rt); 4385 break; 4386 case BNE: 4387 BranchHelper(rs != rt); 4388 break; 4389 case POP06: // BLEZALC, BGEZALC, BGEUC, BLEZ (pre-r6) 4390 if (kArchVariant == kMips64r6) { 4391 if (rt_reg != 0) { 4392 if (rs_reg == 0) { // BLEZALC 4393 BranchAndLinkCompactHelper(rt <= 0, 16); 4394 } else { 4395 if (rs_reg == rt_reg) { // BGEZALC 4396 BranchAndLinkCompactHelper(rt >= 0, 16); 4397 } else { // BGEUC 4398 BranchCompactHelper( 4399 static_cast<uint64_t>(rs) >= static_cast<uint64_t>(rt), 16); 4400 } 4401 } 4402 } else { // BLEZ 4403 BranchHelper(rs <= 0); 4404 } 4405 } else { // BLEZ 4406 BranchHelper(rs <= 0); 4407 } 4408 break; 4409 case POP07: // BGTZALC, BLTZALC, BLTUC, BGTZ (pre-r6) 4410 if (kArchVariant == kMips64r6) { 4411 if (rt_reg != 0) { 4412 if (rs_reg == 0) { // BGTZALC 4413 BranchAndLinkCompactHelper(rt > 0, 16); 4414 } else { 4415 if (rt_reg == rs_reg) { // BLTZALC 4416 BranchAndLinkCompactHelper(rt < 0, 16); 4417 } else { // BLTUC 4418 BranchCompactHelper( 4419 static_cast<uint64_t>(rs) < static_cast<uint64_t>(rt), 16); 4420 } 4421 } 4422 } else { // BGTZ 4423 BranchHelper(rs > 0); 4424 } 4425 } else { // BGTZ 4426 BranchHelper(rs > 0); 4427 } 4428 break; 4429 case POP26: // BLEZC, BGEZC, BGEC/BLEC / BLEZL (pre-r6) 4430 if (kArchVariant == kMips64r6) { 4431 if (rt_reg != 0) { 4432 if (rs_reg == 0) { // BLEZC 4433 BranchCompactHelper(rt <= 0, 16); 4434 } else { 4435 if (rs_reg == rt_reg) { // BGEZC 4436 BranchCompactHelper(rt >= 0, 16); 4437 } else { // BGEC/BLEC 4438 BranchCompactHelper(rs >= rt, 16); 4439 } 4440 } 4441 } 4442 } else { // BLEZL 4443 BranchAndLinkHelper(rs <= 0); 4444 } 4445 break; 4446 case POP27: // BGTZC, BLTZC, BLTC/BGTC / BGTZL (pre-r6) 4447 if (kArchVariant == kMips64r6) { 4448 if (rt_reg != 0) { 4449 if (rs_reg == 0) { // BGTZC 4450 BranchCompactHelper(rt > 0, 16); 4451 } else { 4452 if (rs_reg == rt_reg) { // BLTZC 4453 BranchCompactHelper(rt < 0, 16); 4454 } else { // BLTC/BGTC 4455 BranchCompactHelper(rs < rt, 16); 4456 } 4457 } 4458 } 4459 } else { // BGTZL 4460 BranchAndLinkHelper(rs > 0); 4461 } 4462 break; 4463 case POP66: // BEQZC, JIC 4464 if (rs_reg != 0) { // BEQZC 4465 BranchCompactHelper(rs == 0, 21); 4466 } else { // JIC 4467 next_pc = rt + imm16; 4468 } 4469 break; 4470 case POP76: // BNEZC, JIALC 4471 if (rs_reg != 0) { // BNEZC 4472 BranchCompactHelper(rs != 0, 21); 4473 } else { // JIALC 4474 int64_t current_pc = get_pc(); 4475 set_register(31, current_pc + Instruction::kInstrSize); 4476 next_pc = rt + imm16; 4477 } 4478 break; 4479 case BC: 4480 BranchCompactHelper(true, 26); 4481 break; 4482 case BALC: 4483 BranchAndLinkCompactHelper(true, 26); 4484 break; 4485 case POP10: // BOVC, BEQZALC, BEQC / ADDI (pre-r6) 4486 if (kArchVariant == kMips64r6) { 4487 if (rs_reg >= rt_reg) { // BOVC 4488 bool condition = !is_int32(rs) || !is_int32(rt) || !is_int32(rs + rt); 4489 BranchCompactHelper(condition, 16); 4490 } else { 4491 if (rs_reg == 0) { // BEQZALC 4492 BranchAndLinkCompactHelper(rt == 0, 16); 4493 } else { // BEQC 4494 BranchCompactHelper(rt == rs, 16); 4495 } 4496 } 4497 } else { // ADDI 4498 if (HaveSameSign(rs, se_imm16)) { 4499 if (rs > 0) { 4500 if (rs <= Registers::kMaxValue - se_imm16) { 4501 SignalException(kIntegerOverflow); 4502 } 4503 } else if (rs < 0) { 4504 if (rs >= Registers::kMinValue - se_imm16) { 4505 SignalException(kIntegerUnderflow); 4506 } 4507 } 4508 } 4509 SetResult(rt_reg, rs + se_imm16); 4510 } 4511 break; 4512 case POP30: // BNVC, BNEZALC, BNEC / DADDI (pre-r6) 4513 if (kArchVariant == kMips64r6) { 4514 if (rs_reg >= rt_reg) { // BNVC 4515 bool condition = is_int32(rs) && is_int32(rt) && is_int32(rs + rt); 4516 BranchCompactHelper(condition, 16); 4517 } else { 4518 if (rs_reg == 0) { // BNEZALC 4519 BranchAndLinkCompactHelper(rt != 0, 16); 4520 } else { // BNEC 4521 BranchCompactHelper(rt != rs, 16); 4522 } 4523 } 4524 } 4525 break; 4526 // ------------- Arithmetic instructions. 4527 case ADDIU: { 4528 DCHECK(is_int32(rs)); 4529 int32_t alu32_out = static_cast<int32_t>(rs + se_imm16); 4530 // Sign-extend result of 32bit operation into 64bit register. 4531 SetResult(rt_reg, static_cast<int64_t>(alu32_out)); 4532 break; 4533 } 4534 case DADDIU: 4535 SetResult(rt_reg, rs + se_imm16); 4536 break; 4537 case SLTI: 4538 SetResult(rt_reg, rs < se_imm16 ? 1 : 0); 4539 break; 4540 case SLTIU: 4541 SetResult(rt_reg, rs_u < static_cast<uint64_t>(se_imm16) ? 1 : 0); 4542 break; 4543 case ANDI: 4544 SetResult(rt_reg, rs & oe_imm16); 4545 break; 4546 case ORI: 4547 SetResult(rt_reg, rs | oe_imm16); 4548 break; 4549 case XORI: 4550 SetResult(rt_reg, rs ^ oe_imm16); 4551 break; 4552 case LUI: 4553 if (rs_reg != 0) { 4554 // AUI instruction. 4555 DCHECK(kArchVariant == kMips64r6); 4556 int32_t alu32_out = static_cast<int32_t>(rs + (se_imm16 << 16)); 4557 SetResult(rt_reg, static_cast<int64_t>(alu32_out)); 4558 } else { 4559 // LUI instruction. 4560 int32_t alu32_out = static_cast<int32_t>(oe_imm16 << 16); 4561 // Sign-extend result of 32bit operation into 64bit register. 4562 SetResult(rt_reg, static_cast<int64_t>(alu32_out)); 4563 } 4564 break; 4565 case DAUI: 4566 DCHECK(kArchVariant == kMips64r6); 4567 DCHECK(rs_reg != 0); 4568 SetResult(rt_reg, rs + (se_imm16 << 16)); 4569 break; 4570 // ------------- Memory instructions. 4571 case LB: 4572 set_register(rt_reg, ReadB(rs + se_imm16)); 4573 break; 4574 case LH: 4575 set_register(rt_reg, ReadH(rs + se_imm16, instr_.instr())); 4576 break; 4577 case LWL: { 4578 // al_offset is offset of the effective address within an aligned word. 4579 uint8_t al_offset = (rs + se_imm16) & kInt32AlignmentMask; 4580 uint8_t byte_shift = kInt32AlignmentMask - al_offset; 4581 uint32_t mask = (1 << byte_shift * 8) - 1; 4582 addr = rs + se_imm16 - al_offset; 4583 int32_t val = ReadW(addr, instr_.instr()); 4584 val <<= byte_shift * 8; 4585 val |= rt & mask; 4586 set_register(rt_reg, static_cast<int64_t>(val)); 4587 break; 4588 } 4589 case LW: 4590 set_register(rt_reg, ReadW(rs + se_imm16, instr_.instr())); 4591 break; 4592 case LWU: 4593 set_register(rt_reg, ReadWU(rs + se_imm16, instr_.instr())); 4594 break; 4595 case LD: 4596 set_register(rt_reg, Read2W(rs + se_imm16, instr_.instr())); 4597 break; 4598 case LBU: 4599 set_register(rt_reg, ReadBU(rs + se_imm16)); 4600 break; 4601 case LHU: 4602 set_register(rt_reg, ReadHU(rs + se_imm16, instr_.instr())); 4603 break; 4604 case LWR: { 4605 // al_offset is offset of the effective address within an aligned word. 4606 uint8_t al_offset = (rs + se_imm16) & kInt32AlignmentMask; 4607 uint8_t byte_shift = kInt32AlignmentMask - al_offset; 4608 uint32_t mask = al_offset ? (~0 << (byte_shift + 1) * 8) : 0; 4609 addr = rs + se_imm16 - al_offset; 4610 alu_out = ReadW(addr, instr_.instr()); 4611 alu_out = static_cast<uint32_t> (alu_out) >> al_offset * 8; 4612 alu_out |= rt & mask; 4613 set_register(rt_reg, alu_out); 4614 break; 4615 } 4616 case LDL: { 4617 // al_offset is offset of the effective address within an aligned word. 4618 uint8_t al_offset = (rs + se_imm16) & kInt64AlignmentMask; 4619 uint8_t byte_shift = kInt64AlignmentMask - al_offset; 4620 uint64_t mask = (1UL << byte_shift * 8) - 1; 4621 addr = rs + se_imm16 - al_offset; 4622 alu_out = Read2W(addr, instr_.instr()); 4623 alu_out <<= byte_shift * 8; 4624 alu_out |= rt & mask; 4625 set_register(rt_reg, alu_out); 4626 break; 4627 } 4628 case LDR: { 4629 // al_offset is offset of the effective address within an aligned word. 4630 uint8_t al_offset = (rs + se_imm16) & kInt64AlignmentMask; 4631 uint8_t byte_shift = kInt64AlignmentMask - al_offset; 4632 uint64_t mask = al_offset ? (~0UL << (byte_shift + 1) * 8) : 0UL; 4633 addr = rs + se_imm16 - al_offset; 4634 alu_out = Read2W(addr, instr_.instr()); 4635 alu_out = alu_out >> al_offset * 8; 4636 alu_out |= rt & mask; 4637 set_register(rt_reg, alu_out); 4638 break; 4639 } 4640 case SB: 4641 WriteB(rs + se_imm16, static_cast<int8_t>(rt)); 4642 break; 4643 case SH: 4644 WriteH(rs + se_imm16, static_cast<uint16_t>(rt), instr_.instr()); 4645 break; 4646 case SWL: { 4647 uint8_t al_offset = (rs + se_imm16) & kInt32AlignmentMask; 4648 uint8_t byte_shift = kInt32AlignmentMask - al_offset; 4649 uint32_t mask = byte_shift ? (~0 << (al_offset + 1) * 8) : 0; 4650 addr = rs + se_imm16 - al_offset; 4651 uint64_t mem_value = ReadW(addr, instr_.instr()) & mask; 4652 mem_value |= static_cast<uint32_t>(rt) >> byte_shift * 8; 4653 WriteW(addr, static_cast<int32_t>(mem_value), instr_.instr()); 4654 break; 4655 } 4656 case SW: 4657 WriteW(rs + se_imm16, static_cast<int32_t>(rt), instr_.instr()); 4658 break; 4659 case SD: 4660 Write2W(rs + se_imm16, rt, instr_.instr()); 4661 break; 4662 case SWR: { 4663 uint8_t al_offset = (rs + se_imm16) & kInt32AlignmentMask; 4664 uint32_t mask = (1 << al_offset * 8) - 1; 4665 addr = rs + se_imm16 - al_offset; 4666 uint64_t mem_value = ReadW(addr, instr_.instr()); 4667 mem_value = (rt << al_offset * 8) | (mem_value & mask); 4668 WriteW(addr, static_cast<int32_t>(mem_value), instr_.instr()); 4669 break; 4670 } 4671 case SDL: { 4672 uint8_t al_offset = (rs + se_imm16) & kInt64AlignmentMask; 4673 uint8_t byte_shift = kInt64AlignmentMask - al_offset; 4674 uint64_t mask = byte_shift ? (~0UL << (al_offset + 1) * 8) : 0; 4675 addr = rs + se_imm16 - al_offset; 4676 uint64_t mem_value = Read2W(addr, instr_.instr()) & mask; 4677 mem_value |= rt >> byte_shift * 8; 4678 Write2W(addr, mem_value, instr_.instr()); 4679 break; 4680 } 4681 case SDR: { 4682 uint8_t al_offset = (rs + se_imm16) & kInt64AlignmentMask; 4683 uint64_t mask = (1UL << al_offset * 8) - 1; 4684 addr = rs + se_imm16 - al_offset; 4685 uint64_t mem_value = Read2W(addr, instr_.instr()); 4686 mem_value = (rt << al_offset * 8) | (mem_value & mask); 4687 Write2W(addr, mem_value, instr_.instr()); 4688 break; 4689 } 4690 case LWC1: 4691 set_fpu_register(ft_reg, kFPUInvalidResult); // Trash upper 32 bits. 4692 set_fpu_register_word(ft_reg, ReadW(rs + se_imm16, instr_.instr())); 4693 break; 4694 case LDC1: 4695 set_fpu_register_double(ft_reg, ReadD(rs + se_imm16, instr_.instr())); 4696 break; 4697 case SWC1: { 4698 int32_t alu_out_32 = static_cast<int32_t>(get_fpu_register(ft_reg)); 4699 WriteW(rs + se_imm16, alu_out_32, instr_.instr()); 4700 break; 4701 } 4702 case SDC1: 4703 WriteD(rs + se_imm16, get_fpu_register_double(ft_reg), instr_.instr()); 4704 break; 4705 // ------------- PC-Relative instructions. 4706 case PCREL: { 4707 // rt field: checking 5-bits. 4708 int32_t imm21 = instr_.Imm21Value(); 4709 int64_t current_pc = get_pc(); 4710 uint8_t rt = (imm21 >> kImm16Bits); 4711 switch (rt) { 4712 case ALUIPC: 4713 addr = current_pc + (se_imm16 << 16); 4714 alu_out = static_cast<int64_t>(~0x0FFFF) & addr; 4715 break; 4716 case AUIPC: 4717 alu_out = current_pc + (se_imm16 << 16); 4718 break; 4719 default: { 4720 int32_t imm19 = instr_.Imm19Value(); 4721 // rt field: checking the most significant 3-bits. 4722 rt = (imm21 >> kImm18Bits); 4723 switch (rt) { 4724 case LDPC: 4725 addr = 4726 (current_pc & static_cast<int64_t>(~0x7)) + (se_imm18 << 3); 4727 alu_out = Read2W(addr, instr_.instr()); 4728 break; 4729 default: { 4730 // rt field: checking the most significant 2-bits. 4731 rt = (imm21 >> kImm19Bits); 4732 switch (rt) { 4733 case LWUPC: { 4734 // Set sign. 4735 imm19 <<= (kOpcodeBits + kRsBits + 2); 4736 imm19 >>= (kOpcodeBits + kRsBits + 2); 4737 addr = current_pc + (imm19 << 2); 4738 uint32_t* ptr = reinterpret_cast<uint32_t*>(addr); 4739 alu_out = *ptr; 4740 break; 4741 } 4742 case LWPC: { 4743 // Set sign. 4744 imm19 <<= (kOpcodeBits + kRsBits + 2); 4745 imm19 >>= (kOpcodeBits + kRsBits + 2); 4746 addr = current_pc + (imm19 << 2); 4747 int32_t* ptr = reinterpret_cast<int32_t*>(addr); 4748 alu_out = *ptr; 4749 break; 4750 } 4751 case ADDIUPC: { 4752 int64_t se_imm19 = 4753 imm19 | ((imm19 & 0x40000) ? 0xfffffffffff80000 : 0); 4754 alu_out = current_pc + (se_imm19 << 2); 4755 break; 4756 } 4757 default: 4758 UNREACHABLE(); 4759 break; 4760 } 4761 break; 4762 } 4763 } 4764 break; 4765 } 4766 } 4767 set_register(rs_reg, alu_out); 4768 break; 4769 } 4770 default: 4771 UNREACHABLE(); 4772 } 4773 4774 if (execute_branch_delay_instruction) { 4775 // Execute branch delay slot 4776 // We don't check for end_sim_pc. First it should not be met as the current 4777 // pc is valid. Secondly a jump should always execute its branch delay slot. 4778 Instruction* branch_delay_instr = 4779 reinterpret_cast<Instruction*>(get_pc() + Instruction::kInstrSize); 4780 BranchDelayInstructionDecode(branch_delay_instr); 4781 } 4782 4783 // If needed update pc after the branch delay execution. 4784 if (next_pc != bad_ra) { 4785 set_pc(next_pc); 4786 } 4787 } 4788 4789 4790 // Type 3: instructions using a 26 bytes immediate. (e.g. j, jal). 4791 void Simulator::DecodeTypeJump() { 4792 SimInstruction simInstr = instr_; 4793 // Get current pc. 4794 int64_t current_pc = get_pc(); 4795 // Get unchanged bits of pc. 4796 int64_t pc_high_bits = current_pc & 0xfffffffff0000000; 4797 // Next pc. 4798 int64_t next_pc = pc_high_bits | (simInstr.Imm26Value() << 2); 4799 4800 // Execute branch delay slot. 4801 // We don't check for end_sim_pc. First it should not be met as the current pc 4802 // is valid. Secondly a jump should always execute its branch delay slot. 4803 Instruction* branch_delay_instr = 4804 reinterpret_cast<Instruction*>(current_pc + Instruction::kInstrSize); 4805 BranchDelayInstructionDecode(branch_delay_instr); 4806 4807 // Update pc and ra if necessary. 4808 // Do this after the branch delay execution. 4809 if (simInstr.IsLinkingInstruction()) { 4810 set_register(31, current_pc + 2 * Instruction::kInstrSize); 4811 } 4812 set_pc(next_pc); 4813 pc_modified_ = true; 4814 } 4815 4816 4817 // Executes the current instruction. 4818 void Simulator::InstructionDecode(Instruction* instr) { 4819 if (v8::internal::FLAG_check_icache) { 4820 CheckICache(isolate_->simulator_i_cache(), instr); 4821 } 4822 pc_modified_ = false; 4823 4824 v8::internal::EmbeddedVector<char, 256> buffer; 4825 4826 if (::v8::internal::FLAG_trace_sim) { 4827 SNPrintF(trace_buf_, " "); 4828 disasm::NameConverter converter; 4829 disasm::Disassembler dasm(converter); 4830 // Use a reasonably large buffer. 4831 dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(instr)); 4832 } 4833 4834 instr_ = instr; 4835 switch (instr_.InstructionType()) { 4836 case Instruction::kRegisterType: 4837 DecodeTypeRegister(); 4838 break; 4839 case Instruction::kImmediateType: 4840 DecodeTypeImmediate(); 4841 break; 4842 case Instruction::kJumpType: 4843 DecodeTypeJump(); 4844 break; 4845 default: 4846 UNSUPPORTED(); 4847 } 4848 4849 if (::v8::internal::FLAG_trace_sim) { 4850 PrintF(" 0x%08" PRIxPTR " %-44s %s\n", 4851 reinterpret_cast<intptr_t>(instr), buffer.start(), 4852 trace_buf_.start()); 4853 } 4854 4855 if (!pc_modified_) { 4856 set_register(pc, reinterpret_cast<int64_t>(instr) + 4857 Instruction::kInstrSize); 4858 } 4859 } 4860 4861 4862 4863 void Simulator::Execute() { 4864 // Get the PC to simulate. Cannot use the accessor here as we need the 4865 // raw PC value and not the one used as input to arithmetic instructions. 4866 int64_t program_counter = get_pc(); 4867 if (::v8::internal::FLAG_stop_sim_at == 0) { 4868 // Fast version of the dispatch loop without checking whether the simulator 4869 // should be stopping at a particular executed instruction. 4870 while (program_counter != end_sim_pc) { 4871 Instruction* instr = reinterpret_cast<Instruction*>(program_counter); 4872 icount_++; 4873 InstructionDecode(instr); 4874 program_counter = get_pc(); 4875 } 4876 } else { 4877 // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when 4878 // we reach the particular instuction count. 4879 while (program_counter != end_sim_pc) { 4880 Instruction* instr = reinterpret_cast<Instruction*>(program_counter); 4881 icount_++; 4882 if (icount_ == static_cast<int64_t>(::v8::internal::FLAG_stop_sim_at)) { 4883 MipsDebugger dbg(this); 4884 dbg.Debug(); 4885 } else { 4886 InstructionDecode(instr); 4887 } 4888 program_counter = get_pc(); 4889 } 4890 } 4891 } 4892 4893 4894 void Simulator::CallInternal(byte* entry) { 4895 // Adjust JS-based stack limit to C-based stack limit. 4896 isolate_->stack_guard()->AdjustStackLimitForSimulator(); 4897 4898 // Prepare to execute the code at entry. 4899 set_register(pc, reinterpret_cast<int64_t>(entry)); 4900 // Put down marker for end of simulation. The simulator will stop simulation 4901 // when the PC reaches this value. By saving the "end simulation" value into 4902 // the LR the simulation stops when returning to this call point. 4903 set_register(ra, end_sim_pc); 4904 4905 // Remember the values of callee-saved registers. 4906 // The code below assumes that r9 is not used as sb (static base) in 4907 // simulator code and therefore is regarded as a callee-saved register. 4908 int64_t s0_val = get_register(s0); 4909 int64_t s1_val = get_register(s1); 4910 int64_t s2_val = get_register(s2); 4911 int64_t s3_val = get_register(s3); 4912 int64_t s4_val = get_register(s4); 4913 int64_t s5_val = get_register(s5); 4914 int64_t s6_val = get_register(s6); 4915 int64_t s7_val = get_register(s7); 4916 int64_t gp_val = get_register(gp); 4917 int64_t sp_val = get_register(sp); 4918 int64_t fp_val = get_register(fp); 4919 4920 // Set up the callee-saved registers with a known value. To be able to check 4921 // that they are preserved properly across JS execution. 4922 int64_t callee_saved_value = icount_; 4923 set_register(s0, callee_saved_value); 4924 set_register(s1, callee_saved_value); 4925 set_register(s2, callee_saved_value); 4926 set_register(s3, callee_saved_value); 4927 set_register(s4, callee_saved_value); 4928 set_register(s5, callee_saved_value); 4929 set_register(s6, callee_saved_value); 4930 set_register(s7, callee_saved_value); 4931 set_register(gp, callee_saved_value); 4932 set_register(fp, callee_saved_value); 4933 4934 // Start the simulation. 4935 Execute(); 4936 4937 // Check that the callee-saved registers have been preserved. 4938 CHECK_EQ(callee_saved_value, get_register(s0)); 4939 CHECK_EQ(callee_saved_value, get_register(s1)); 4940 CHECK_EQ(callee_saved_value, get_register(s2)); 4941 CHECK_EQ(callee_saved_value, get_register(s3)); 4942 CHECK_EQ(callee_saved_value, get_register(s4)); 4943 CHECK_EQ(callee_saved_value, get_register(s5)); 4944 CHECK_EQ(callee_saved_value, get_register(s6)); 4945 CHECK_EQ(callee_saved_value, get_register(s7)); 4946 CHECK_EQ(callee_saved_value, get_register(gp)); 4947 CHECK_EQ(callee_saved_value, get_register(fp)); 4948 4949 // Restore callee-saved registers with the original value. 4950 set_register(s0, s0_val); 4951 set_register(s1, s1_val); 4952 set_register(s2, s2_val); 4953 set_register(s3, s3_val); 4954 set_register(s4, s4_val); 4955 set_register(s5, s5_val); 4956 set_register(s6, s6_val); 4957 set_register(s7, s7_val); 4958 set_register(gp, gp_val); 4959 set_register(sp, sp_val); 4960 set_register(fp, fp_val); 4961 } 4962 4963 4964 int64_t Simulator::Call(byte* entry, int argument_count, ...) { 4965 const int kRegisterPassedArguments = 8; 4966 va_list parameters; 4967 va_start(parameters, argument_count); 4968 // Set up arguments. 4969 4970 // First four arguments passed in registers in both ABI's. 4971 DCHECK(argument_count >= 4); 4972 set_register(a0, va_arg(parameters, int64_t)); 4973 set_register(a1, va_arg(parameters, int64_t)); 4974 set_register(a2, va_arg(parameters, int64_t)); 4975 set_register(a3, va_arg(parameters, int64_t)); 4976 4977 // Up to eight arguments passed in registers in N64 ABI. 4978 // TODO(plind): N64 ABI calls these regs a4 - a7. Clarify this. 4979 if (argument_count >= 5) set_register(a4, va_arg(parameters, int64_t)); 4980 if (argument_count >= 6) set_register(a5, va_arg(parameters, int64_t)); 4981 if (argument_count >= 7) set_register(a6, va_arg(parameters, int64_t)); 4982 if (argument_count >= 8) set_register(a7, va_arg(parameters, int64_t)); 4983 4984 // Remaining arguments passed on stack. 4985 int64_t original_stack = get_register(sp); 4986 // Compute position of stack on entry to generated code. 4987 int stack_args_count = (argument_count > kRegisterPassedArguments) ? 4988 (argument_count - kRegisterPassedArguments) : 0; 4989 int stack_args_size = stack_args_count * sizeof(int64_t) + kCArgsSlotsSize; 4990 int64_t entry_stack = original_stack - stack_args_size; 4991 4992 if (base::OS::ActivationFrameAlignment() != 0) { 4993 entry_stack &= -base::OS::ActivationFrameAlignment(); 4994 } 4995 // Store remaining arguments on stack, from low to high memory. 4996 intptr_t* stack_argument = reinterpret_cast<intptr_t*>(entry_stack); 4997 for (int i = kRegisterPassedArguments; i < argument_count; i++) { 4998 int stack_index = i - kRegisterPassedArguments + kCArgSlotCount; 4999 stack_argument[stack_index] = va_arg(parameters, int64_t); 5000 } 5001 va_end(parameters); 5002 set_register(sp, entry_stack); 5003 5004 CallInternal(entry); 5005 5006 // Pop stack passed arguments. 5007 CHECK_EQ(entry_stack, get_register(sp)); 5008 set_register(sp, original_stack); 5009 5010 int64_t result = get_register(v0); 5011 return result; 5012 } 5013 5014 5015 double Simulator::CallFP(byte* entry, double d0, double d1) { 5016 if (!IsMipsSoftFloatABI) { 5017 const FPURegister fparg2 = f13; 5018 set_fpu_register_double(f12, d0); 5019 set_fpu_register_double(fparg2, d1); 5020 } else { 5021 int buffer[2]; 5022 DCHECK(sizeof(buffer[0]) * 2 == sizeof(d0)); 5023 memcpy(buffer, &d0, sizeof(d0)); 5024 set_dw_register(a0, buffer); 5025 memcpy(buffer, &d1, sizeof(d1)); 5026 set_dw_register(a2, buffer); 5027 } 5028 CallInternal(entry); 5029 if (!IsMipsSoftFloatABI) { 5030 return get_fpu_register_double(f0); 5031 } else { 5032 return get_double_from_register_pair(v0); 5033 } 5034 } 5035 5036 5037 uintptr_t Simulator::PushAddress(uintptr_t address) { 5038 int64_t new_sp = get_register(sp) - sizeof(uintptr_t); 5039 uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp); 5040 *stack_slot = address; 5041 set_register(sp, new_sp); 5042 return new_sp; 5043 } 5044 5045 5046 uintptr_t Simulator::PopAddress() { 5047 int64_t current_sp = get_register(sp); 5048 uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp); 5049 uintptr_t address = *stack_slot; 5050 set_register(sp, current_sp + sizeof(uintptr_t)); 5051 return address; 5052 } 5053 5054 5055 #undef UNSUPPORTED 5056 } // namespace internal 5057 } // namespace v8 5058 5059 #endif // USE_SIMULATOR 5060 5061 #endif // V8_TARGET_ARCH_MIPS64 5062