Home | History | Annotate | Download | only in runtime
      1 // Copyright 2014 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/runtime/runtime-utils.h"
      6 
      7 #include "src/arguments.h"
      8 #include "src/regexp/jsregexp-inl.h"
      9 #include "src/string-builder.h"
     10 #include "src/string-search.h"
     11 
     12 namespace v8 {
     13 namespace internal {
     14 
     15 // This may return an empty MaybeHandle if an exception is thrown or
     16 // we abort due to reaching the recursion limit.
     17 MaybeHandle<String> StringReplaceOneCharWithString(
     18     Isolate* isolate, Handle<String> subject, Handle<String> search,
     19     Handle<String> replace, bool* found, int recursion_limit) {
     20   StackLimitCheck stackLimitCheck(isolate);
     21   if (stackLimitCheck.HasOverflowed() || (recursion_limit == 0)) {
     22     return MaybeHandle<String>();
     23   }
     24   recursion_limit--;
     25   if (subject->IsConsString()) {
     26     ConsString* cons = ConsString::cast(*subject);
     27     Handle<String> first = Handle<String>(cons->first());
     28     Handle<String> second = Handle<String>(cons->second());
     29     Handle<String> new_first;
     30     if (!StringReplaceOneCharWithString(isolate, first, search, replace, found,
     31                                         recursion_limit).ToHandle(&new_first)) {
     32       return MaybeHandle<String>();
     33     }
     34     if (*found) return isolate->factory()->NewConsString(new_first, second);
     35 
     36     Handle<String> new_second;
     37     if (!StringReplaceOneCharWithString(isolate, second, search, replace, found,
     38                                         recursion_limit)
     39              .ToHandle(&new_second)) {
     40       return MaybeHandle<String>();
     41     }
     42     if (*found) return isolate->factory()->NewConsString(first, new_second);
     43 
     44     return subject;
     45   } else {
     46     int index = String::IndexOf(isolate, subject, search, 0);
     47     if (index == -1) return subject;
     48     *found = true;
     49     Handle<String> first = isolate->factory()->NewSubString(subject, 0, index);
     50     Handle<String> cons1;
     51     ASSIGN_RETURN_ON_EXCEPTION(
     52         isolate, cons1, isolate->factory()->NewConsString(first, replace),
     53         String);
     54     Handle<String> second =
     55         isolate->factory()->NewSubString(subject, index + 1, subject->length());
     56     return isolate->factory()->NewConsString(cons1, second);
     57   }
     58 }
     59 
     60 
     61 RUNTIME_FUNCTION(Runtime_StringReplaceOneCharWithString) {
     62   HandleScope scope(isolate);
     63   DCHECK(args.length() == 3);
     64   CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
     65   CONVERT_ARG_HANDLE_CHECKED(String, search, 1);
     66   CONVERT_ARG_HANDLE_CHECKED(String, replace, 2);
     67 
     68   // If the cons string tree is too deep, we simply abort the recursion and
     69   // retry with a flattened subject string.
     70   const int kRecursionLimit = 0x1000;
     71   bool found = false;
     72   Handle<String> result;
     73   if (StringReplaceOneCharWithString(isolate, subject, search, replace, &found,
     74                                      kRecursionLimit).ToHandle(&result)) {
     75     return *result;
     76   }
     77   if (isolate->has_pending_exception()) return isolate->heap()->exception();
     78 
     79   subject = String::Flatten(subject);
     80   if (StringReplaceOneCharWithString(isolate, subject, search, replace, &found,
     81                                      kRecursionLimit).ToHandle(&result)) {
     82     return *result;
     83   }
     84   if (isolate->has_pending_exception()) return isolate->heap()->exception();
     85   // In case of empty handle and no pending exception we have stack overflow.
     86   return isolate->StackOverflow();
     87 }
     88 
     89 
     90 RUNTIME_FUNCTION(Runtime_StringIndexOf) {
     91   HandleScope scope(isolate);
     92   DCHECK(args.length() == 3);
     93   return String::IndexOf(isolate, args.at<Object>(0), args.at<Object>(1),
     94                          args.at<Object>(2));
     95 }
     96 
     97 RUNTIME_FUNCTION(Runtime_StringLastIndexOf) {
     98   HandleScope handle_scope(isolate);
     99   return String::LastIndexOf(isolate, args.at<Object>(0), args.at<Object>(1),
    100                              isolate->factory()->undefined_value());
    101 }
    102 
    103 RUNTIME_FUNCTION(Runtime_SubString) {
    104   HandleScope scope(isolate);
    105   DCHECK(args.length() == 3);
    106 
    107   CONVERT_ARG_HANDLE_CHECKED(String, string, 0);
    108   int start, end;
    109   // We have a fast integer-only case here to avoid a conversion to double in
    110   // the common case where from and to are Smis.
    111   if (args[1]->IsSmi() && args[2]->IsSmi()) {
    112     CONVERT_SMI_ARG_CHECKED(from_number, 1);
    113     CONVERT_SMI_ARG_CHECKED(to_number, 2);
    114     start = from_number;
    115     end = to_number;
    116   } else if (args[1]->IsNumber() && args[2]->IsNumber()) {
    117     CONVERT_DOUBLE_ARG_CHECKED(from_number, 1);
    118     CONVERT_DOUBLE_ARG_CHECKED(to_number, 2);
    119     start = FastD2IChecked(from_number);
    120     end = FastD2IChecked(to_number);
    121   } else {
    122     return isolate->ThrowIllegalOperation();
    123   }
    124   // The following condition is intentionally robust because the SubStringStub
    125   // delegates here and we test this in cctest/test-strings/RobustSubStringStub.
    126   if (end < start || start < 0 || end > string->length()) {
    127     return isolate->ThrowIllegalOperation();
    128   }
    129   isolate->counters()->sub_string_runtime()->Increment();
    130 
    131   return *isolate->factory()->NewSubString(string, start, end);
    132 }
    133 
    134 
    135 RUNTIME_FUNCTION(Runtime_StringAdd) {
    136   HandleScope scope(isolate);
    137   DCHECK(args.length() == 2);
    138   CONVERT_ARG_HANDLE_CHECKED(Object, obj1, 0);
    139   CONVERT_ARG_HANDLE_CHECKED(Object, obj2, 1);
    140   isolate->counters()->string_add_runtime()->Increment();
    141   MaybeHandle<String> maybe_str1(Object::ToString(isolate, obj1));
    142   MaybeHandle<String> maybe_str2(Object::ToString(isolate, obj2));
    143   Handle<String> str1;
    144   Handle<String> str2;
    145   maybe_str1.ToHandle(&str1);
    146   maybe_str2.ToHandle(&str2);
    147   RETURN_RESULT_OR_FAILURE(isolate,
    148                            isolate->factory()->NewConsString(str1, str2));
    149 }
    150 
    151 
    152 RUNTIME_FUNCTION(Runtime_InternalizeString) {
    153   HandleScope handles(isolate);
    154   DCHECK(args.length() == 1);
    155   CONVERT_ARG_HANDLE_CHECKED(String, string, 0);
    156   return *isolate->factory()->InternalizeString(string);
    157 }
    158 
    159 
    160 RUNTIME_FUNCTION(Runtime_StringCharCodeAtRT) {
    161   HandleScope handle_scope(isolate);
    162   DCHECK(args.length() == 2);
    163 
    164   CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
    165   CONVERT_NUMBER_CHECKED(uint32_t, i, Uint32, args[1]);
    166 
    167   // Flatten the string.  If someone wants to get a char at an index
    168   // in a cons string, it is likely that more indices will be
    169   // accessed.
    170   subject = String::Flatten(subject);
    171 
    172   if (i >= static_cast<uint32_t>(subject->length())) {
    173     return isolate->heap()->nan_value();
    174   }
    175 
    176   return Smi::FromInt(subject->Get(i));
    177 }
    178 
    179 
    180 RUNTIME_FUNCTION(Runtime_StringCompare) {
    181   HandleScope handle_scope(isolate);
    182   DCHECK_EQ(2, args.length());
    183   CONVERT_ARG_HANDLE_CHECKED(String, x, 0);
    184   CONVERT_ARG_HANDLE_CHECKED(String, y, 1);
    185   isolate->counters()->string_compare_runtime()->Increment();
    186   switch (String::Compare(x, y)) {
    187     case ComparisonResult::kLessThan:
    188       return Smi::FromInt(LESS);
    189     case ComparisonResult::kEqual:
    190       return Smi::FromInt(EQUAL);
    191     case ComparisonResult::kGreaterThan:
    192       return Smi::FromInt(GREATER);
    193     case ComparisonResult::kUndefined:
    194       break;
    195   }
    196   UNREACHABLE();
    197   return Smi::kZero;
    198 }
    199 
    200 
    201 RUNTIME_FUNCTION(Runtime_StringBuilderConcat) {
    202   HandleScope scope(isolate);
    203   DCHECK(args.length() == 3);
    204   CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0);
    205   int32_t array_length;
    206   if (!args[1]->ToInt32(&array_length)) {
    207     THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError());
    208   }
    209   CONVERT_ARG_HANDLE_CHECKED(String, special, 2);
    210 
    211   size_t actual_array_length = 0;
    212   CHECK(TryNumberToSize(array->length(), &actual_array_length));
    213   CHECK(array_length >= 0);
    214   CHECK(static_cast<size_t>(array_length) <= actual_array_length);
    215 
    216   // This assumption is used by the slice encoding in one or two smis.
    217   DCHECK(Smi::kMaxValue >= String::kMaxLength);
    218 
    219   CHECK(array->HasFastElements());
    220   JSObject::EnsureCanContainHeapObjectElements(array);
    221 
    222   int special_length = special->length();
    223   if (!array->HasFastObjectElements()) {
    224     return isolate->Throw(isolate->heap()->illegal_argument_string());
    225   }
    226 
    227   int length;
    228   bool one_byte = special->HasOnlyOneByteChars();
    229 
    230   {
    231     DisallowHeapAllocation no_gc;
    232     FixedArray* fixed_array = FixedArray::cast(array->elements());
    233     if (fixed_array->length() < array_length) {
    234       array_length = fixed_array->length();
    235     }
    236 
    237     if (array_length == 0) {
    238       return isolate->heap()->empty_string();
    239     } else if (array_length == 1) {
    240       Object* first = fixed_array->get(0);
    241       if (first->IsString()) return first;
    242     }
    243     length = StringBuilderConcatLength(special_length, fixed_array,
    244                                        array_length, &one_byte);
    245   }
    246 
    247   if (length == -1) {
    248     return isolate->Throw(isolate->heap()->illegal_argument_string());
    249   }
    250 
    251   if (one_byte) {
    252     Handle<SeqOneByteString> answer;
    253     ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
    254         isolate, answer, isolate->factory()->NewRawOneByteString(length));
    255     StringBuilderConcatHelper(*special, answer->GetChars(),
    256                               FixedArray::cast(array->elements()),
    257                               array_length);
    258     return *answer;
    259   } else {
    260     Handle<SeqTwoByteString> answer;
    261     ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
    262         isolate, answer, isolate->factory()->NewRawTwoByteString(length));
    263     StringBuilderConcatHelper(*special, answer->GetChars(),
    264                               FixedArray::cast(array->elements()),
    265                               array_length);
    266     return *answer;
    267   }
    268 }
    269 
    270 
    271 RUNTIME_FUNCTION(Runtime_StringBuilderJoin) {
    272   HandleScope scope(isolate);
    273   DCHECK(args.length() == 3);
    274   CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0);
    275   int32_t array_length;
    276   if (!args[1]->ToInt32(&array_length)) {
    277     THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError());
    278   }
    279   CONVERT_ARG_HANDLE_CHECKED(String, separator, 2);
    280   CHECK(array->HasFastObjectElements());
    281   CHECK(array_length >= 0);
    282 
    283   Handle<FixedArray> fixed_array(FixedArray::cast(array->elements()));
    284   if (fixed_array->length() < array_length) {
    285     array_length = fixed_array->length();
    286   }
    287 
    288   if (array_length == 0) {
    289     return isolate->heap()->empty_string();
    290   } else if (array_length == 1) {
    291     Object* first = fixed_array->get(0);
    292     CHECK(first->IsString());
    293     return first;
    294   }
    295 
    296   int separator_length = separator->length();
    297   CHECK(separator_length > 0);
    298   int max_nof_separators =
    299       (String::kMaxLength + separator_length - 1) / separator_length;
    300   if (max_nof_separators < (array_length - 1)) {
    301     THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError());
    302   }
    303   int length = (array_length - 1) * separator_length;
    304   for (int i = 0; i < array_length; i++) {
    305     Object* element_obj = fixed_array->get(i);
    306     CHECK(element_obj->IsString());
    307     String* element = String::cast(element_obj);
    308     int increment = element->length();
    309     if (increment > String::kMaxLength - length) {
    310       STATIC_ASSERT(String::kMaxLength < kMaxInt);
    311       length = kMaxInt;  // Provoke exception;
    312       break;
    313     }
    314     length += increment;
    315   }
    316 
    317   Handle<SeqTwoByteString> answer;
    318   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
    319       isolate, answer, isolate->factory()->NewRawTwoByteString(length));
    320 
    321   DisallowHeapAllocation no_gc;
    322 
    323   uc16* sink = answer->GetChars();
    324 #ifdef DEBUG
    325   uc16* end = sink + length;
    326 #endif
    327 
    328   CHECK(fixed_array->get(0)->IsString());
    329   String* first = String::cast(fixed_array->get(0));
    330   String* separator_raw = *separator;
    331 
    332   int first_length = first->length();
    333   String::WriteToFlat(first, sink, 0, first_length);
    334   sink += first_length;
    335 
    336   for (int i = 1; i < array_length; i++) {
    337     DCHECK(sink + separator_length <= end);
    338     String::WriteToFlat(separator_raw, sink, 0, separator_length);
    339     sink += separator_length;
    340 
    341     CHECK(fixed_array->get(i)->IsString());
    342     String* element = String::cast(fixed_array->get(i));
    343     int element_length = element->length();
    344     DCHECK(sink + element_length <= end);
    345     String::WriteToFlat(element, sink, 0, element_length);
    346     sink += element_length;
    347   }
    348   DCHECK(sink == end);
    349 
    350   // Use %_FastOneByteArrayJoin instead.
    351   DCHECK(!answer->IsOneByteRepresentation());
    352   return *answer;
    353 }
    354 
    355 template <typename sinkchar>
    356 static void WriteRepeatToFlat(String* src, Vector<sinkchar> buffer, int cursor,
    357                               int repeat, int length) {
    358   if (repeat == 0) return;
    359 
    360   sinkchar* start = &buffer[cursor];
    361   String::WriteToFlat<sinkchar>(src, start, 0, length);
    362 
    363   int done = 1;
    364   sinkchar* next = start + length;
    365 
    366   while (done < repeat) {
    367     int block = Min(done, repeat - done);
    368     int block_chars = block * length;
    369     CopyChars(next, start, block_chars);
    370     next += block_chars;
    371     done += block;
    372   }
    373 }
    374 
    375 template <typename Char>
    376 static void JoinSparseArrayWithSeparator(FixedArray* elements,
    377                                          int elements_length,
    378                                          uint32_t array_length,
    379                                          String* separator,
    380                                          Vector<Char> buffer) {
    381   DisallowHeapAllocation no_gc;
    382   int previous_separator_position = 0;
    383   int separator_length = separator->length();
    384   DCHECK_LT(0, separator_length);
    385   int cursor = 0;
    386   for (int i = 0; i < elements_length; i += 2) {
    387     int position = NumberToInt32(elements->get(i));
    388     String* string = String::cast(elements->get(i + 1));
    389     int string_length = string->length();
    390     if (string->length() > 0) {
    391       int repeat = position - previous_separator_position;
    392       WriteRepeatToFlat<Char>(separator, buffer, cursor, repeat,
    393                               separator_length);
    394       cursor += repeat * separator_length;
    395       previous_separator_position = position;
    396       String::WriteToFlat<Char>(string, &buffer[cursor], 0, string_length);
    397       cursor += string->length();
    398     }
    399   }
    400 
    401   int last_array_index = static_cast<int>(array_length - 1);
    402   // Array length must be representable as a signed 32-bit number,
    403   // otherwise the total string length would have been too large.
    404   DCHECK(array_length <= 0x7fffffff);  // Is int32_t.
    405   int repeat = last_array_index - previous_separator_position;
    406   WriteRepeatToFlat<Char>(separator, buffer, cursor, repeat, separator_length);
    407   cursor += repeat * separator_length;
    408   DCHECK(cursor <= buffer.length());
    409 }
    410 
    411 
    412 RUNTIME_FUNCTION(Runtime_SparseJoinWithSeparator) {
    413   HandleScope scope(isolate);
    414   DCHECK(args.length() == 3);
    415   CONVERT_ARG_HANDLE_CHECKED(JSArray, elements_array, 0);
    416   CONVERT_NUMBER_CHECKED(uint32_t, array_length, Uint32, args[1]);
    417   CONVERT_ARG_HANDLE_CHECKED(String, separator, 2);
    418   // elements_array is fast-mode JSarray of alternating positions
    419   // (increasing order) and strings.
    420   CHECK(elements_array->HasFastSmiOrObjectElements());
    421   // array_length is length of original array (used to add separators);
    422   // separator is string to put between elements. Assumed to be non-empty.
    423   CHECK(array_length > 0);
    424 
    425   // Find total length of join result.
    426   int string_length = 0;
    427   bool is_one_byte = separator->IsOneByteRepresentation();
    428   bool overflow = false;
    429   CONVERT_NUMBER_CHECKED(int, elements_length, Int32, elements_array->length());
    430   CHECK(elements_length <= elements_array->elements()->length());
    431   CHECK((elements_length & 1) == 0);  // Even length.
    432   FixedArray* elements = FixedArray::cast(elements_array->elements());
    433   {
    434     DisallowHeapAllocation no_gc;
    435     for (int i = 0; i < elements_length; i += 2) {
    436       String* string = String::cast(elements->get(i + 1));
    437       int length = string->length();
    438       if (is_one_byte && !string->IsOneByteRepresentation()) {
    439         is_one_byte = false;
    440       }
    441       if (length > String::kMaxLength ||
    442           String::kMaxLength - length < string_length) {
    443         overflow = true;
    444         break;
    445       }
    446       string_length += length;
    447     }
    448   }
    449 
    450   int separator_length = separator->length();
    451   if (!overflow && separator_length > 0) {
    452     if (array_length <= 0x7fffffffu) {
    453       int separator_count = static_cast<int>(array_length) - 1;
    454       int remaining_length = String::kMaxLength - string_length;
    455       if ((remaining_length / separator_length) >= separator_count) {
    456         string_length += separator_length * (array_length - 1);
    457       } else {
    458         // Not room for the separators within the maximal string length.
    459         overflow = true;
    460       }
    461     } else {
    462       // Nonempty separator and at least 2^31-1 separators necessary
    463       // means that the string is too large to create.
    464       STATIC_ASSERT(String::kMaxLength < 0x7fffffff);
    465       overflow = true;
    466     }
    467   }
    468   if (overflow) {
    469     // Throw an exception if the resulting string is too large. See
    470     // https://code.google.com/p/chromium/issues/detail?id=336820
    471     // for details.
    472     THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError());
    473   }
    474 
    475   if (is_one_byte) {
    476     Handle<SeqOneByteString> result = isolate->factory()
    477                                           ->NewRawOneByteString(string_length)
    478                                           .ToHandleChecked();
    479     JoinSparseArrayWithSeparator<uint8_t>(
    480         FixedArray::cast(elements_array->elements()), elements_length,
    481         array_length, *separator,
    482         Vector<uint8_t>(result->GetChars(), string_length));
    483     return *result;
    484   } else {
    485     Handle<SeqTwoByteString> result = isolate->factory()
    486                                           ->NewRawTwoByteString(string_length)
    487                                           .ToHandleChecked();
    488     JoinSparseArrayWithSeparator<uc16>(
    489         FixedArray::cast(elements_array->elements()), elements_length,
    490         array_length, *separator,
    491         Vector<uc16>(result->GetChars(), string_length));
    492     return *result;
    493   }
    494 }
    495 
    496 
    497 // Copies Latin1 characters to the given fixed array looking up
    498 // one-char strings in the cache. Gives up on the first char that is
    499 // not in the cache and fills the remainder with smi zeros. Returns
    500 // the length of the successfully copied prefix.
    501 static int CopyCachedOneByteCharsToArray(Heap* heap, const uint8_t* chars,
    502                                          FixedArray* elements, int length) {
    503   DisallowHeapAllocation no_gc;
    504   FixedArray* one_byte_cache = heap->single_character_string_cache();
    505   Object* undefined = heap->undefined_value();
    506   int i;
    507   WriteBarrierMode mode = elements->GetWriteBarrierMode(no_gc);
    508   for (i = 0; i < length; ++i) {
    509     Object* value = one_byte_cache->get(chars[i]);
    510     if (value == undefined) break;
    511     elements->set(i, value, mode);
    512   }
    513   if (i < length) {
    514     DCHECK(Smi::kZero == 0);
    515     memset(elements->data_start() + i, 0, kPointerSize * (length - i));
    516   }
    517 #ifdef DEBUG
    518   for (int j = 0; j < length; ++j) {
    519     Object* element = elements->get(j);
    520     DCHECK(element == Smi::kZero ||
    521            (element->IsString() && String::cast(element)->LooksValid()));
    522   }
    523 #endif
    524   return i;
    525 }
    526 
    527 
    528 // Converts a String to JSArray.
    529 // For example, "foo" => ["f", "o", "o"].
    530 RUNTIME_FUNCTION(Runtime_StringToArray) {
    531   HandleScope scope(isolate);
    532   DCHECK(args.length() == 2);
    533   CONVERT_ARG_HANDLE_CHECKED(String, s, 0);
    534   CONVERT_NUMBER_CHECKED(uint32_t, limit, Uint32, args[1]);
    535 
    536   s = String::Flatten(s);
    537   const int length = static_cast<int>(Min<uint32_t>(s->length(), limit));
    538 
    539   Handle<FixedArray> elements;
    540   int position = 0;
    541   if (s->IsFlat() && s->IsOneByteRepresentation()) {
    542     // Try using cached chars where possible.
    543     elements = isolate->factory()->NewUninitializedFixedArray(length);
    544 
    545     DisallowHeapAllocation no_gc;
    546     String::FlatContent content = s->GetFlatContent();
    547     if (content.IsOneByte()) {
    548       Vector<const uint8_t> chars = content.ToOneByteVector();
    549       // Note, this will initialize all elements (not only the prefix)
    550       // to prevent GC from seeing partially initialized array.
    551       position = CopyCachedOneByteCharsToArray(isolate->heap(), chars.start(),
    552                                                *elements, length);
    553     } else {
    554       MemsetPointer(elements->data_start(), isolate->heap()->undefined_value(),
    555                     length);
    556     }
    557   } else {
    558     elements = isolate->factory()->NewFixedArray(length);
    559   }
    560   for (int i = position; i < length; ++i) {
    561     Handle<Object> str =
    562         isolate->factory()->LookupSingleCharacterStringFromCode(s->Get(i));
    563     elements->set(i, *str);
    564   }
    565 
    566 #ifdef DEBUG
    567   for (int i = 0; i < length; ++i) {
    568     DCHECK(String::cast(elements->get(i))->length() == 1);
    569   }
    570 #endif
    571 
    572   return *isolate->factory()->NewJSArrayWithElements(elements);
    573 }
    574 
    575 
    576 static inline bool ToUpperOverflows(uc32 character) {
    577   // y with umlauts and the micro sign are the only characters that stop
    578   // fitting into one-byte when converting to uppercase.
    579   static const uc32 yuml_code = 0xff;
    580   static const uc32 micro_code = 0xb5;
    581   return (character == yuml_code || character == micro_code);
    582 }
    583 
    584 
    585 template <class Converter>
    586 MUST_USE_RESULT static Object* ConvertCaseHelper(
    587     Isolate* isolate, String* string, SeqString* result, int result_length,
    588     unibrow::Mapping<Converter, 128>* mapping) {
    589   DisallowHeapAllocation no_gc;
    590   // We try this twice, once with the assumption that the result is no longer
    591   // than the input and, if that assumption breaks, again with the exact
    592   // length.  This may not be pretty, but it is nicer than what was here before
    593   // and I hereby claim my vaffel-is.
    594   //
    595   // NOTE: This assumes that the upper/lower case of an ASCII
    596   // character is also ASCII.  This is currently the case, but it
    597   // might break in the future if we implement more context and locale
    598   // dependent upper/lower conversions.
    599   bool has_changed_character = false;
    600 
    601   // Convert all characters to upper case, assuming that they will fit
    602   // in the buffer
    603   StringCharacterStream stream(string);
    604   unibrow::uchar chars[Converter::kMaxWidth];
    605   // We can assume that the string is not empty
    606   uc32 current = stream.GetNext();
    607   bool ignore_overflow = Converter::kIsToLower || result->IsSeqTwoByteString();
    608   for (int i = 0; i < result_length;) {
    609     bool has_next = stream.HasMore();
    610     uc32 next = has_next ? stream.GetNext() : 0;
    611     int char_length = mapping->get(current, next, chars);
    612     if (char_length == 0) {
    613       // The case conversion of this character is the character itself.
    614       result->Set(i, current);
    615       i++;
    616     } else if (char_length == 1 &&
    617                (ignore_overflow || !ToUpperOverflows(current))) {
    618       // Common case: converting the letter resulted in one character.
    619       DCHECK(static_cast<uc32>(chars[0]) != current);
    620       result->Set(i, chars[0]);
    621       has_changed_character = true;
    622       i++;
    623     } else if (result_length == string->length()) {
    624       bool overflows = ToUpperOverflows(current);
    625       // We've assumed that the result would be as long as the
    626       // input but here is a character that converts to several
    627       // characters.  No matter, we calculate the exact length
    628       // of the result and try the whole thing again.
    629       //
    630       // Note that this leaves room for optimization.  We could just
    631       // memcpy what we already have to the result string.  Also,
    632       // the result string is the last object allocated we could
    633       // "realloc" it and probably, in the vast majority of cases,
    634       // extend the existing string to be able to hold the full
    635       // result.
    636       int next_length = 0;
    637       if (has_next) {
    638         next_length = mapping->get(next, 0, chars);
    639         if (next_length == 0) next_length = 1;
    640       }
    641       int current_length = i + char_length + next_length;
    642       while (stream.HasMore()) {
    643         current = stream.GetNext();
    644         overflows |= ToUpperOverflows(current);
    645         // NOTE: we use 0 as the next character here because, while
    646         // the next character may affect what a character converts to,
    647         // it does not in any case affect the length of what it convert
    648         // to.
    649         int char_length = mapping->get(current, 0, chars);
    650         if (char_length == 0) char_length = 1;
    651         current_length += char_length;
    652         if (current_length > String::kMaxLength) {
    653           AllowHeapAllocation allocate_error_and_return;
    654           THROW_NEW_ERROR_RETURN_FAILURE(isolate,
    655                                          NewInvalidStringLengthError());
    656         }
    657       }
    658       // Try again with the real length.  Return signed if we need
    659       // to allocate a two-byte string for to uppercase.
    660       return (overflows && !ignore_overflow) ? Smi::FromInt(-current_length)
    661                                              : Smi::FromInt(current_length);
    662     } else {
    663       for (int j = 0; j < char_length; j++) {
    664         result->Set(i, chars[j]);
    665         i++;
    666       }
    667       has_changed_character = true;
    668     }
    669     current = next;
    670   }
    671   if (has_changed_character) {
    672     return result;
    673   } else {
    674     // If we didn't actually change anything in doing the conversion
    675     // we simple return the result and let the converted string
    676     // become garbage; there is no reason to keep two identical strings
    677     // alive.
    678     return string;
    679   }
    680 }
    681 
    682 
    683 static const uintptr_t kOneInEveryByte = kUintptrAllBitsSet / 0xFF;
    684 static const uintptr_t kAsciiMask = kOneInEveryByte << 7;
    685 
    686 // Given a word and two range boundaries returns a word with high bit
    687 // set in every byte iff the corresponding input byte was strictly in
    688 // the range (m, n). All the other bits in the result are cleared.
    689 // This function is only useful when it can be inlined and the
    690 // boundaries are statically known.
    691 // Requires: all bytes in the input word and the boundaries must be
    692 // ASCII (less than 0x7F).
    693 static inline uintptr_t AsciiRangeMask(uintptr_t w, char m, char n) {
    694   // Use strict inequalities since in edge cases the function could be
    695   // further simplified.
    696   DCHECK(0 < m && m < n);
    697   // Has high bit set in every w byte less than n.
    698   uintptr_t tmp1 = kOneInEveryByte * (0x7F + n) - w;
    699   // Has high bit set in every w byte greater than m.
    700   uintptr_t tmp2 = w + kOneInEveryByte * (0x7F - m);
    701   return (tmp1 & tmp2 & (kOneInEveryByte * 0x80));
    702 }
    703 
    704 
    705 #ifdef DEBUG
    706 static bool CheckFastAsciiConvert(char* dst, const char* src, int length,
    707                                   bool changed, bool is_to_lower) {
    708   bool expected_changed = false;
    709   for (int i = 0; i < length; i++) {
    710     if (dst[i] == src[i]) continue;
    711     expected_changed = true;
    712     if (is_to_lower) {
    713       DCHECK('A' <= src[i] && src[i] <= 'Z');
    714       DCHECK(dst[i] == src[i] + ('a' - 'A'));
    715     } else {
    716       DCHECK('a' <= src[i] && src[i] <= 'z');
    717       DCHECK(dst[i] == src[i] - ('a' - 'A'));
    718     }
    719   }
    720   return (expected_changed == changed);
    721 }
    722 #endif
    723 
    724 
    725 template <class Converter>
    726 static bool FastAsciiConvert(char* dst, const char* src, int length,
    727                              bool* changed_out) {
    728 #ifdef DEBUG
    729   char* saved_dst = dst;
    730   const char* saved_src = src;
    731 #endif
    732   DisallowHeapAllocation no_gc;
    733   // We rely on the distance between upper and lower case letters
    734   // being a known power of 2.
    735   DCHECK('a' - 'A' == (1 << 5));
    736   // Boundaries for the range of input characters than require conversion.
    737   static const char lo = Converter::kIsToLower ? 'A' - 1 : 'a' - 1;
    738   static const char hi = Converter::kIsToLower ? 'Z' + 1 : 'z' + 1;
    739   bool changed = false;
    740   uintptr_t or_acc = 0;
    741   const char* const limit = src + length;
    742 
    743   // dst is newly allocated and always aligned.
    744   DCHECK(IsAligned(reinterpret_cast<intptr_t>(dst), sizeof(uintptr_t)));
    745   // Only attempt processing one word at a time if src is also aligned.
    746   if (IsAligned(reinterpret_cast<intptr_t>(src), sizeof(uintptr_t))) {
    747     // Process the prefix of the input that requires no conversion one aligned
    748     // (machine) word at a time.
    749     while (src <= limit - sizeof(uintptr_t)) {
    750       const uintptr_t w = *reinterpret_cast<const uintptr_t*>(src);
    751       or_acc |= w;
    752       if (AsciiRangeMask(w, lo, hi) != 0) {
    753         changed = true;
    754         break;
    755       }
    756       *reinterpret_cast<uintptr_t*>(dst) = w;
    757       src += sizeof(uintptr_t);
    758       dst += sizeof(uintptr_t);
    759     }
    760     // Process the remainder of the input performing conversion when
    761     // required one word at a time.
    762     while (src <= limit - sizeof(uintptr_t)) {
    763       const uintptr_t w = *reinterpret_cast<const uintptr_t*>(src);
    764       or_acc |= w;
    765       uintptr_t m = AsciiRangeMask(w, lo, hi);
    766       // The mask has high (7th) bit set in every byte that needs
    767       // conversion and we know that the distance between cases is
    768       // 1 << 5.
    769       *reinterpret_cast<uintptr_t*>(dst) = w ^ (m >> 2);
    770       src += sizeof(uintptr_t);
    771       dst += sizeof(uintptr_t);
    772     }
    773   }
    774   // Process the last few bytes of the input (or the whole input if
    775   // unaligned access is not supported).
    776   while (src < limit) {
    777     char c = *src;
    778     or_acc |= c;
    779     if (lo < c && c < hi) {
    780       c ^= (1 << 5);
    781       changed = true;
    782     }
    783     *dst = c;
    784     ++src;
    785     ++dst;
    786   }
    787 
    788   if ((or_acc & kAsciiMask) != 0) return false;
    789 
    790   DCHECK(CheckFastAsciiConvert(saved_dst, saved_src, length, changed,
    791                                Converter::kIsToLower));
    792 
    793   *changed_out = changed;
    794   return true;
    795 }
    796 
    797 
    798 template <class Converter>
    799 MUST_USE_RESULT static Object* ConvertCase(
    800     Handle<String> s, Isolate* isolate,
    801     unibrow::Mapping<Converter, 128>* mapping) {
    802   s = String::Flatten(s);
    803   int length = s->length();
    804   // Assume that the string is not empty; we need this assumption later
    805   if (length == 0) return *s;
    806 
    807   // Simpler handling of ASCII strings.
    808   //
    809   // NOTE: This assumes that the upper/lower case of an ASCII
    810   // character is also ASCII.  This is currently the case, but it
    811   // might break in the future if we implement more context and locale
    812   // dependent upper/lower conversions.
    813   if (s->IsOneByteRepresentationUnderneath()) {
    814     // Same length as input.
    815     Handle<SeqOneByteString> result =
    816         isolate->factory()->NewRawOneByteString(length).ToHandleChecked();
    817     DisallowHeapAllocation no_gc;
    818     String::FlatContent flat_content = s->GetFlatContent();
    819     DCHECK(flat_content.IsFlat());
    820     bool has_changed_character = false;
    821     bool is_ascii = FastAsciiConvert<Converter>(
    822         reinterpret_cast<char*>(result->GetChars()),
    823         reinterpret_cast<const char*>(flat_content.ToOneByteVector().start()),
    824         length, &has_changed_character);
    825     // If not ASCII, we discard the result and take the 2 byte path.
    826     if (is_ascii) return has_changed_character ? *result : *s;
    827   }
    828 
    829   Handle<SeqString> result;  // Same length as input.
    830   if (s->IsOneByteRepresentation()) {
    831     result = isolate->factory()->NewRawOneByteString(length).ToHandleChecked();
    832   } else {
    833     result = isolate->factory()->NewRawTwoByteString(length).ToHandleChecked();
    834   }
    835 
    836   Object* answer = ConvertCaseHelper(isolate, *s, *result, length, mapping);
    837   if (answer->IsException(isolate) || answer->IsString()) return answer;
    838 
    839   DCHECK(answer->IsSmi());
    840   length = Smi::cast(answer)->value();
    841   if (s->IsOneByteRepresentation() && length > 0) {
    842     ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
    843         isolate, result, isolate->factory()->NewRawOneByteString(length));
    844   } else {
    845     if (length < 0) length = -length;
    846     ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
    847         isolate, result, isolate->factory()->NewRawTwoByteString(length));
    848   }
    849   return ConvertCaseHelper(isolate, *s, *result, length, mapping);
    850 }
    851 
    852 
    853 RUNTIME_FUNCTION(Runtime_StringToLowerCase) {
    854   HandleScope scope(isolate);
    855   DCHECK_EQ(args.length(), 1);
    856   CONVERT_ARG_HANDLE_CHECKED(String, s, 0);
    857   return ConvertCase(s, isolate, isolate->runtime_state()->to_lower_mapping());
    858 }
    859 
    860 
    861 RUNTIME_FUNCTION(Runtime_StringToUpperCase) {
    862   HandleScope scope(isolate);
    863   DCHECK_EQ(args.length(), 1);
    864   CONVERT_ARG_HANDLE_CHECKED(String, s, 0);
    865   return ConvertCase(s, isolate, isolate->runtime_state()->to_upper_mapping());
    866 }
    867 
    868 RUNTIME_FUNCTION(Runtime_StringLessThan) {
    869   HandleScope handle_scope(isolate);
    870   DCHECK_EQ(2, args.length());
    871   CONVERT_ARG_HANDLE_CHECKED(String, x, 0);
    872   CONVERT_ARG_HANDLE_CHECKED(String, y, 1);
    873   switch (String::Compare(x, y)) {
    874     case ComparisonResult::kLessThan:
    875       return isolate->heap()->true_value();
    876     case ComparisonResult::kEqual:
    877     case ComparisonResult::kGreaterThan:
    878       return isolate->heap()->false_value();
    879     case ComparisonResult::kUndefined:
    880       break;
    881   }
    882   UNREACHABLE();
    883   return Smi::kZero;
    884 }
    885 
    886 RUNTIME_FUNCTION(Runtime_StringLessThanOrEqual) {
    887   HandleScope handle_scope(isolate);
    888   DCHECK_EQ(2, args.length());
    889   CONVERT_ARG_HANDLE_CHECKED(String, x, 0);
    890   CONVERT_ARG_HANDLE_CHECKED(String, y, 1);
    891   switch (String::Compare(x, y)) {
    892     case ComparisonResult::kEqual:
    893     case ComparisonResult::kLessThan:
    894       return isolate->heap()->true_value();
    895     case ComparisonResult::kGreaterThan:
    896       return isolate->heap()->false_value();
    897     case ComparisonResult::kUndefined:
    898       break;
    899   }
    900   UNREACHABLE();
    901   return Smi::kZero;
    902 }
    903 
    904 RUNTIME_FUNCTION(Runtime_StringGreaterThan) {
    905   HandleScope handle_scope(isolate);
    906   DCHECK_EQ(2, args.length());
    907   CONVERT_ARG_HANDLE_CHECKED(String, x, 0);
    908   CONVERT_ARG_HANDLE_CHECKED(String, y, 1);
    909   switch (String::Compare(x, y)) {
    910     case ComparisonResult::kGreaterThan:
    911       return isolate->heap()->true_value();
    912     case ComparisonResult::kEqual:
    913     case ComparisonResult::kLessThan:
    914       return isolate->heap()->false_value();
    915     case ComparisonResult::kUndefined:
    916       break;
    917   }
    918   UNREACHABLE();
    919   return Smi::kZero;
    920 }
    921 
    922 RUNTIME_FUNCTION(Runtime_StringGreaterThanOrEqual) {
    923   HandleScope handle_scope(isolate);
    924   DCHECK_EQ(2, args.length());
    925   CONVERT_ARG_HANDLE_CHECKED(String, x, 0);
    926   CONVERT_ARG_HANDLE_CHECKED(String, y, 1);
    927   switch (String::Compare(x, y)) {
    928     case ComparisonResult::kEqual:
    929     case ComparisonResult::kGreaterThan:
    930       return isolate->heap()->true_value();
    931     case ComparisonResult::kLessThan:
    932       return isolate->heap()->false_value();
    933     case ComparisonResult::kUndefined:
    934       break;
    935   }
    936   UNREACHABLE();
    937   return Smi::kZero;
    938 }
    939 
    940 RUNTIME_FUNCTION(Runtime_StringEqual) {
    941   HandleScope handle_scope(isolate);
    942   DCHECK_EQ(2, args.length());
    943   CONVERT_ARG_HANDLE_CHECKED(String, x, 0);
    944   CONVERT_ARG_HANDLE_CHECKED(String, y, 1);
    945   return isolate->heap()->ToBoolean(String::Equals(x, y));
    946 }
    947 
    948 RUNTIME_FUNCTION(Runtime_StringNotEqual) {
    949   HandleScope handle_scope(isolate);
    950   DCHECK_EQ(2, args.length());
    951   CONVERT_ARG_HANDLE_CHECKED(String, x, 0);
    952   CONVERT_ARG_HANDLE_CHECKED(String, y, 1);
    953   return isolate->heap()->ToBoolean(!String::Equals(x, y));
    954 }
    955 
    956 RUNTIME_FUNCTION(Runtime_FlattenString) {
    957   HandleScope scope(isolate);
    958   DCHECK(args.length() == 1);
    959   CONVERT_ARG_HANDLE_CHECKED(String, str, 0);
    960   return *String::Flatten(str);
    961 }
    962 
    963 
    964 RUNTIME_FUNCTION(Runtime_StringCharFromCode) {
    965   HandleScope handlescope(isolate);
    966   DCHECK_EQ(1, args.length());
    967   if (args[0]->IsNumber()) {
    968     CONVERT_NUMBER_CHECKED(uint32_t, code, Uint32, args[0]);
    969     code &= 0xffff;
    970     return *isolate->factory()->LookupSingleCharacterStringFromCode(code);
    971   }
    972   return isolate->heap()->empty_string();
    973 }
    974 
    975 RUNTIME_FUNCTION(Runtime_ExternalStringGetChar) {
    976   SealHandleScope shs(isolate);
    977   DCHECK_EQ(2, args.length());
    978   CONVERT_ARG_CHECKED(ExternalString, string, 0);
    979   CONVERT_INT32_ARG_CHECKED(index, 1);
    980   return Smi::FromInt(string->Get(index));
    981 }
    982 
    983 RUNTIME_FUNCTION(Runtime_StringCharCodeAt) {
    984   SealHandleScope shs(isolate);
    985   DCHECK(args.length() == 2);
    986   if (!args[0]->IsString()) return isolate->heap()->undefined_value();
    987   if (!args[1]->IsNumber()) return isolate->heap()->undefined_value();
    988   if (std::isinf(args.number_at(1))) return isolate->heap()->nan_value();
    989   return __RT_impl_Runtime_StringCharCodeAtRT(args, isolate);
    990 }
    991 
    992 }  // namespace internal
    993 }  // namespace v8
    994