Home | History | Annotate | Download | only in x87
      1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
      2 // All Rights Reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions
      6 // are met:
      7 //
      8 // - Redistributions of source code must retain the above copyright notice,
      9 // this list of conditions and the following disclaimer.
     10 //
     11 // - Redistribution in binary form must reproduce the above copyright
     12 // notice, this list of conditions and the following disclaimer in the
     13 // documentation and/or other materials provided with the
     14 // distribution.
     15 //
     16 // - Neither the name of Sun Microsystems or the names of contributors may
     17 // be used to endorse or promote products derived from this software without
     18 // specific prior written permission.
     19 //
     20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
     23 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
     24 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     25 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     26 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
     31 // OF THE POSSIBILITY OF SUCH DAMAGE.
     32 
     33 // The original source code covered by the above license above has been modified
     34 // significantly by Google Inc.
     35 // Copyright 2012 the V8 project authors. All rights reserved.
     36 
     37 #include "src/x87/assembler-x87.h"
     38 
     39 #if V8_TARGET_ARCH_X87
     40 
     41 #include "src/base/bits.h"
     42 #include "src/base/cpu.h"
     43 #include "src/disassembler.h"
     44 #include "src/macro-assembler.h"
     45 #include "src/v8.h"
     46 
     47 namespace v8 {
     48 namespace internal {
     49 
     50 // -----------------------------------------------------------------------------
     51 // Implementation of CpuFeatures
     52 
     53 void CpuFeatures::ProbeImpl(bool cross_compile) {
     54   base::CPU cpu;
     55 
     56   // Only use statically determined features for cross compile (snapshot).
     57   if (cross_compile) return;
     58 }
     59 
     60 
     61 void CpuFeatures::PrintTarget() { }
     62 void CpuFeatures::PrintFeatures() { }
     63 
     64 
     65 // -----------------------------------------------------------------------------
     66 // Implementation of Displacement
     67 
     68 void Displacement::init(Label* L, Type type) {
     69   DCHECK(!L->is_bound());
     70   int next = 0;
     71   if (L->is_linked()) {
     72     next = L->pos();
     73     DCHECK(next > 0);  // Displacements must be at positions > 0
     74   }
     75   // Ensure that we _never_ overflow the next field.
     76   DCHECK(NextField::is_valid(Assembler::kMaximalBufferSize));
     77   data_ = NextField::encode(next) | TypeField::encode(type);
     78 }
     79 
     80 
     81 // -----------------------------------------------------------------------------
     82 // Implementation of RelocInfo
     83 
     84 
     85 const int RelocInfo::kApplyMask =
     86     RelocInfo::kCodeTargetMask | 1 << RelocInfo::RUNTIME_ENTRY |
     87     1 << RelocInfo::INTERNAL_REFERENCE | 1 << RelocInfo::CODE_AGE_SEQUENCE |
     88     RelocInfo::kDebugBreakSlotMask;
     89 
     90 
     91 bool RelocInfo::IsCodedSpecially() {
     92   // The deserializer needs to know whether a pointer is specially coded.  Being
     93   // specially coded on IA32 means that it is a relative address, as used by
     94   // branch instructions.  These are also the ones that need changing when a
     95   // code object moves.
     96   return (1 << rmode_) & kApplyMask;
     97 }
     98 
     99 
    100 bool RelocInfo::IsInConstantPool() {
    101   return false;
    102 }
    103 
    104 Address RelocInfo::wasm_memory_reference() {
    105   DCHECK(IsWasmMemoryReference(rmode_));
    106   return Memory::Address_at(pc_);
    107 }
    108 
    109 Address RelocInfo::wasm_global_reference() {
    110   DCHECK(IsWasmGlobalReference(rmode_));
    111   return Memory::Address_at(pc_);
    112 }
    113 
    114 uint32_t RelocInfo::wasm_memory_size_reference() {
    115   DCHECK(IsWasmMemorySizeReference(rmode_));
    116   return Memory::uint32_at(pc_);
    117 }
    118 
    119 void RelocInfo::unchecked_update_wasm_memory_reference(
    120     Address address, ICacheFlushMode flush_mode) {
    121   Memory::Address_at(pc_) = address;
    122 }
    123 
    124 void RelocInfo::unchecked_update_wasm_memory_size(uint32_t size,
    125                                                   ICacheFlushMode flush_mode) {
    126   Memory::uint32_at(pc_) = size;
    127 }
    128 
    129 // -----------------------------------------------------------------------------
    130 // Implementation of Operand
    131 
    132 Operand::Operand(Register base, int32_t disp, RelocInfo::Mode rmode) {
    133   // [base + disp/r]
    134   if (disp == 0 && RelocInfo::IsNone(rmode) && !base.is(ebp)) {
    135     // [base]
    136     set_modrm(0, base);
    137     if (base.is(esp)) set_sib(times_1, esp, base);
    138   } else if (is_int8(disp) && RelocInfo::IsNone(rmode)) {
    139     // [base + disp8]
    140     set_modrm(1, base);
    141     if (base.is(esp)) set_sib(times_1, esp, base);
    142     set_disp8(disp);
    143   } else {
    144     // [base + disp/r]
    145     set_modrm(2, base);
    146     if (base.is(esp)) set_sib(times_1, esp, base);
    147     set_dispr(disp, rmode);
    148   }
    149 }
    150 
    151 
    152 Operand::Operand(Register base,
    153                  Register index,
    154                  ScaleFactor scale,
    155                  int32_t disp,
    156                  RelocInfo::Mode rmode) {
    157   DCHECK(!index.is(esp));  // illegal addressing mode
    158   // [base + index*scale + disp/r]
    159   if (disp == 0 && RelocInfo::IsNone(rmode) && !base.is(ebp)) {
    160     // [base + index*scale]
    161     set_modrm(0, esp);
    162     set_sib(scale, index, base);
    163   } else if (is_int8(disp) && RelocInfo::IsNone(rmode)) {
    164     // [base + index*scale + disp8]
    165     set_modrm(1, esp);
    166     set_sib(scale, index, base);
    167     set_disp8(disp);
    168   } else {
    169     // [base + index*scale + disp/r]
    170     set_modrm(2, esp);
    171     set_sib(scale, index, base);
    172     set_dispr(disp, rmode);
    173   }
    174 }
    175 
    176 
    177 Operand::Operand(Register index,
    178                  ScaleFactor scale,
    179                  int32_t disp,
    180                  RelocInfo::Mode rmode) {
    181   DCHECK(!index.is(esp));  // illegal addressing mode
    182   // [index*scale + disp/r]
    183   set_modrm(0, esp);
    184   set_sib(scale, index, ebp);
    185   set_dispr(disp, rmode);
    186 }
    187 
    188 
    189 bool Operand::is_reg(Register reg) const {
    190   return ((buf_[0] & 0xF8) == 0xC0)  // addressing mode is register only.
    191       && ((buf_[0] & 0x07) == reg.code());  // register codes match.
    192 }
    193 
    194 
    195 bool Operand::is_reg_only() const {
    196   return (buf_[0] & 0xF8) == 0xC0;  // Addressing mode is register only.
    197 }
    198 
    199 
    200 Register Operand::reg() const {
    201   DCHECK(is_reg_only());
    202   return Register::from_code(buf_[0] & 0x07);
    203 }
    204 
    205 
    206 // -----------------------------------------------------------------------------
    207 // Implementation of Assembler.
    208 
    209 // Emit a single byte. Must always be inlined.
    210 #define EMIT(x)                                 \
    211   *pc_++ = (x)
    212 
    213 Assembler::Assembler(Isolate* isolate, void* buffer, int buffer_size)
    214     : AssemblerBase(isolate, buffer, buffer_size) {
    215 // Clear the buffer in debug mode unless it was provided by the
    216 // caller in which case we can't be sure it's okay to overwrite
    217 // existing code in it; see CodePatcher::CodePatcher(...).
    218 #ifdef DEBUG
    219   if (own_buffer_) {
    220     memset(buffer_, 0xCC, buffer_size_);  // int3
    221   }
    222 #endif
    223 
    224   reloc_info_writer.Reposition(buffer_ + buffer_size_, pc_);
    225 }
    226 
    227 
    228 void Assembler::GetCode(CodeDesc* desc) {
    229   // Finalize code (at this point overflow() may be true, but the gap ensures
    230   // that we are still not overlapping instructions and relocation info).
    231   DCHECK(pc_ <= reloc_info_writer.pos());  // No overlap.
    232   // Set up code descriptor.
    233   desc->buffer = buffer_;
    234   desc->buffer_size = buffer_size_;
    235   desc->instr_size = pc_offset();
    236   desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
    237   desc->origin = this;
    238   desc->constant_pool_size = 0;
    239   desc->unwinding_info_size = 0;
    240   desc->unwinding_info = nullptr;
    241 }
    242 
    243 
    244 void Assembler::Align(int m) {
    245   DCHECK(base::bits::IsPowerOfTwo32(m));
    246   int mask = m - 1;
    247   int addr = pc_offset();
    248   Nop((m - (addr & mask)) & mask);
    249 }
    250 
    251 
    252 bool Assembler::IsNop(Address addr) {
    253   Address a = addr;
    254   while (*a == 0x66) a++;
    255   if (*a == 0x90) return true;
    256   if (a[0] == 0xf && a[1] == 0x1f) return true;
    257   return false;
    258 }
    259 
    260 
    261 void Assembler::Nop(int bytes) {
    262   EnsureSpace ensure_space(this);
    263 
    264   // Older CPUs that do not support SSE2 may not support multibyte NOP
    265   // instructions.
    266   for (; bytes > 0; bytes--) {
    267     EMIT(0x90);
    268   }
    269   return;
    270 }
    271 
    272 
    273 void Assembler::CodeTargetAlign() {
    274   Align(16);  // Preferred alignment of jump targets on ia32.
    275 }
    276 
    277 
    278 void Assembler::cpuid() {
    279   EnsureSpace ensure_space(this);
    280   EMIT(0x0F);
    281   EMIT(0xA2);
    282 }
    283 
    284 
    285 void Assembler::pushad() {
    286   EnsureSpace ensure_space(this);
    287   EMIT(0x60);
    288 }
    289 
    290 
    291 void Assembler::popad() {
    292   EnsureSpace ensure_space(this);
    293   EMIT(0x61);
    294 }
    295 
    296 
    297 void Assembler::pushfd() {
    298   EnsureSpace ensure_space(this);
    299   EMIT(0x9C);
    300 }
    301 
    302 
    303 void Assembler::popfd() {
    304   EnsureSpace ensure_space(this);
    305   EMIT(0x9D);
    306 }
    307 
    308 
    309 void Assembler::push(const Immediate& x) {
    310   EnsureSpace ensure_space(this);
    311   if (x.is_int8()) {
    312     EMIT(0x6a);
    313     EMIT(x.x_);
    314   } else {
    315     EMIT(0x68);
    316     emit(x);
    317   }
    318 }
    319 
    320 
    321 void Assembler::push_imm32(int32_t imm32) {
    322   EnsureSpace ensure_space(this);
    323   EMIT(0x68);
    324   emit(imm32);
    325 }
    326 
    327 
    328 void Assembler::push(Register src) {
    329   EnsureSpace ensure_space(this);
    330   EMIT(0x50 | src.code());
    331 }
    332 
    333 
    334 void Assembler::push(const Operand& src) {
    335   EnsureSpace ensure_space(this);
    336   EMIT(0xFF);
    337   emit_operand(esi, src);
    338 }
    339 
    340 
    341 void Assembler::pop(Register dst) {
    342   DCHECK(reloc_info_writer.last_pc() != NULL);
    343   EnsureSpace ensure_space(this);
    344   EMIT(0x58 | dst.code());
    345 }
    346 
    347 
    348 void Assembler::pop(const Operand& dst) {
    349   EnsureSpace ensure_space(this);
    350   EMIT(0x8F);
    351   emit_operand(eax, dst);
    352 }
    353 
    354 
    355 void Assembler::enter(const Immediate& size) {
    356   EnsureSpace ensure_space(this);
    357   EMIT(0xC8);
    358   emit_w(size);
    359   EMIT(0);
    360 }
    361 
    362 
    363 void Assembler::leave() {
    364   EnsureSpace ensure_space(this);
    365   EMIT(0xC9);
    366 }
    367 
    368 
    369 void Assembler::mov_b(Register dst, const Operand& src) {
    370   CHECK(dst.is_byte_register());
    371   EnsureSpace ensure_space(this);
    372   EMIT(0x8A);
    373   emit_operand(dst, src);
    374 }
    375 
    376 
    377 void Assembler::mov_b(const Operand& dst, const Immediate& src) {
    378   EnsureSpace ensure_space(this);
    379   EMIT(0xC6);
    380   emit_operand(eax, dst);
    381   EMIT(static_cast<int8_t>(src.x_));
    382 }
    383 
    384 
    385 void Assembler::mov_b(const Operand& dst, int8_t imm8) {
    386   EnsureSpace ensure_space(this);
    387   EMIT(0xC6);
    388   emit_operand(eax, dst);
    389   EMIT(imm8);
    390 }
    391 
    392 
    393 void Assembler::mov_b(const Operand& dst, Register src) {
    394   CHECK(src.is_byte_register());
    395   EnsureSpace ensure_space(this);
    396   EMIT(0x88);
    397   emit_operand(src, dst);
    398 }
    399 
    400 
    401 void Assembler::mov_w(Register dst, const Operand& src) {
    402   EnsureSpace ensure_space(this);
    403   EMIT(0x66);
    404   EMIT(0x8B);
    405   emit_operand(dst, src);
    406 }
    407 
    408 
    409 void Assembler::mov_w(const Operand& dst, Register src) {
    410   EnsureSpace ensure_space(this);
    411   EMIT(0x66);
    412   EMIT(0x89);
    413   emit_operand(src, dst);
    414 }
    415 
    416 
    417 void Assembler::mov_w(const Operand& dst, int16_t imm16) {
    418   EnsureSpace ensure_space(this);
    419   EMIT(0x66);
    420   EMIT(0xC7);
    421   emit_operand(eax, dst);
    422   EMIT(static_cast<int8_t>(imm16 & 0xff));
    423   EMIT(static_cast<int8_t>(imm16 >> 8));
    424 }
    425 
    426 
    427 void Assembler::mov_w(const Operand& dst, const Immediate& src) {
    428   EnsureSpace ensure_space(this);
    429   EMIT(0x66);
    430   EMIT(0xC7);
    431   emit_operand(eax, dst);
    432   EMIT(static_cast<int8_t>(src.x_ & 0xff));
    433   EMIT(static_cast<int8_t>(src.x_ >> 8));
    434 }
    435 
    436 
    437 void Assembler::mov(Register dst, int32_t imm32) {
    438   EnsureSpace ensure_space(this);
    439   EMIT(0xB8 | dst.code());
    440   emit(imm32);
    441 }
    442 
    443 
    444 void Assembler::mov(Register dst, const Immediate& x) {
    445   EnsureSpace ensure_space(this);
    446   EMIT(0xB8 | dst.code());
    447   emit(x);
    448 }
    449 
    450 
    451 void Assembler::mov(Register dst, Handle<Object> handle) {
    452   EnsureSpace ensure_space(this);
    453   EMIT(0xB8 | dst.code());
    454   emit(handle);
    455 }
    456 
    457 
    458 void Assembler::mov(Register dst, const Operand& src) {
    459   EnsureSpace ensure_space(this);
    460   EMIT(0x8B);
    461   emit_operand(dst, src);
    462 }
    463 
    464 
    465 void Assembler::mov(Register dst, Register src) {
    466   EnsureSpace ensure_space(this);
    467   EMIT(0x89);
    468   EMIT(0xC0 | src.code() << 3 | dst.code());
    469 }
    470 
    471 
    472 void Assembler::mov(const Operand& dst, const Immediate& x) {
    473   EnsureSpace ensure_space(this);
    474   EMIT(0xC7);
    475   emit_operand(eax, dst);
    476   emit(x);
    477 }
    478 
    479 
    480 void Assembler::mov(const Operand& dst, Handle<Object> handle) {
    481   EnsureSpace ensure_space(this);
    482   EMIT(0xC7);
    483   emit_operand(eax, dst);
    484   emit(handle);
    485 }
    486 
    487 
    488 void Assembler::mov(const Operand& dst, Register src) {
    489   EnsureSpace ensure_space(this);
    490   EMIT(0x89);
    491   emit_operand(src, dst);
    492 }
    493 
    494 
    495 void Assembler::movsx_b(Register dst, const Operand& src) {
    496   EnsureSpace ensure_space(this);
    497   EMIT(0x0F);
    498   EMIT(0xBE);
    499   emit_operand(dst, src);
    500 }
    501 
    502 
    503 void Assembler::movsx_w(Register dst, const Operand& src) {
    504   EnsureSpace ensure_space(this);
    505   EMIT(0x0F);
    506   EMIT(0xBF);
    507   emit_operand(dst, src);
    508 }
    509 
    510 
    511 void Assembler::movzx_b(Register dst, const Operand& src) {
    512   EnsureSpace ensure_space(this);
    513   EMIT(0x0F);
    514   EMIT(0xB6);
    515   emit_operand(dst, src);
    516 }
    517 
    518 
    519 void Assembler::movzx_w(Register dst, const Operand& src) {
    520   EnsureSpace ensure_space(this);
    521   EMIT(0x0F);
    522   EMIT(0xB7);
    523   emit_operand(dst, src);
    524 }
    525 
    526 
    527 void Assembler::cld() {
    528   EnsureSpace ensure_space(this);
    529   EMIT(0xFC);
    530 }
    531 
    532 
    533 void Assembler::rep_movs() {
    534   EnsureSpace ensure_space(this);
    535   EMIT(0xF3);
    536   EMIT(0xA5);
    537 }
    538 
    539 
    540 void Assembler::rep_stos() {
    541   EnsureSpace ensure_space(this);
    542   EMIT(0xF3);
    543   EMIT(0xAB);
    544 }
    545 
    546 
    547 void Assembler::stos() {
    548   EnsureSpace ensure_space(this);
    549   EMIT(0xAB);
    550 }
    551 
    552 
    553 void Assembler::xchg(Register dst, Register src) {
    554   EnsureSpace ensure_space(this);
    555   if (src.is(eax) || dst.is(eax)) {  // Single-byte encoding.
    556     EMIT(0x90 | (src.is(eax) ? dst.code() : src.code()));
    557   } else {
    558     EMIT(0x87);
    559     EMIT(0xC0 | src.code() << 3 | dst.code());
    560   }
    561 }
    562 
    563 
    564 void Assembler::xchg(Register dst, const Operand& src) {
    565   EnsureSpace ensure_space(this);
    566   EMIT(0x87);
    567   emit_operand(dst, src);
    568 }
    569 
    570 void Assembler::xchg_b(Register reg, const Operand& op) {
    571   EnsureSpace ensure_space(this);
    572   EMIT(0x86);
    573   emit_operand(reg, op);
    574 }
    575 
    576 void Assembler::xchg_w(Register reg, const Operand& op) {
    577   EnsureSpace ensure_space(this);
    578   EMIT(0x66);
    579   EMIT(0x87);
    580   emit_operand(reg, op);
    581 }
    582 
    583 void Assembler::lock() {
    584   EnsureSpace ensure_space(this);
    585   EMIT(0xF0);
    586 }
    587 
    588 void Assembler::cmpxchg(const Operand& dst, Register src) {
    589   EnsureSpace ensure_space(this);
    590   EMIT(0x0F);
    591   EMIT(0xB1);
    592   emit_operand(src, dst);
    593 }
    594 
    595 void Assembler::cmpxchg_b(const Operand& dst, Register src) {
    596   EnsureSpace ensure_space(this);
    597   EMIT(0x0F);
    598   EMIT(0xB0);
    599   emit_operand(src, dst);
    600 }
    601 
    602 void Assembler::cmpxchg_w(const Operand& dst, Register src) {
    603   EnsureSpace ensure_space(this);
    604   EMIT(0x66);
    605   EMIT(0x0F);
    606   EMIT(0xB1);
    607   emit_operand(src, dst);
    608 }
    609 
    610 void Assembler::adc(Register dst, int32_t imm32) {
    611   EnsureSpace ensure_space(this);
    612   emit_arith(2, Operand(dst), Immediate(imm32));
    613 }
    614 
    615 
    616 void Assembler::adc(Register dst, const Operand& src) {
    617   EnsureSpace ensure_space(this);
    618   EMIT(0x13);
    619   emit_operand(dst, src);
    620 }
    621 
    622 
    623 void Assembler::add(Register dst, const Operand& src) {
    624   EnsureSpace ensure_space(this);
    625   EMIT(0x03);
    626   emit_operand(dst, src);
    627 }
    628 
    629 
    630 void Assembler::add(const Operand& dst, Register src) {
    631   EnsureSpace ensure_space(this);
    632   EMIT(0x01);
    633   emit_operand(src, dst);
    634 }
    635 
    636 
    637 void Assembler::add(const Operand& dst, const Immediate& x) {
    638   DCHECK(reloc_info_writer.last_pc() != NULL);
    639   EnsureSpace ensure_space(this);
    640   emit_arith(0, dst, x);
    641 }
    642 
    643 
    644 void Assembler::and_(Register dst, int32_t imm32) {
    645   and_(dst, Immediate(imm32));
    646 }
    647 
    648 
    649 void Assembler::and_(Register dst, const Immediate& x) {
    650   EnsureSpace ensure_space(this);
    651   emit_arith(4, Operand(dst), x);
    652 }
    653 
    654 
    655 void Assembler::and_(Register dst, const Operand& src) {
    656   EnsureSpace ensure_space(this);
    657   EMIT(0x23);
    658   emit_operand(dst, src);
    659 }
    660 
    661 
    662 void Assembler::and_(const Operand& dst, const Immediate& x) {
    663   EnsureSpace ensure_space(this);
    664   emit_arith(4, dst, x);
    665 }
    666 
    667 
    668 void Assembler::and_(const Operand& dst, Register src) {
    669   EnsureSpace ensure_space(this);
    670   EMIT(0x21);
    671   emit_operand(src, dst);
    672 }
    673 
    674 void Assembler::cmpb(const Operand& op, Immediate imm8) {
    675   DCHECK(imm8.is_int8() || imm8.is_uint8());
    676   EnsureSpace ensure_space(this);
    677   if (op.is_reg(eax)) {
    678     EMIT(0x3C);
    679   } else {
    680     EMIT(0x80);
    681     emit_operand(edi, op);  // edi == 7
    682   }
    683   emit_b(imm8);
    684 }
    685 
    686 
    687 void Assembler::cmpb(const Operand& op, Register reg) {
    688   CHECK(reg.is_byte_register());
    689   EnsureSpace ensure_space(this);
    690   EMIT(0x38);
    691   emit_operand(reg, op);
    692 }
    693 
    694 
    695 void Assembler::cmpb(Register reg, const Operand& op) {
    696   CHECK(reg.is_byte_register());
    697   EnsureSpace ensure_space(this);
    698   EMIT(0x3A);
    699   emit_operand(reg, op);
    700 }
    701 
    702 
    703 void Assembler::cmpw(const Operand& op, Immediate imm16) {
    704   DCHECK(imm16.is_int16());
    705   EnsureSpace ensure_space(this);
    706   EMIT(0x66);
    707   EMIT(0x81);
    708   emit_operand(edi, op);
    709   emit_w(imm16);
    710 }
    711 
    712 void Assembler::cmpw(Register reg, const Operand& op) {
    713   EnsureSpace ensure_space(this);
    714   EMIT(0x66);
    715   EMIT(0x3B);
    716   emit_operand(reg, op);
    717 }
    718 
    719 void Assembler::cmpw(const Operand& op, Register reg) {
    720   EnsureSpace ensure_space(this);
    721   EMIT(0x66);
    722   EMIT(0x39);
    723   emit_operand(reg, op);
    724 }
    725 
    726 void Assembler::cmp(Register reg, int32_t imm32) {
    727   EnsureSpace ensure_space(this);
    728   emit_arith(7, Operand(reg), Immediate(imm32));
    729 }
    730 
    731 
    732 void Assembler::cmp(Register reg, Handle<Object> handle) {
    733   EnsureSpace ensure_space(this);
    734   emit_arith(7, Operand(reg), Immediate(handle));
    735 }
    736 
    737 
    738 void Assembler::cmp(Register reg, const Operand& op) {
    739   EnsureSpace ensure_space(this);
    740   EMIT(0x3B);
    741   emit_operand(reg, op);
    742 }
    743 
    744 void Assembler::cmp(const Operand& op, Register reg) {
    745   EnsureSpace ensure_space(this);
    746   EMIT(0x39);
    747   emit_operand(reg, op);
    748 }
    749 
    750 void Assembler::cmp(const Operand& op, const Immediate& imm) {
    751   EnsureSpace ensure_space(this);
    752   emit_arith(7, op, imm);
    753 }
    754 
    755 
    756 void Assembler::cmp(const Operand& op, Handle<Object> handle) {
    757   EnsureSpace ensure_space(this);
    758   emit_arith(7, op, Immediate(handle));
    759 }
    760 
    761 
    762 void Assembler::cmpb_al(const Operand& op) {
    763   EnsureSpace ensure_space(this);
    764   EMIT(0x38);  // CMP r/m8, r8
    765   emit_operand(eax, op);  // eax has same code as register al.
    766 }
    767 
    768 
    769 void Assembler::cmpw_ax(const Operand& op) {
    770   EnsureSpace ensure_space(this);
    771   EMIT(0x66);
    772   EMIT(0x39);  // CMP r/m16, r16
    773   emit_operand(eax, op);  // eax has same code as register ax.
    774 }
    775 
    776 
    777 void Assembler::dec_b(Register dst) {
    778   CHECK(dst.is_byte_register());
    779   EnsureSpace ensure_space(this);
    780   EMIT(0xFE);
    781   EMIT(0xC8 | dst.code());
    782 }
    783 
    784 
    785 void Assembler::dec_b(const Operand& dst) {
    786   EnsureSpace ensure_space(this);
    787   EMIT(0xFE);
    788   emit_operand(ecx, dst);
    789 }
    790 
    791 
    792 void Assembler::dec(Register dst) {
    793   EnsureSpace ensure_space(this);
    794   EMIT(0x48 | dst.code());
    795 }
    796 
    797 
    798 void Assembler::dec(const Operand& dst) {
    799   EnsureSpace ensure_space(this);
    800   EMIT(0xFF);
    801   emit_operand(ecx, dst);
    802 }
    803 
    804 
    805 void Assembler::cdq() {
    806   EnsureSpace ensure_space(this);
    807   EMIT(0x99);
    808 }
    809 
    810 
    811 void Assembler::idiv(const Operand& src) {
    812   EnsureSpace ensure_space(this);
    813   EMIT(0xF7);
    814   emit_operand(edi, src);
    815 }
    816 
    817 
    818 void Assembler::div(const Operand& src) {
    819   EnsureSpace ensure_space(this);
    820   EMIT(0xF7);
    821   emit_operand(esi, src);
    822 }
    823 
    824 
    825 void Assembler::imul(Register reg) {
    826   EnsureSpace ensure_space(this);
    827   EMIT(0xF7);
    828   EMIT(0xE8 | reg.code());
    829 }
    830 
    831 
    832 void Assembler::imul(Register dst, const Operand& src) {
    833   EnsureSpace ensure_space(this);
    834   EMIT(0x0F);
    835   EMIT(0xAF);
    836   emit_operand(dst, src);
    837 }
    838 
    839 
    840 void Assembler::imul(Register dst, Register src, int32_t imm32) {
    841   imul(dst, Operand(src), imm32);
    842 }
    843 
    844 
    845 void Assembler::imul(Register dst, const Operand& src, int32_t imm32) {
    846   EnsureSpace ensure_space(this);
    847   if (is_int8(imm32)) {
    848     EMIT(0x6B);
    849     emit_operand(dst, src);
    850     EMIT(imm32);
    851   } else {
    852     EMIT(0x69);
    853     emit_operand(dst, src);
    854     emit(imm32);
    855   }
    856 }
    857 
    858 
    859 void Assembler::inc(Register dst) {
    860   EnsureSpace ensure_space(this);
    861   EMIT(0x40 | dst.code());
    862 }
    863 
    864 
    865 void Assembler::inc(const Operand& dst) {
    866   EnsureSpace ensure_space(this);
    867   EMIT(0xFF);
    868   emit_operand(eax, dst);
    869 }
    870 
    871 
    872 void Assembler::lea(Register dst, const Operand& src) {
    873   EnsureSpace ensure_space(this);
    874   EMIT(0x8D);
    875   emit_operand(dst, src);
    876 }
    877 
    878 
    879 void Assembler::mul(Register src) {
    880   EnsureSpace ensure_space(this);
    881   EMIT(0xF7);
    882   EMIT(0xE0 | src.code());
    883 }
    884 
    885 
    886 void Assembler::neg(Register dst) {
    887   EnsureSpace ensure_space(this);
    888   EMIT(0xF7);
    889   EMIT(0xD8 | dst.code());
    890 }
    891 
    892 
    893 void Assembler::neg(const Operand& dst) {
    894   EnsureSpace ensure_space(this);
    895   EMIT(0xF7);
    896   emit_operand(ebx, dst);
    897 }
    898 
    899 
    900 void Assembler::not_(Register dst) {
    901   EnsureSpace ensure_space(this);
    902   EMIT(0xF7);
    903   EMIT(0xD0 | dst.code());
    904 }
    905 
    906 
    907 void Assembler::not_(const Operand& dst) {
    908   EnsureSpace ensure_space(this);
    909   EMIT(0xF7);
    910   emit_operand(edx, dst);
    911 }
    912 
    913 
    914 void Assembler::or_(Register dst, int32_t imm32) {
    915   EnsureSpace ensure_space(this);
    916   emit_arith(1, Operand(dst), Immediate(imm32));
    917 }
    918 
    919 
    920 void Assembler::or_(Register dst, const Operand& src) {
    921   EnsureSpace ensure_space(this);
    922   EMIT(0x0B);
    923   emit_operand(dst, src);
    924 }
    925 
    926 
    927 void Assembler::or_(const Operand& dst, const Immediate& x) {
    928   EnsureSpace ensure_space(this);
    929   emit_arith(1, dst, x);
    930 }
    931 
    932 
    933 void Assembler::or_(const Operand& dst, Register src) {
    934   EnsureSpace ensure_space(this);
    935   EMIT(0x09);
    936   emit_operand(src, dst);
    937 }
    938 
    939 
    940 void Assembler::rcl(Register dst, uint8_t imm8) {
    941   EnsureSpace ensure_space(this);
    942   DCHECK(is_uint5(imm8));  // illegal shift count
    943   if (imm8 == 1) {
    944     EMIT(0xD1);
    945     EMIT(0xD0 | dst.code());
    946   } else {
    947     EMIT(0xC1);
    948     EMIT(0xD0 | dst.code());
    949     EMIT(imm8);
    950   }
    951 }
    952 
    953 
    954 void Assembler::rcr(Register dst, uint8_t imm8) {
    955   EnsureSpace ensure_space(this);
    956   DCHECK(is_uint5(imm8));  // illegal shift count
    957   if (imm8 == 1) {
    958     EMIT(0xD1);
    959     EMIT(0xD8 | dst.code());
    960   } else {
    961     EMIT(0xC1);
    962     EMIT(0xD8 | dst.code());
    963     EMIT(imm8);
    964   }
    965 }
    966 
    967 
    968 void Assembler::ror(const Operand& dst, uint8_t imm8) {
    969   EnsureSpace ensure_space(this);
    970   DCHECK(is_uint5(imm8));  // illegal shift count
    971   if (imm8 == 1) {
    972     EMIT(0xD1);
    973     emit_operand(ecx, dst);
    974   } else {
    975     EMIT(0xC1);
    976     emit_operand(ecx, dst);
    977     EMIT(imm8);
    978   }
    979 }
    980 
    981 
    982 void Assembler::ror_cl(const Operand& dst) {
    983   EnsureSpace ensure_space(this);
    984   EMIT(0xD3);
    985   emit_operand(ecx, dst);
    986 }
    987 
    988 
    989 void Assembler::sar(const Operand& dst, uint8_t imm8) {
    990   EnsureSpace ensure_space(this);
    991   DCHECK(is_uint5(imm8));  // illegal shift count
    992   if (imm8 == 1) {
    993     EMIT(0xD1);
    994     emit_operand(edi, dst);
    995   } else {
    996     EMIT(0xC1);
    997     emit_operand(edi, dst);
    998     EMIT(imm8);
    999   }
   1000 }
   1001 
   1002 
   1003 void Assembler::sar_cl(const Operand& dst) {
   1004   EnsureSpace ensure_space(this);
   1005   EMIT(0xD3);
   1006   emit_operand(edi, dst);
   1007 }
   1008 
   1009 void Assembler::sbb(Register dst, const Operand& src) {
   1010   EnsureSpace ensure_space(this);
   1011   EMIT(0x1B);
   1012   emit_operand(dst, src);
   1013 }
   1014 
   1015 void Assembler::shld(Register dst, Register src, uint8_t shift) {
   1016   DCHECK(is_uint5(shift));
   1017   EnsureSpace ensure_space(this);
   1018   EMIT(0x0F);
   1019   EMIT(0xA4);
   1020   emit_operand(src, Operand(dst));
   1021   EMIT(shift);
   1022 }
   1023 
   1024 void Assembler::shld_cl(Register dst, Register src) {
   1025   EnsureSpace ensure_space(this);
   1026   EMIT(0x0F);
   1027   EMIT(0xA5);
   1028   emit_operand(src, Operand(dst));
   1029 }
   1030 
   1031 
   1032 void Assembler::shl(const Operand& dst, uint8_t imm8) {
   1033   EnsureSpace ensure_space(this);
   1034   DCHECK(is_uint5(imm8));  // illegal shift count
   1035   if (imm8 == 1) {
   1036     EMIT(0xD1);
   1037     emit_operand(esp, dst);
   1038   } else {
   1039     EMIT(0xC1);
   1040     emit_operand(esp, dst);
   1041     EMIT(imm8);
   1042   }
   1043 }
   1044 
   1045 
   1046 void Assembler::shl_cl(const Operand& dst) {
   1047   EnsureSpace ensure_space(this);
   1048   EMIT(0xD3);
   1049   emit_operand(esp, dst);
   1050 }
   1051 
   1052 void Assembler::shr(const Operand& dst, uint8_t imm8) {
   1053   EnsureSpace ensure_space(this);
   1054   DCHECK(is_uint5(imm8));  // illegal shift count
   1055   if (imm8 == 1) {
   1056     EMIT(0xD1);
   1057     emit_operand(ebp, dst);
   1058   } else {
   1059     EMIT(0xC1);
   1060     emit_operand(ebp, dst);
   1061     EMIT(imm8);
   1062   }
   1063 }
   1064 
   1065 
   1066 void Assembler::shr_cl(const Operand& dst) {
   1067   EnsureSpace ensure_space(this);
   1068   EMIT(0xD3);
   1069   emit_operand(ebp, dst);
   1070 }
   1071 
   1072 void Assembler::shrd(Register dst, Register src, uint8_t shift) {
   1073   DCHECK(is_uint5(shift));
   1074   EnsureSpace ensure_space(this);
   1075   EMIT(0x0F);
   1076   EMIT(0xAC);
   1077   emit_operand(dst, Operand(src));
   1078   EMIT(shift);
   1079 }
   1080 
   1081 void Assembler::shrd_cl(const Operand& dst, Register src) {
   1082   EnsureSpace ensure_space(this);
   1083   EMIT(0x0F);
   1084   EMIT(0xAD);
   1085   emit_operand(src, dst);
   1086 }
   1087 
   1088 void Assembler::sub(const Operand& dst, const Immediate& x) {
   1089   EnsureSpace ensure_space(this);
   1090   emit_arith(5, dst, x);
   1091 }
   1092 
   1093 
   1094 void Assembler::sub(Register dst, const Operand& src) {
   1095   EnsureSpace ensure_space(this);
   1096   EMIT(0x2B);
   1097   emit_operand(dst, src);
   1098 }
   1099 
   1100 
   1101 void Assembler::sub(const Operand& dst, Register src) {
   1102   EnsureSpace ensure_space(this);
   1103   EMIT(0x29);
   1104   emit_operand(src, dst);
   1105 }
   1106 
   1107 
   1108 void Assembler::test(Register reg, const Immediate& imm) {
   1109   if (imm.is_uint8()) {
   1110     test_b(reg, imm);
   1111     return;
   1112   }
   1113 
   1114   EnsureSpace ensure_space(this);
   1115   // This is not using emit_arith because test doesn't support
   1116   // sign-extension of 8-bit operands.
   1117   if (reg.is(eax)) {
   1118     EMIT(0xA9);
   1119   } else {
   1120     EMIT(0xF7);
   1121     EMIT(0xC0 | reg.code());
   1122   }
   1123   emit(imm);
   1124 }
   1125 
   1126 
   1127 void Assembler::test(Register reg, const Operand& op) {
   1128   EnsureSpace ensure_space(this);
   1129   EMIT(0x85);
   1130   emit_operand(reg, op);
   1131 }
   1132 
   1133 
   1134 void Assembler::test_b(Register reg, const Operand& op) {
   1135   CHECK(reg.is_byte_register());
   1136   EnsureSpace ensure_space(this);
   1137   EMIT(0x84);
   1138   emit_operand(reg, op);
   1139 }
   1140 
   1141 
   1142 void Assembler::test(const Operand& op, const Immediate& imm) {
   1143   if (op.is_reg_only()) {
   1144     test(op.reg(), imm);
   1145     return;
   1146   }
   1147   if (imm.is_uint8()) {
   1148     return test_b(op, imm);
   1149   }
   1150   EnsureSpace ensure_space(this);
   1151   EMIT(0xF7);
   1152   emit_operand(eax, op);
   1153   emit(imm);
   1154 }
   1155 
   1156 void Assembler::test_b(Register reg, Immediate imm8) {
   1157   DCHECK(imm8.is_uint8());
   1158   EnsureSpace ensure_space(this);
   1159   // Only use test against byte for registers that have a byte
   1160   // variant: eax, ebx, ecx, and edx.
   1161   if (reg.is(eax)) {
   1162     EMIT(0xA8);
   1163     emit_b(imm8);
   1164   } else if (reg.is_byte_register()) {
   1165     emit_arith_b(0xF6, 0xC0, reg, static_cast<uint8_t>(imm8.x_));
   1166   } else {
   1167     EMIT(0x66);
   1168     EMIT(0xF7);
   1169     EMIT(0xC0 | reg.code());
   1170     emit_w(imm8);
   1171   }
   1172 }
   1173 
   1174 void Assembler::test_b(const Operand& op, Immediate imm8) {
   1175   if (op.is_reg_only()) {
   1176     test_b(op.reg(), imm8);
   1177     return;
   1178   }
   1179   EnsureSpace ensure_space(this);
   1180   EMIT(0xF6);
   1181   emit_operand(eax, op);
   1182   emit_b(imm8);
   1183 }
   1184 
   1185 void Assembler::test_w(Register reg, Immediate imm16) {
   1186   DCHECK(imm16.is_int16() || imm16.is_uint16());
   1187   EnsureSpace ensure_space(this);
   1188   if (reg.is(eax)) {
   1189     EMIT(0xA9);
   1190     emit_w(imm16);
   1191   } else {
   1192     EMIT(0x66);
   1193     EMIT(0xF7);
   1194     EMIT(0xc0 | reg.code());
   1195     emit_w(imm16);
   1196   }
   1197 }
   1198 
   1199 void Assembler::test_w(Register reg, const Operand& op) {
   1200   EnsureSpace ensure_space(this);
   1201   EMIT(0x66);
   1202   EMIT(0x85);
   1203   emit_operand(reg, op);
   1204 }
   1205 
   1206 void Assembler::test_w(const Operand& op, Immediate imm16) {
   1207   DCHECK(imm16.is_int16() || imm16.is_uint16());
   1208   if (op.is_reg_only()) {
   1209     test_w(op.reg(), imm16);
   1210     return;
   1211   }
   1212   EnsureSpace ensure_space(this);
   1213   EMIT(0x66);
   1214   EMIT(0xF7);
   1215   emit_operand(eax, op);
   1216   emit_w(imm16);
   1217 }
   1218 
   1219 void Assembler::xor_(Register dst, int32_t imm32) {
   1220   EnsureSpace ensure_space(this);
   1221   emit_arith(6, Operand(dst), Immediate(imm32));
   1222 }
   1223 
   1224 
   1225 void Assembler::xor_(Register dst, const Operand& src) {
   1226   EnsureSpace ensure_space(this);
   1227   EMIT(0x33);
   1228   emit_operand(dst, src);
   1229 }
   1230 
   1231 
   1232 void Assembler::xor_(const Operand& dst, Register src) {
   1233   EnsureSpace ensure_space(this);
   1234   EMIT(0x31);
   1235   emit_operand(src, dst);
   1236 }
   1237 
   1238 
   1239 void Assembler::xor_(const Operand& dst, const Immediate& x) {
   1240   EnsureSpace ensure_space(this);
   1241   emit_arith(6, dst, x);
   1242 }
   1243 
   1244 
   1245 void Assembler::bt(const Operand& dst, Register src) {
   1246   EnsureSpace ensure_space(this);
   1247   EMIT(0x0F);
   1248   EMIT(0xA3);
   1249   emit_operand(src, dst);
   1250 }
   1251 
   1252 
   1253 void Assembler::bts(const Operand& dst, Register src) {
   1254   EnsureSpace ensure_space(this);
   1255   EMIT(0x0F);
   1256   EMIT(0xAB);
   1257   emit_operand(src, dst);
   1258 }
   1259 
   1260 
   1261 void Assembler::bsr(Register dst, const Operand& src) {
   1262   EnsureSpace ensure_space(this);
   1263   EMIT(0x0F);
   1264   EMIT(0xBD);
   1265   emit_operand(dst, src);
   1266 }
   1267 
   1268 
   1269 void Assembler::bsf(Register dst, const Operand& src) {
   1270   EnsureSpace ensure_space(this);
   1271   EMIT(0x0F);
   1272   EMIT(0xBC);
   1273   emit_operand(dst, src);
   1274 }
   1275 
   1276 
   1277 void Assembler::hlt() {
   1278   EnsureSpace ensure_space(this);
   1279   EMIT(0xF4);
   1280 }
   1281 
   1282 
   1283 void Assembler::int3() {
   1284   EnsureSpace ensure_space(this);
   1285   EMIT(0xCC);
   1286 }
   1287 
   1288 
   1289 void Assembler::nop() {
   1290   EnsureSpace ensure_space(this);
   1291   EMIT(0x90);
   1292 }
   1293 
   1294 
   1295 void Assembler::ret(int imm16) {
   1296   EnsureSpace ensure_space(this);
   1297   DCHECK(is_uint16(imm16));
   1298   if (imm16 == 0) {
   1299     EMIT(0xC3);
   1300   } else {
   1301     EMIT(0xC2);
   1302     EMIT(imm16 & 0xFF);
   1303     EMIT((imm16 >> 8) & 0xFF);
   1304   }
   1305 }
   1306 
   1307 
   1308 void Assembler::ud2() {
   1309   EnsureSpace ensure_space(this);
   1310   EMIT(0x0F);
   1311   EMIT(0x0B);
   1312 }
   1313 
   1314 
   1315 // Labels refer to positions in the (to be) generated code.
   1316 // There are bound, linked, and unused labels.
   1317 //
   1318 // Bound labels refer to known positions in the already
   1319 // generated code. pos() is the position the label refers to.
   1320 //
   1321 // Linked labels refer to unknown positions in the code
   1322 // to be generated; pos() is the position of the 32bit
   1323 // Displacement of the last instruction using the label.
   1324 
   1325 
   1326 void Assembler::print(Label* L) {
   1327   if (L->is_unused()) {
   1328     PrintF("unused label\n");
   1329   } else if (L->is_bound()) {
   1330     PrintF("bound label to %d\n", L->pos());
   1331   } else if (L->is_linked()) {
   1332     Label l = *L;
   1333     PrintF("unbound label");
   1334     while (l.is_linked()) {
   1335       Displacement disp = disp_at(&l);
   1336       PrintF("@ %d ", l.pos());
   1337       disp.print();
   1338       PrintF("\n");
   1339       disp.next(&l);
   1340     }
   1341   } else {
   1342     PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
   1343   }
   1344 }
   1345 
   1346 
   1347 void Assembler::bind_to(Label* L, int pos) {
   1348   EnsureSpace ensure_space(this);
   1349   DCHECK(0 <= pos && pos <= pc_offset());  // must have a valid binding position
   1350   while (L->is_linked()) {
   1351     Displacement disp = disp_at(L);
   1352     int fixup_pos = L->pos();
   1353     if (disp.type() == Displacement::CODE_ABSOLUTE) {
   1354       long_at_put(fixup_pos, reinterpret_cast<int>(buffer_ + pos));
   1355       internal_reference_positions_.push_back(fixup_pos);
   1356     } else if (disp.type() == Displacement::CODE_RELATIVE) {
   1357       // Relative to Code* heap object pointer.
   1358       long_at_put(fixup_pos, pos + Code::kHeaderSize - kHeapObjectTag);
   1359     } else {
   1360       if (disp.type() == Displacement::UNCONDITIONAL_JUMP) {
   1361         DCHECK(byte_at(fixup_pos - 1) == 0xE9);  // jmp expected
   1362       }
   1363       // Relative address, relative to point after address.
   1364       int imm32 = pos - (fixup_pos + sizeof(int32_t));
   1365       long_at_put(fixup_pos, imm32);
   1366     }
   1367     disp.next(L);
   1368   }
   1369   while (L->is_near_linked()) {
   1370     int fixup_pos = L->near_link_pos();
   1371     int offset_to_next =
   1372         static_cast<int>(*reinterpret_cast<int8_t*>(addr_at(fixup_pos)));
   1373     DCHECK(offset_to_next <= 0);
   1374     // Relative address, relative to point after address.
   1375     int disp = pos - fixup_pos - sizeof(int8_t);
   1376     CHECK(0 <= disp && disp <= 127);
   1377     set_byte_at(fixup_pos, disp);
   1378     if (offset_to_next < 0) {
   1379       L->link_to(fixup_pos + offset_to_next, Label::kNear);
   1380     } else {
   1381       L->UnuseNear();
   1382     }
   1383   }
   1384   L->bind_to(pos);
   1385 }
   1386 
   1387 
   1388 void Assembler::bind(Label* L) {
   1389   EnsureSpace ensure_space(this);
   1390   DCHECK(!L->is_bound());  // label can only be bound once
   1391   bind_to(L, pc_offset());
   1392 }
   1393 
   1394 
   1395 void Assembler::call(Label* L) {
   1396   EnsureSpace ensure_space(this);
   1397   if (L->is_bound()) {
   1398     const int long_size = 5;
   1399     int offs = L->pos() - pc_offset();
   1400     DCHECK(offs <= 0);
   1401     // 1110 1000 #32-bit disp.
   1402     EMIT(0xE8);
   1403     emit(offs - long_size);
   1404   } else {
   1405     // 1110 1000 #32-bit disp.
   1406     EMIT(0xE8);
   1407     emit_disp(L, Displacement::OTHER);
   1408   }
   1409 }
   1410 
   1411 
   1412 void Assembler::call(byte* entry, RelocInfo::Mode rmode) {
   1413   EnsureSpace ensure_space(this);
   1414   DCHECK(!RelocInfo::IsCodeTarget(rmode));
   1415   EMIT(0xE8);
   1416   if (RelocInfo::IsRuntimeEntry(rmode)) {
   1417     emit(reinterpret_cast<uint32_t>(entry), rmode);
   1418   } else {
   1419     emit(entry - (pc_ + sizeof(int32_t)), rmode);
   1420   }
   1421 }
   1422 
   1423 
   1424 int Assembler::CallSize(const Operand& adr) {
   1425   // Call size is 1 (opcode) + adr.len_ (operand).
   1426   return 1 + adr.len_;
   1427 }
   1428 
   1429 
   1430 void Assembler::call(const Operand& adr) {
   1431   EnsureSpace ensure_space(this);
   1432   EMIT(0xFF);
   1433   emit_operand(edx, adr);
   1434 }
   1435 
   1436 
   1437 int Assembler::CallSize(Handle<Code> code, RelocInfo::Mode rmode) {
   1438   return 1 /* EMIT */ + sizeof(uint32_t) /* emit */;
   1439 }
   1440 
   1441 
   1442 void Assembler::call(Handle<Code> code,
   1443                      RelocInfo::Mode rmode,
   1444                      TypeFeedbackId ast_id) {
   1445   EnsureSpace ensure_space(this);
   1446   DCHECK(RelocInfo::IsCodeTarget(rmode)
   1447       || rmode == RelocInfo::CODE_AGE_SEQUENCE);
   1448   EMIT(0xE8);
   1449   emit(code, rmode, ast_id);
   1450 }
   1451 
   1452 
   1453 void Assembler::jmp(Label* L, Label::Distance distance) {
   1454   EnsureSpace ensure_space(this);
   1455   if (L->is_bound()) {
   1456     const int short_size = 2;
   1457     const int long_size  = 5;
   1458     int offs = L->pos() - pc_offset();
   1459     DCHECK(offs <= 0);
   1460     if (is_int8(offs - short_size)) {
   1461       // 1110 1011 #8-bit disp.
   1462       EMIT(0xEB);
   1463       EMIT((offs - short_size) & 0xFF);
   1464     } else {
   1465       // 1110 1001 #32-bit disp.
   1466       EMIT(0xE9);
   1467       emit(offs - long_size);
   1468     }
   1469   } else if (distance == Label::kNear) {
   1470     EMIT(0xEB);
   1471     emit_near_disp(L);
   1472   } else {
   1473     // 1110 1001 #32-bit disp.
   1474     EMIT(0xE9);
   1475     emit_disp(L, Displacement::UNCONDITIONAL_JUMP);
   1476   }
   1477 }
   1478 
   1479 
   1480 void Assembler::jmp(byte* entry, RelocInfo::Mode rmode) {
   1481   EnsureSpace ensure_space(this);
   1482   DCHECK(!RelocInfo::IsCodeTarget(rmode));
   1483   EMIT(0xE9);
   1484   if (RelocInfo::IsRuntimeEntry(rmode)) {
   1485     emit(reinterpret_cast<uint32_t>(entry), rmode);
   1486   } else {
   1487     emit(entry - (pc_ + sizeof(int32_t)), rmode);
   1488   }
   1489 }
   1490 
   1491 
   1492 void Assembler::jmp(const Operand& adr) {
   1493   EnsureSpace ensure_space(this);
   1494   EMIT(0xFF);
   1495   emit_operand(esp, adr);
   1496 }
   1497 
   1498 
   1499 void Assembler::jmp(Handle<Code> code, RelocInfo::Mode rmode) {
   1500   EnsureSpace ensure_space(this);
   1501   DCHECK(RelocInfo::IsCodeTarget(rmode));
   1502   EMIT(0xE9);
   1503   emit(code, rmode);
   1504 }
   1505 
   1506 
   1507 void Assembler::j(Condition cc, Label* L, Label::Distance distance) {
   1508   EnsureSpace ensure_space(this);
   1509   DCHECK(0 <= cc && static_cast<int>(cc) < 16);
   1510   if (L->is_bound()) {
   1511     const int short_size = 2;
   1512     const int long_size  = 6;
   1513     int offs = L->pos() - pc_offset();
   1514     DCHECK(offs <= 0);
   1515     if (is_int8(offs - short_size)) {
   1516       // 0111 tttn #8-bit disp
   1517       EMIT(0x70 | cc);
   1518       EMIT((offs - short_size) & 0xFF);
   1519     } else {
   1520       // 0000 1111 1000 tttn #32-bit disp
   1521       EMIT(0x0F);
   1522       EMIT(0x80 | cc);
   1523       emit(offs - long_size);
   1524     }
   1525   } else if (distance == Label::kNear) {
   1526     EMIT(0x70 | cc);
   1527     emit_near_disp(L);
   1528   } else {
   1529     // 0000 1111 1000 tttn #32-bit disp
   1530     // Note: could eliminate cond. jumps to this jump if condition
   1531     //       is the same however, seems to be rather unlikely case.
   1532     EMIT(0x0F);
   1533     EMIT(0x80 | cc);
   1534     emit_disp(L, Displacement::OTHER);
   1535   }
   1536 }
   1537 
   1538 
   1539 void Assembler::j(Condition cc, byte* entry, RelocInfo::Mode rmode) {
   1540   EnsureSpace ensure_space(this);
   1541   DCHECK((0 <= cc) && (static_cast<int>(cc) < 16));
   1542   // 0000 1111 1000 tttn #32-bit disp.
   1543   EMIT(0x0F);
   1544   EMIT(0x80 | cc);
   1545   if (RelocInfo::IsRuntimeEntry(rmode)) {
   1546     emit(reinterpret_cast<uint32_t>(entry), rmode);
   1547   } else {
   1548     emit(entry - (pc_ + sizeof(int32_t)), rmode);
   1549   }
   1550 }
   1551 
   1552 
   1553 void Assembler::j(Condition cc, Handle<Code> code, RelocInfo::Mode rmode) {
   1554   EnsureSpace ensure_space(this);
   1555   // 0000 1111 1000 tttn #32-bit disp
   1556   EMIT(0x0F);
   1557   EMIT(0x80 | cc);
   1558   emit(code, rmode);
   1559 }
   1560 
   1561 
   1562 // FPU instructions.
   1563 
   1564 void Assembler::fld(int i) {
   1565   EnsureSpace ensure_space(this);
   1566   emit_farith(0xD9, 0xC0, i);
   1567 }
   1568 
   1569 
   1570 void Assembler::fstp(int i) {
   1571   EnsureSpace ensure_space(this);
   1572   emit_farith(0xDD, 0xD8, i);
   1573 }
   1574 
   1575 
   1576 void Assembler::fld1() {
   1577   EnsureSpace ensure_space(this);
   1578   EMIT(0xD9);
   1579   EMIT(0xE8);
   1580 }
   1581 
   1582 
   1583 void Assembler::fldpi() {
   1584   EnsureSpace ensure_space(this);
   1585   EMIT(0xD9);
   1586   EMIT(0xEB);
   1587 }
   1588 
   1589 
   1590 void Assembler::fldz() {
   1591   EnsureSpace ensure_space(this);
   1592   EMIT(0xD9);
   1593   EMIT(0xEE);
   1594 }
   1595 
   1596 
   1597 void Assembler::fldln2() {
   1598   EnsureSpace ensure_space(this);
   1599   EMIT(0xD9);
   1600   EMIT(0xED);
   1601 }
   1602 
   1603 
   1604 void Assembler::fld_s(const Operand& adr) {
   1605   EnsureSpace ensure_space(this);
   1606   EMIT(0xD9);
   1607   emit_operand(eax, adr);
   1608 }
   1609 
   1610 
   1611 void Assembler::fld_d(const Operand& adr) {
   1612   EnsureSpace ensure_space(this);
   1613   EMIT(0xDD);
   1614   emit_operand(eax, adr);
   1615 }
   1616 
   1617 
   1618 void Assembler::fstp_s(const Operand& adr) {
   1619   EnsureSpace ensure_space(this);
   1620   EMIT(0xD9);
   1621   emit_operand(ebx, adr);
   1622 }
   1623 
   1624 
   1625 void Assembler::fst_s(const Operand& adr) {
   1626   EnsureSpace ensure_space(this);
   1627   EMIT(0xD9);
   1628   emit_operand(edx, adr);
   1629 }
   1630 
   1631 
   1632 void Assembler::fldcw(const Operand& adr) {
   1633   EnsureSpace ensure_space(this);
   1634   EMIT(0xD9);
   1635   emit_operand(ebp, adr);
   1636 }
   1637 
   1638 
   1639 void Assembler::fnstcw(const Operand& adr) {
   1640   EnsureSpace ensure_space(this);
   1641   EMIT(0xD9);
   1642   emit_operand(edi, adr);
   1643 }
   1644 
   1645 
   1646 void Assembler::fstp_d(const Operand& adr) {
   1647   EnsureSpace ensure_space(this);
   1648   EMIT(0xDD);
   1649   emit_operand(ebx, adr);
   1650 }
   1651 
   1652 
   1653 void Assembler::fst_d(const Operand& adr) {
   1654   EnsureSpace ensure_space(this);
   1655   EMIT(0xDD);
   1656   emit_operand(edx, adr);
   1657 }
   1658 
   1659 
   1660 void Assembler::fild_s(const Operand& adr) {
   1661   EnsureSpace ensure_space(this);
   1662   EMIT(0xDB);
   1663   emit_operand(eax, adr);
   1664 }
   1665 
   1666 
   1667 void Assembler::fild_d(const Operand& adr) {
   1668   EnsureSpace ensure_space(this);
   1669   EMIT(0xDF);
   1670   emit_operand(ebp, adr);
   1671 }
   1672 
   1673 
   1674 void Assembler::fistp_s(const Operand& adr) {
   1675   EnsureSpace ensure_space(this);
   1676   EMIT(0xDB);
   1677   emit_operand(ebx, adr);
   1678 }
   1679 
   1680 
   1681 void Assembler::fisttp_s(const Operand& adr) {
   1682   DCHECK(IsEnabled(SSE3));
   1683   EnsureSpace ensure_space(this);
   1684   EMIT(0xDB);
   1685   emit_operand(ecx, adr);
   1686 }
   1687 
   1688 
   1689 void Assembler::fisttp_d(const Operand& adr) {
   1690   DCHECK(IsEnabled(SSE3));
   1691   EnsureSpace ensure_space(this);
   1692   EMIT(0xDD);
   1693   emit_operand(ecx, adr);
   1694 }
   1695 
   1696 
   1697 void Assembler::fist_s(const Operand& adr) {
   1698   EnsureSpace ensure_space(this);
   1699   EMIT(0xDB);
   1700   emit_operand(edx, adr);
   1701 }
   1702 
   1703 
   1704 void Assembler::fistp_d(const Operand& adr) {
   1705   EnsureSpace ensure_space(this);
   1706   EMIT(0xDF);
   1707   emit_operand(edi, adr);
   1708 }
   1709 
   1710 
   1711 void Assembler::fabs() {
   1712   EnsureSpace ensure_space(this);
   1713   EMIT(0xD9);
   1714   EMIT(0xE1);
   1715 }
   1716 
   1717 
   1718 void Assembler::fchs() {
   1719   EnsureSpace ensure_space(this);
   1720   EMIT(0xD9);
   1721   EMIT(0xE0);
   1722 }
   1723 
   1724 
   1725 void Assembler::fsqrt() {
   1726   EnsureSpace ensure_space(this);
   1727   EMIT(0xD9);
   1728   EMIT(0xFA);
   1729 }
   1730 
   1731 
   1732 void Assembler::fcos() {
   1733   EnsureSpace ensure_space(this);
   1734   EMIT(0xD9);
   1735   EMIT(0xFF);
   1736 }
   1737 
   1738 
   1739 void Assembler::fsin() {
   1740   EnsureSpace ensure_space(this);
   1741   EMIT(0xD9);
   1742   EMIT(0xFE);
   1743 }
   1744 
   1745 
   1746 void Assembler::fptan() {
   1747   EnsureSpace ensure_space(this);
   1748   EMIT(0xD9);
   1749   EMIT(0xF2);
   1750 }
   1751 
   1752 
   1753 void Assembler::fyl2x() {
   1754   EnsureSpace ensure_space(this);
   1755   EMIT(0xD9);
   1756   EMIT(0xF1);
   1757 }
   1758 
   1759 
   1760 void Assembler::f2xm1() {
   1761   EnsureSpace ensure_space(this);
   1762   EMIT(0xD9);
   1763   EMIT(0xF0);
   1764 }
   1765 
   1766 
   1767 void Assembler::fscale() {
   1768   EnsureSpace ensure_space(this);
   1769   EMIT(0xD9);
   1770   EMIT(0xFD);
   1771 }
   1772 
   1773 
   1774 void Assembler::fninit() {
   1775   EnsureSpace ensure_space(this);
   1776   EMIT(0xDB);
   1777   EMIT(0xE3);
   1778 }
   1779 
   1780 
   1781 void Assembler::fadd(int i) {
   1782   EnsureSpace ensure_space(this);
   1783   emit_farith(0xDC, 0xC0, i);
   1784 }
   1785 
   1786 
   1787 void Assembler::fadd_i(int i) {
   1788   EnsureSpace ensure_space(this);
   1789   emit_farith(0xD8, 0xC0, i);
   1790 }
   1791 
   1792 
   1793 void Assembler::fadd_d(const Operand& adr) {
   1794   EnsureSpace ensure_space(this);
   1795   EMIT(0xDC);
   1796   emit_operand(eax, adr);
   1797 }
   1798 
   1799 
   1800 void Assembler::fsub(int i) {
   1801   EnsureSpace ensure_space(this);
   1802   emit_farith(0xDC, 0xE8, i);
   1803 }
   1804 
   1805 
   1806 void Assembler::fsub_i(int i) {
   1807   EnsureSpace ensure_space(this);
   1808   emit_farith(0xD8, 0xE0, i);
   1809 }
   1810 
   1811 
   1812 void Assembler::fsubr_d(const Operand& adr) {
   1813   EnsureSpace ensure_space(this);
   1814   EMIT(0xDC);
   1815   emit_operand(ebp, adr);
   1816 }
   1817 
   1818 
   1819 void Assembler::fsub_d(const Operand& adr) {
   1820   EnsureSpace ensure_space(this);
   1821   EMIT(0xDC);
   1822   emit_operand(esp, adr);
   1823 }
   1824 
   1825 
   1826 void Assembler::fisub_s(const Operand& adr) {
   1827   EnsureSpace ensure_space(this);
   1828   EMIT(0xDA);
   1829   emit_operand(esp, adr);
   1830 }
   1831 
   1832 
   1833 void Assembler::fmul_i(int i) {
   1834   EnsureSpace ensure_space(this);
   1835   emit_farith(0xD8, 0xC8, i);
   1836 }
   1837 
   1838 
   1839 void Assembler::fmul(int i) {
   1840   EnsureSpace ensure_space(this);
   1841   emit_farith(0xDC, 0xC8, i);
   1842 }
   1843 
   1844 
   1845 void Assembler::fmul_d(const Operand& adr) {
   1846   EnsureSpace ensure_space(this);
   1847   EMIT(0xDC);
   1848   emit_operand(ecx, adr);
   1849 }
   1850 
   1851 
   1852 void Assembler::fdiv(int i) {
   1853   EnsureSpace ensure_space(this);
   1854   emit_farith(0xDC, 0xF8, i);
   1855 }
   1856 
   1857 
   1858 void Assembler::fdiv_d(const Operand& adr) {
   1859   EnsureSpace ensure_space(this);
   1860   EMIT(0xDC);
   1861   emit_operand(esi, adr);
   1862 }
   1863 
   1864 
   1865 void Assembler::fdivr_d(const Operand& adr) {
   1866   EnsureSpace ensure_space(this);
   1867   EMIT(0xDC);
   1868   emit_operand(edi, adr);
   1869 }
   1870 
   1871 
   1872 void Assembler::fdiv_i(int i) {
   1873   EnsureSpace ensure_space(this);
   1874   emit_farith(0xD8, 0xF0, i);
   1875 }
   1876 
   1877 
   1878 void Assembler::faddp(int i) {
   1879   EnsureSpace ensure_space(this);
   1880   emit_farith(0xDE, 0xC0, i);
   1881 }
   1882 
   1883 
   1884 void Assembler::fsubp(int i) {
   1885   EnsureSpace ensure_space(this);
   1886   emit_farith(0xDE, 0xE8, i);
   1887 }
   1888 
   1889 
   1890 void Assembler::fsubrp(int i) {
   1891   EnsureSpace ensure_space(this);
   1892   emit_farith(0xDE, 0xE0, i);
   1893 }
   1894 
   1895 
   1896 void Assembler::fmulp(int i) {
   1897   EnsureSpace ensure_space(this);
   1898   emit_farith(0xDE, 0xC8, i);
   1899 }
   1900 
   1901 
   1902 void Assembler::fdivp(int i) {
   1903   EnsureSpace ensure_space(this);
   1904   emit_farith(0xDE, 0xF8, i);
   1905 }
   1906 
   1907 
   1908 void Assembler::fprem() {
   1909   EnsureSpace ensure_space(this);
   1910   EMIT(0xD9);
   1911   EMIT(0xF8);
   1912 }
   1913 
   1914 
   1915 void Assembler::fprem1() {
   1916   EnsureSpace ensure_space(this);
   1917   EMIT(0xD9);
   1918   EMIT(0xF5);
   1919 }
   1920 
   1921 
   1922 void Assembler::fxch(int i) {
   1923   EnsureSpace ensure_space(this);
   1924   emit_farith(0xD9, 0xC8, i);
   1925 }
   1926 
   1927 
   1928 void Assembler::fincstp() {
   1929   EnsureSpace ensure_space(this);
   1930   EMIT(0xD9);
   1931   EMIT(0xF7);
   1932 }
   1933 
   1934 
   1935 void Assembler::ffree(int i) {
   1936   EnsureSpace ensure_space(this);
   1937   emit_farith(0xDD, 0xC0, i);
   1938 }
   1939 
   1940 
   1941 void Assembler::ftst() {
   1942   EnsureSpace ensure_space(this);
   1943   EMIT(0xD9);
   1944   EMIT(0xE4);
   1945 }
   1946 
   1947 
   1948 void Assembler::fxam() {
   1949   EnsureSpace ensure_space(this);
   1950   EMIT(0xD9);
   1951   EMIT(0xE5);
   1952 }
   1953 
   1954 
   1955 void Assembler::fucomp(int i) {
   1956   EnsureSpace ensure_space(this);
   1957   emit_farith(0xDD, 0xE8, i);
   1958 }
   1959 
   1960 
   1961 void Assembler::fucompp() {
   1962   EnsureSpace ensure_space(this);
   1963   EMIT(0xDA);
   1964   EMIT(0xE9);
   1965 }
   1966 
   1967 
   1968 void Assembler::fucomi(int i) {
   1969   EnsureSpace ensure_space(this);
   1970   EMIT(0xDB);
   1971   EMIT(0xE8 + i);
   1972 }
   1973 
   1974 
   1975 void Assembler::fucomip() {
   1976   EnsureSpace ensure_space(this);
   1977   EMIT(0xDF);
   1978   EMIT(0xE9);
   1979 }
   1980 
   1981 
   1982 void Assembler::fcompp() {
   1983   EnsureSpace ensure_space(this);
   1984   EMIT(0xDE);
   1985   EMIT(0xD9);
   1986 }
   1987 
   1988 
   1989 void Assembler::fnstsw_ax() {
   1990   EnsureSpace ensure_space(this);
   1991   EMIT(0xDF);
   1992   EMIT(0xE0);
   1993 }
   1994 
   1995 
   1996 void Assembler::fwait() {
   1997   EnsureSpace ensure_space(this);
   1998   EMIT(0x9B);
   1999 }
   2000 
   2001 
   2002 void Assembler::frndint() {
   2003   EnsureSpace ensure_space(this);
   2004   EMIT(0xD9);
   2005   EMIT(0xFC);
   2006 }
   2007 
   2008 
   2009 void Assembler::fnclex() {
   2010   EnsureSpace ensure_space(this);
   2011   EMIT(0xDB);
   2012   EMIT(0xE2);
   2013 }
   2014 
   2015 
   2016 void Assembler::fnsave(const Operand& adr) {
   2017   EnsureSpace ensure_space(this);
   2018   EMIT(0xDD);
   2019   emit_operand(esi, adr);
   2020 }
   2021 
   2022 
   2023 void Assembler::frstor(const Operand& adr) {
   2024   EnsureSpace ensure_space(this);
   2025   EMIT(0xDD);
   2026   emit_operand(esp, adr);
   2027 }
   2028 
   2029 
   2030 void Assembler::sahf() {
   2031   EnsureSpace ensure_space(this);
   2032   EMIT(0x9E);
   2033 }
   2034 
   2035 
   2036 void Assembler::setcc(Condition cc, Register reg) {
   2037   DCHECK(reg.is_byte_register());
   2038   EnsureSpace ensure_space(this);
   2039   EMIT(0x0F);
   2040   EMIT(0x90 | cc);
   2041   EMIT(0xC0 | reg.code());
   2042 }
   2043 
   2044 
   2045 void Assembler::GrowBuffer() {
   2046   DCHECK(buffer_overflow());
   2047   if (!own_buffer_) FATAL("external code buffer is too small");
   2048 
   2049   // Compute new buffer size.
   2050   CodeDesc desc;  // the new buffer
   2051   desc.buffer_size = 2 * buffer_size_;
   2052 
   2053   // Some internal data structures overflow for very large buffers,
   2054   // they must ensure that kMaximalBufferSize is not too large.
   2055   if (desc.buffer_size > kMaximalBufferSize ||
   2056       static_cast<size_t>(desc.buffer_size) >
   2057           isolate()->heap()->MaxOldGenerationSize()) {
   2058     V8::FatalProcessOutOfMemory("Assembler::GrowBuffer");
   2059   }
   2060 
   2061   // Set up new buffer.
   2062   desc.buffer = NewArray<byte>(desc.buffer_size);
   2063   desc.origin = this;
   2064   desc.instr_size = pc_offset();
   2065   desc.reloc_size = (buffer_ + buffer_size_) - (reloc_info_writer.pos());
   2066 
   2067   // Clear the buffer in debug mode. Use 'int3' instructions to make
   2068   // sure to get into problems if we ever run uninitialized code.
   2069 #ifdef DEBUG
   2070   memset(desc.buffer, 0xCC, desc.buffer_size);
   2071 #endif
   2072 
   2073   // Copy the data.
   2074   int pc_delta = desc.buffer - buffer_;
   2075   int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_);
   2076   MemMove(desc.buffer, buffer_, desc.instr_size);
   2077   MemMove(rc_delta + reloc_info_writer.pos(), reloc_info_writer.pos(),
   2078           desc.reloc_size);
   2079 
   2080   DeleteArray(buffer_);
   2081   buffer_ = desc.buffer;
   2082   buffer_size_ = desc.buffer_size;
   2083   pc_ += pc_delta;
   2084   reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
   2085                                reloc_info_writer.last_pc() + pc_delta);
   2086 
   2087   // Relocate internal references.
   2088   for (auto pos : internal_reference_positions_) {
   2089     int32_t* p = reinterpret_cast<int32_t*>(buffer_ + pos);
   2090     *p += pc_delta;
   2091   }
   2092 
   2093   DCHECK(!buffer_overflow());
   2094 }
   2095 
   2096 
   2097 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
   2098   DCHECK(is_uint8(op1) && is_uint8(op2));  // wrong opcode
   2099   DCHECK(is_uint8(imm8));
   2100   DCHECK((op1 & 0x01) == 0);  // should be 8bit operation
   2101   EMIT(op1);
   2102   EMIT(op2 | dst.code());
   2103   EMIT(imm8);
   2104 }
   2105 
   2106 
   2107 void Assembler::emit_arith(int sel, Operand dst, const Immediate& x) {
   2108   DCHECK((0 <= sel) && (sel <= 7));
   2109   Register ireg = { sel };
   2110   if (x.is_int8()) {
   2111     EMIT(0x83);  // using a sign-extended 8-bit immediate.
   2112     emit_operand(ireg, dst);
   2113     EMIT(x.x_ & 0xFF);
   2114   } else if (dst.is_reg(eax)) {
   2115     EMIT((sel << 3) | 0x05);  // short form if the destination is eax.
   2116     emit(x);
   2117   } else {
   2118     EMIT(0x81);  // using a literal 32-bit immediate.
   2119     emit_operand(ireg, dst);
   2120     emit(x);
   2121   }
   2122 }
   2123 
   2124 
   2125 void Assembler::emit_operand(Register reg, const Operand& adr) {
   2126   const unsigned length = adr.len_;
   2127   DCHECK(length > 0);
   2128 
   2129   // Emit updated ModRM byte containing the given register.
   2130   pc_[0] = (adr.buf_[0] & ~0x38) | (reg.code() << 3);
   2131 
   2132   // Emit the rest of the encoded operand.
   2133   for (unsigned i = 1; i < length; i++) pc_[i] = adr.buf_[i];
   2134   pc_ += length;
   2135 
   2136   // Emit relocation information if necessary.
   2137   if (length >= sizeof(int32_t) && !RelocInfo::IsNone(adr.rmode_)) {
   2138     pc_ -= sizeof(int32_t);  // pc_ must be *at* disp32
   2139     RecordRelocInfo(adr.rmode_);
   2140     if (adr.rmode_ == RelocInfo::INTERNAL_REFERENCE) {  // Fixup for labels
   2141       emit_label(*reinterpret_cast<Label**>(pc_));
   2142     } else {
   2143       pc_ += sizeof(int32_t);
   2144     }
   2145   }
   2146 }
   2147 
   2148 
   2149 void Assembler::emit_label(Label* label) {
   2150   if (label->is_bound()) {
   2151     internal_reference_positions_.push_back(pc_offset());
   2152     emit(reinterpret_cast<uint32_t>(buffer_ + label->pos()));
   2153   } else {
   2154     emit_disp(label, Displacement::CODE_ABSOLUTE);
   2155   }
   2156 }
   2157 
   2158 
   2159 void Assembler::emit_farith(int b1, int b2, int i) {
   2160   DCHECK(is_uint8(b1) && is_uint8(b2));  // wrong opcode
   2161   DCHECK(0 <= i &&  i < 8);  // illegal stack offset
   2162   EMIT(b1);
   2163   EMIT(b2 + i);
   2164 }
   2165 
   2166 
   2167 void Assembler::db(uint8_t data) {
   2168   EnsureSpace ensure_space(this);
   2169   EMIT(data);
   2170 }
   2171 
   2172 
   2173 void Assembler::dd(uint32_t data) {
   2174   EnsureSpace ensure_space(this);
   2175   emit(data);
   2176 }
   2177 
   2178 
   2179 void Assembler::dq(uint64_t data) {
   2180   EnsureSpace ensure_space(this);
   2181   emit_q(data);
   2182 }
   2183 
   2184 
   2185 void Assembler::dd(Label* label) {
   2186   EnsureSpace ensure_space(this);
   2187   RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
   2188   emit_label(label);
   2189 }
   2190 
   2191 
   2192 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
   2193   DCHECK(!RelocInfo::IsNone(rmode));
   2194   // Don't record external references unless the heap will be serialized.
   2195   if (rmode == RelocInfo::EXTERNAL_REFERENCE &&
   2196       !serializer_enabled() && !emit_debug_code()) {
   2197       return;
   2198   }
   2199   RelocInfo rinfo(isolate(), pc_, rmode, data, NULL);
   2200   reloc_info_writer.Write(&rinfo);
   2201 }
   2202 
   2203 }  // namespace internal
   2204 }  // namespace v8
   2205 
   2206 #endif  // V8_TARGET_ARCH_X87
   2207