Home | History | Annotate | Download | only in lang
      1 /*
      2  * Copyright (C) 2014 The Android Open Source Project
      3  * Copyright (c) 1994, 2013, Oracle and/or its affiliates. All rights reserved.
      4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
      5  *
      6  * This code is free software; you can redistribute it and/or modify it
      7  * under the terms of the GNU General Public License version 2 only, as
      8  * published by the Free Software Foundation.  Oracle designates this
      9  * particular file as subject to the "Classpath" exception as provided
     10  * by Oracle in the LICENSE file that accompanied this code.
     11  *
     12  * This code is distributed in the hope that it will be useful, but WITHOUT
     13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
     14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
     15  * version 2 for more details (a copy is included in the LICENSE file that
     16  * accompanied this code).
     17  *
     18  * You should have received a copy of the GNU General Public License version
     19  * 2 along with this work; if not, write to the Free Software Foundation,
     20  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
     21  *
     22  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
     23  * or visit www.oracle.com if you need additional information or have any
     24  * questions.
     25  */
     26 
     27 package java.lang;
     28 
     29 import sun.misc.FloatingDecimal;
     30 import sun.misc.FpUtils;
     31 import sun.misc.DoubleConsts;
     32 
     33 /**
     34  * The {@code Double} class wraps a value of the primitive type
     35  * {@code double} in an object. An object of type
     36  * {@code Double} contains a single field whose type is
     37  * {@code double}.
     38  *
     39  * <p>In addition, this class provides several methods for converting a
     40  * {@code double} to a {@code String} and a
     41  * {@code String} to a {@code double}, as well as other
     42  * constants and methods useful when dealing with a
     43  * {@code double}.
     44  *
     45  * @author  Lee Boynton
     46  * @author  Arthur van Hoff
     47  * @author  Joseph D. Darcy
     48  * @since JDK1.0
     49  */
     50 public final class Double extends Number implements Comparable<Double> {
     51     /**
     52      * A constant holding the positive infinity of type
     53      * {@code double}. It is equal to the value returned by
     54      * {@code Double.longBitsToDouble(0x7ff0000000000000L)}.
     55      */
     56     public static final double POSITIVE_INFINITY = 1.0 / 0.0;
     57 
     58     /**
     59      * A constant holding the negative infinity of type
     60      * {@code double}. It is equal to the value returned by
     61      * {@code Double.longBitsToDouble(0xfff0000000000000L)}.
     62      */
     63     public static final double NEGATIVE_INFINITY = -1.0 / 0.0;
     64 
     65     /**
     66      * A constant holding a Not-a-Number (NaN) value of type
     67      * {@code double}. It is equivalent to the value returned by
     68      * {@code Double.longBitsToDouble(0x7ff8000000000000L)}.
     69      */
     70     public static final double NaN = 0.0d / 0.0;
     71 
     72     /**
     73      * A constant holding the largest positive finite value of type
     74      * {@code double},
     75      * (2-2<sup>-52</sup>)&middot;2<sup>1023</sup>.  It is equal to
     76      * the hexadecimal floating-point literal
     77      * {@code 0x1.fffffffffffffP+1023} and also equal to
     78      * {@code Double.longBitsToDouble(0x7fefffffffffffffL)}.
     79      */
     80     public static final double MAX_VALUE = 0x1.fffffffffffffP+1023; // 1.7976931348623157e+308
     81 
     82     /**
     83      * A constant holding the smallest positive normal value of type
     84      * {@code double}, 2<sup>-1022</sup>.  It is equal to the
     85      * hexadecimal floating-point literal {@code 0x1.0p-1022} and also
     86      * equal to {@code Double.longBitsToDouble(0x0010000000000000L)}.
     87      *
     88      * @since 1.6
     89      */
     90     public static final double MIN_NORMAL = 0x1.0p-1022; // 2.2250738585072014E-308
     91 
     92     /**
     93      * A constant holding the smallest positive nonzero value of type
     94      * {@code double}, 2<sup>-1074</sup>. It is equal to the
     95      * hexadecimal floating-point literal
     96      * {@code 0x0.0000000000001P-1022} and also equal to
     97      * {@code Double.longBitsToDouble(0x1L)}.
     98      */
     99     public static final double MIN_VALUE = 0x0.0000000000001P-1022; // 4.9e-324
    100 
    101     /**
    102      * Maximum exponent a finite {@code double} variable may have.
    103      * It is equal to the value returned by
    104      * {@code Math.getExponent(Double.MAX_VALUE)}.
    105      *
    106      * @since 1.6
    107      */
    108     public static final int MAX_EXPONENT = 1023;
    109 
    110     /**
    111      * Minimum exponent a normalized {@code double} variable may
    112      * have.  It is equal to the value returned by
    113      * {@code Math.getExponent(Double.MIN_NORMAL)}.
    114      *
    115      * @since 1.6
    116      */
    117     public static final int MIN_EXPONENT = -1022;
    118 
    119     /**
    120      * The number of bits used to represent a {@code double} value.
    121      *
    122      * @since 1.5
    123      */
    124     public static final int SIZE = 64;
    125 
    126     /**
    127      * The number of bytes used to represent a {@code double} value.
    128      *
    129      * @since 1.8
    130      */
    131     public static final int BYTES = SIZE / Byte.SIZE;
    132 
    133     /**
    134      * The {@code Class} instance representing the primitive type
    135      * {@code double}.
    136      *
    137      * @since JDK1.1
    138      */
    139     @SuppressWarnings("unchecked")
    140     public static final Class<Double>   TYPE = (Class<Double>) double[].class.getComponentType();
    141 
    142     /**
    143      * Returns a string representation of the {@code double}
    144      * argument. All characters mentioned below are ASCII characters.
    145      * <ul>
    146      * <li>If the argument is NaN, the result is the string
    147      *     "{@code NaN}".
    148      * <li>Otherwise, the result is a string that represents the sign and
    149      * magnitude (absolute value) of the argument. If the sign is negative,
    150      * the first character of the result is '{@code -}'
    151      * ({@code '\u005Cu002D'}); if the sign is positive, no sign character
    152      * appears in the result. As for the magnitude <i>m</i>:
    153      * <ul>
    154      * <li>If <i>m</i> is infinity, it is represented by the characters
    155      * {@code "Infinity"}; thus, positive infinity produces the result
    156      * {@code "Infinity"} and negative infinity produces the result
    157      * {@code "-Infinity"}.
    158      *
    159      * <li>If <i>m</i> is zero, it is represented by the characters
    160      * {@code "0.0"}; thus, negative zero produces the result
    161      * {@code "-0.0"} and positive zero produces the result
    162      * {@code "0.0"}.
    163      *
    164      * <li>If <i>m</i> is greater than or equal to 10<sup>-3</sup> but less
    165      * than 10<sup>7</sup>, then it is represented as the integer part of
    166      * <i>m</i>, in decimal form with no leading zeroes, followed by
    167      * '{@code .}' ({@code '\u005Cu002E'}), followed by one or
    168      * more decimal digits representing the fractional part of <i>m</i>.
    169      *
    170      * <li>If <i>m</i> is less than 10<sup>-3</sup> or greater than or
    171      * equal to 10<sup>7</sup>, then it is represented in so-called
    172      * "computerized scientific notation." Let <i>n</i> be the unique
    173      * integer such that 10<sup><i>n</i></sup> &le; <i>m</i> {@literal <}
    174      * 10<sup><i>n</i>+1</sup>; then let <i>a</i> be the
    175      * mathematically exact quotient of <i>m</i> and
    176      * 10<sup><i>n</i></sup> so that 1 &le; <i>a</i> {@literal <} 10. The
    177      * magnitude is then represented as the integer part of <i>a</i>,
    178      * as a single decimal digit, followed by '{@code .}'
    179      * ({@code '\u005Cu002E'}), followed by decimal digits
    180      * representing the fractional part of <i>a</i>, followed by the
    181      * letter '{@code E}' ({@code '\u005Cu0045'}), followed
    182      * by a representation of <i>n</i> as a decimal integer, as
    183      * produced by the method {@link Integer#toString(int)}.
    184      * </ul>
    185      * </ul>
    186      * How many digits must be printed for the fractional part of
    187      * <i>m</i> or <i>a</i>? There must be at least one digit to represent
    188      * the fractional part, and beyond that as many, but only as many, more
    189      * digits as are needed to uniquely distinguish the argument value from
    190      * adjacent values of type {@code double}. That is, suppose that
    191      * <i>x</i> is the exact mathematical value represented by the decimal
    192      * representation produced by this method for a finite nonzero argument
    193      * <i>d</i>. Then <i>d</i> must be the {@code double} value nearest
    194      * to <i>x</i>; or if two {@code double} values are equally close
    195      * to <i>x</i>, then <i>d</i> must be one of them and the least
    196      * significant bit of the significand of <i>d</i> must be {@code 0}.
    197      *
    198      * <p>To create localized string representations of a floating-point
    199      * value, use subclasses of {@link java.text.NumberFormat}.
    200      *
    201      * @param   d   the {@code double} to be converted.
    202      * @return a string representation of the argument.
    203      */
    204     public static String toString(double d) {
    205         return FloatingDecimal.toJavaFormatString(d);
    206     }
    207 
    208     /**
    209      * Returns a hexadecimal string representation of the
    210      * {@code double} argument. All characters mentioned below
    211      * are ASCII characters.
    212      *
    213      * <ul>
    214      * <li>If the argument is NaN, the result is the string
    215      *     "{@code NaN}".
    216      * <li>Otherwise, the result is a string that represents the sign
    217      * and magnitude of the argument. If the sign is negative, the
    218      * first character of the result is '{@code -}'
    219      * ({@code '\u005Cu002D'}); if the sign is positive, no sign
    220      * character appears in the result. As for the magnitude <i>m</i>:
    221      *
    222      * <ul>
    223      * <li>If <i>m</i> is infinity, it is represented by the string
    224      * {@code "Infinity"}; thus, positive infinity produces the
    225      * result {@code "Infinity"} and negative infinity produces
    226      * the result {@code "-Infinity"}.
    227      *
    228      * <li>If <i>m</i> is zero, it is represented by the string
    229      * {@code "0x0.0p0"}; thus, negative zero produces the result
    230      * {@code "-0x0.0p0"} and positive zero produces the result
    231      * {@code "0x0.0p0"}.
    232      *
    233      * <li>If <i>m</i> is a {@code double} value with a
    234      * normalized representation, substrings are used to represent the
    235      * significand and exponent fields.  The significand is
    236      * represented by the characters {@code "0x1."}
    237      * followed by a lowercase hexadecimal representation of the rest
    238      * of the significand as a fraction.  Trailing zeros in the
    239      * hexadecimal representation are removed unless all the digits
    240      * are zero, in which case a single zero is used. Next, the
    241      * exponent is represented by {@code "p"} followed
    242      * by a decimal string of the unbiased exponent as if produced by
    243      * a call to {@link Integer#toString(int) Integer.toString} on the
    244      * exponent value.
    245      *
    246      * <li>If <i>m</i> is a {@code double} value with a subnormal
    247      * representation, the significand is represented by the
    248      * characters {@code "0x0."} followed by a
    249      * hexadecimal representation of the rest of the significand as a
    250      * fraction.  Trailing zeros in the hexadecimal representation are
    251      * removed. Next, the exponent is represented by
    252      * {@code "p-1022"}.  Note that there must be at
    253      * least one nonzero digit in a subnormal significand.
    254      *
    255      * </ul>
    256      *
    257      * </ul>
    258      *
    259      * <table border>
    260      * <caption>Examples</caption>
    261      * <tr><th>Floating-point Value</th><th>Hexadecimal String</th>
    262      * <tr><td>{@code 1.0}</td> <td>{@code 0x1.0p0}</td>
    263      * <tr><td>{@code -1.0}</td>        <td>{@code -0x1.0p0}</td>
    264      * <tr><td>{@code 2.0}</td> <td>{@code 0x1.0p1}</td>
    265      * <tr><td>{@code 3.0}</td> <td>{@code 0x1.8p1}</td>
    266      * <tr><td>{@code 0.5}</td> <td>{@code 0x1.0p-1}</td>
    267      * <tr><td>{@code 0.25}</td>        <td>{@code 0x1.0p-2}</td>
    268      * <tr><td>{@code Double.MAX_VALUE}</td>
    269      *     <td>{@code 0x1.fffffffffffffp1023}</td>
    270      * <tr><td>{@code Minimum Normal Value}</td>
    271      *     <td>{@code 0x1.0p-1022}</td>
    272      * <tr><td>{@code Maximum Subnormal Value}</td>
    273      *     <td>{@code 0x0.fffffffffffffp-1022}</td>
    274      * <tr><td>{@code Double.MIN_VALUE}</td>
    275      *     <td>{@code 0x0.0000000000001p-1022}</td>
    276      * </table>
    277      * @param   d   the {@code double} to be converted.
    278      * @return a hex string representation of the argument.
    279      * @since 1.5
    280      * @author Joseph D. Darcy
    281      */
    282     public static String toHexString(double d) {
    283         /*
    284          * Modeled after the "a" conversion specifier in C99, section
    285          * 7.19.6.1; however, the output of this method is more
    286          * tightly specified.
    287          */
    288         if (!isFinite(d) )
    289             // For infinity and NaN, use the decimal output.
    290             return Double.toString(d);
    291         else {
    292             // Initialized to maximum size of output.
    293             StringBuilder answer = new StringBuilder(24);
    294 
    295             if (Math.copySign(1.0, d) == -1.0)    // value is negative,
    296                 answer.append("-");                  // so append sign info
    297 
    298             answer.append("0x");
    299 
    300             d = Math.abs(d);
    301 
    302             if(d == 0.0) {
    303                 answer.append("0.0p0");
    304             } else {
    305                 boolean subnormal = (d < DoubleConsts.MIN_NORMAL);
    306 
    307                 // Isolate significand bits and OR in a high-order bit
    308                 // so that the string representation has a known
    309                 // length.
    310                 long signifBits = (Double.doubleToLongBits(d)
    311                                    & DoubleConsts.SIGNIF_BIT_MASK) |
    312                     0x1000000000000000L;
    313 
    314                 // Subnormal values have a 0 implicit bit; normal
    315                 // values have a 1 implicit bit.
    316                 answer.append(subnormal ? "0." : "1.");
    317 
    318                 // Isolate the low-order 13 digits of the hex
    319                 // representation.  If all the digits are zero,
    320                 // replace with a single 0; otherwise, remove all
    321                 // trailing zeros.
    322                 String signif = Long.toHexString(signifBits).substring(3,16);
    323                 answer.append(signif.equals("0000000000000") ? // 13 zeros
    324                               "0":
    325                               signif.replaceFirst("0{1,12}$", ""));
    326 
    327                 answer.append('p');
    328                 // If the value is subnormal, use the E_min exponent
    329                 // value for double; otherwise, extract and report d's
    330                 // exponent (the representation of a subnormal uses
    331                 // E_min -1).
    332                 answer.append(subnormal ?
    333                               DoubleConsts.MIN_EXPONENT:
    334                               Math.getExponent(d));
    335             }
    336             return answer.toString();
    337         }
    338     }
    339 
    340     /**
    341      * Returns a {@code Double} object holding the
    342      * {@code double} value represented by the argument string
    343      * {@code s}.
    344      *
    345      * <p>If {@code s} is {@code null}, then a
    346      * {@code NullPointerException} is thrown.
    347      *
    348      * <p>Leading and trailing whitespace characters in {@code s}
    349      * are ignored.  Whitespace is removed as if by the {@link
    350      * String#trim} method; that is, both ASCII space and control
    351      * characters are removed. The rest of {@code s} should
    352      * constitute a <i>FloatValue</i> as described by the lexical
    353      * syntax rules:
    354      *
    355      * <blockquote>
    356      * <dl>
    357      * <dt><i>FloatValue:</i>
    358      * <dd><i>Sign<sub>opt</sub></i> {@code NaN}
    359      * <dd><i>Sign<sub>opt</sub></i> {@code Infinity}
    360      * <dd><i>Sign<sub>opt</sub> FloatingPointLiteral</i>
    361      * <dd><i>Sign<sub>opt</sub> HexFloatingPointLiteral</i>
    362      * <dd><i>SignedInteger</i>
    363      * </dl>
    364      *
    365      * <dl>
    366      * <dt><i>HexFloatingPointLiteral</i>:
    367      * <dd> <i>HexSignificand BinaryExponent FloatTypeSuffix<sub>opt</sub></i>
    368      * </dl>
    369      *
    370      * <dl>
    371      * <dt><i>HexSignificand:</i>
    372      * <dd><i>HexNumeral</i>
    373      * <dd><i>HexNumeral</i> {@code .}
    374      * <dd>{@code 0x} <i>HexDigits<sub>opt</sub>
    375      *     </i>{@code .}<i> HexDigits</i>
    376      * <dd>{@code 0X}<i> HexDigits<sub>opt</sub>
    377      *     </i>{@code .} <i>HexDigits</i>
    378      * </dl>
    379      *
    380      * <dl>
    381      * <dt><i>BinaryExponent:</i>
    382      * <dd><i>BinaryExponentIndicator SignedInteger</i>
    383      * </dl>
    384      *
    385      * <dl>
    386      * <dt><i>BinaryExponentIndicator:</i>
    387      * <dd>{@code p}
    388      * <dd>{@code P}
    389      * </dl>
    390      *
    391      * </blockquote>
    392      *
    393      * where <i>Sign</i>, <i>FloatingPointLiteral</i>,
    394      * <i>HexNumeral</i>, <i>HexDigits</i>, <i>SignedInteger</i> and
    395      * <i>FloatTypeSuffix</i> are as defined in the lexical structure
    396      * sections of
    397      * <cite>The Java&trade; Language Specification</cite>,
    398      * except that underscores are not accepted between digits.
    399      * If {@code s} does not have the form of
    400      * a <i>FloatValue</i>, then a {@code NumberFormatException}
    401      * is thrown. Otherwise, {@code s} is regarded as
    402      * representing an exact decimal value in the usual
    403      * "computerized scientific notation" or as an exact
    404      * hexadecimal value; this exact numerical value is then
    405      * conceptually converted to an "infinitely precise"
    406      * binary value that is then rounded to type {@code double}
    407      * by the usual round-to-nearest rule of IEEE 754 floating-point
    408      * arithmetic, which includes preserving the sign of a zero
    409      * value.
    410      *
    411      * Note that the round-to-nearest rule also implies overflow and
    412      * underflow behaviour; if the exact value of {@code s} is large
    413      * enough in magnitude (greater than or equal to ({@link
    414      * #MAX_VALUE} + {@link Math#ulp(double) ulp(MAX_VALUE)}/2),
    415      * rounding to {@code double} will result in an infinity and if the
    416      * exact value of {@code s} is small enough in magnitude (less
    417      * than or equal to {@link #MIN_VALUE}/2), rounding to float will
    418      * result in a zero.
    419      *
    420      * Finally, after rounding a {@code Double} object representing
    421      * this {@code double} value is returned.
    422      *
    423      * <p> To interpret localized string representations of a
    424      * floating-point value, use subclasses of {@link
    425      * java.text.NumberFormat}.
    426      *
    427      * <p>Note that trailing format specifiers, specifiers that
    428      * determine the type of a floating-point literal
    429      * ({@code 1.0f} is a {@code float} value;
    430      * {@code 1.0d} is a {@code double} value), do
    431      * <em>not</em> influence the results of this method.  In other
    432      * words, the numerical value of the input string is converted
    433      * directly to the target floating-point type.  The two-step
    434      * sequence of conversions, string to {@code float} followed
    435      * by {@code float} to {@code double}, is <em>not</em>
    436      * equivalent to converting a string directly to
    437      * {@code double}. For example, the {@code float}
    438      * literal {@code 0.1f} is equal to the {@code double}
    439      * value {@code 0.10000000149011612}; the {@code float}
    440      * literal {@code 0.1f} represents a different numerical
    441      * value than the {@code double} literal
    442      * {@code 0.1}. (The numerical value 0.1 cannot be exactly
    443      * represented in a binary floating-point number.)
    444      *
    445      * <p>To avoid calling this method on an invalid string and having
    446      * a {@code NumberFormatException} be thrown, the regular
    447      * expression below can be used to screen the input string:
    448      *
    449      * <pre>{@code
    450      *  final String Digits     = "(\\p{Digit}+)";
    451      *  final String HexDigits  = "(\\p{XDigit}+)";
    452      *  // an exponent is 'e' or 'E' followed by an optionally
    453      *  // signed decimal integer.
    454      *  final String Exp        = "[eE][+-]?"+Digits;
    455      *  final String fpRegex    =
    456      *      ("[\\x00-\\x20]*"+  // Optional leading "whitespace"
    457      *       "[+-]?(" + // Optional sign character
    458      *       "NaN|" +           // "NaN" string
    459      *       "Infinity|" +      // "Infinity" string
    460      *
    461      *       // A decimal floating-point string representing a finite positive
    462      *       // number without a leading sign has at most five basic pieces:
    463      *       // Digits . Digits ExponentPart FloatTypeSuffix
    464      *       //
    465      *       // Since this method allows integer-only strings as input
    466      *       // in addition to strings of floating-point literals, the
    467      *       // two sub-patterns below are simplifications of the grammar
    468      *       // productions from section 3.10.2 of
    469      *       // The Java Language Specification.
    470      *
    471      *       // Digits ._opt Digits_opt ExponentPart_opt FloatTypeSuffix_opt
    472      *       "((("+Digits+"(\\.)?("+Digits+"?)("+Exp+")?)|"+
    473      *
    474      *       // . Digits ExponentPart_opt FloatTypeSuffix_opt
    475      *       "(\\.("+Digits+")("+Exp+")?)|"+
    476      *
    477      *       // Hexadecimal strings
    478      *       "((" +
    479      *        // 0[xX] HexDigits ._opt BinaryExponent FloatTypeSuffix_opt
    480      *        "(0[xX]" + HexDigits + "(\\.)?)|" +
    481      *
    482      *        // 0[xX] HexDigits_opt . HexDigits BinaryExponent FloatTypeSuffix_opt
    483      *        "(0[xX]" + HexDigits + "?(\\.)" + HexDigits + ")" +
    484      *
    485      *        ")[pP][+-]?" + Digits + "))" +
    486      *       "[fFdD]?))" +
    487      *       "[\\x00-\\x20]*");// Optional trailing "whitespace"
    488      *
    489      *  if (Pattern.matches(fpRegex, myString))
    490      *      Double.valueOf(myString); // Will not throw NumberFormatException
    491      *  else {
    492      *      // Perform suitable alternative action
    493      *  }
    494      * }</pre>
    495      *
    496      * @param      s   the string to be parsed.
    497      * @return     a {@code Double} object holding the value
    498      *             represented by the {@code String} argument.
    499      * @throws     NumberFormatException  if the string does not contain a
    500      *             parsable number.
    501      */
    502     public static Double valueOf(String s) throws NumberFormatException {
    503         return new Double(parseDouble(s));
    504     }
    505 
    506     /**
    507      * Returns a {@code Double} instance representing the specified
    508      * {@code double} value.
    509      * If a new {@code Double} instance is not required, this method
    510      * should generally be used in preference to the constructor
    511      * {@link #Double(double)}, as this method is likely to yield
    512      * significantly better space and time performance by caching
    513      * frequently requested values.
    514      *
    515      * @param  d a double value.
    516      * @return a {@code Double} instance representing {@code d}.
    517      * @since  1.5
    518      */
    519     public static Double valueOf(double d) {
    520         return new Double(d);
    521     }
    522 
    523     /**
    524      * Returns a new {@code double} initialized to the value
    525      * represented by the specified {@code String}, as performed
    526      * by the {@code valueOf} method of class
    527      * {@code Double}.
    528      *
    529      * @param  s   the string to be parsed.
    530      * @return the {@code double} value represented by the string
    531      *         argument.
    532      * @throws NullPointerException  if the string is null
    533      * @throws NumberFormatException if the string does not contain
    534      *         a parsable {@code double}.
    535      * @see    java.lang.Double#valueOf(String)
    536      * @since 1.2
    537      */
    538     public static double parseDouble(String s) throws NumberFormatException {
    539         return FloatingDecimal.parseDouble(s);
    540     }
    541 
    542     /**
    543      * Returns {@code true} if the specified number is a
    544      * Not-a-Number (NaN) value, {@code false} otherwise.
    545      *
    546      * @param   v   the value to be tested.
    547      * @return  {@code true} if the value of the argument is NaN;
    548      *          {@code false} otherwise.
    549      */
    550     public static boolean isNaN(double v) {
    551         return (v != v);
    552     }
    553 
    554     /**
    555      * Returns {@code true} if the specified number is infinitely
    556      * large in magnitude, {@code false} otherwise.
    557      *
    558      * @param   v   the value to be tested.
    559      * @return  {@code true} if the value of the argument is positive
    560      *          infinity or negative infinity; {@code false} otherwise.
    561      */
    562     public static boolean isInfinite(double v) {
    563         return (v == POSITIVE_INFINITY) || (v == NEGATIVE_INFINITY);
    564     }
    565 
    566     /**
    567      * Returns {@code true} if the argument is a finite floating-point
    568      * value; returns {@code false} otherwise (for NaN and infinity
    569      * arguments).
    570      *
    571      * @param d the {@code double} value to be tested
    572      * @return {@code true} if the argument is a finite
    573      * floating-point value, {@code false} otherwise.
    574      * @since 1.8
    575      */
    576     public static boolean isFinite(double d) {
    577         return Math.abs(d) <= DoubleConsts.MAX_VALUE;
    578     }
    579 
    580     /**
    581      * The value of the Double.
    582      *
    583      * @serial
    584      */
    585     private final double value;
    586 
    587     /**
    588      * Constructs a newly allocated {@code Double} object that
    589      * represents the primitive {@code double} argument.
    590      *
    591      * @param   value   the value to be represented by the {@code Double}.
    592      */
    593     public Double(double value) {
    594         this.value = value;
    595     }
    596 
    597     /**
    598      * Constructs a newly allocated {@code Double} object that
    599      * represents the floating-point value of type {@code double}
    600      * represented by the string. The string is converted to a
    601      * {@code double} value as if by the {@code valueOf} method.
    602      *
    603      * @param  s  a string to be converted to a {@code Double}.
    604      * @throws    NumberFormatException  if the string does not contain a
    605      *            parsable number.
    606      * @see       java.lang.Double#valueOf(java.lang.String)
    607      */
    608     public Double(String s) throws NumberFormatException {
    609         value = parseDouble(s);
    610     }
    611 
    612     /**
    613      * Returns {@code true} if this {@code Double} value is
    614      * a Not-a-Number (NaN), {@code false} otherwise.
    615      *
    616      * @return  {@code true} if the value represented by this object is
    617      *          NaN; {@code false} otherwise.
    618      */
    619     public boolean isNaN() {
    620         return isNaN(value);
    621     }
    622 
    623     /**
    624      * Returns {@code true} if this {@code Double} value is
    625      * infinitely large in magnitude, {@code false} otherwise.
    626      *
    627      * @return  {@code true} if the value represented by this object is
    628      *          positive infinity or negative infinity;
    629      *          {@code false} otherwise.
    630      */
    631     public boolean isInfinite() {
    632         return isInfinite(value);
    633     }
    634 
    635     /**
    636      * Returns a string representation of this {@code Double} object.
    637      * The primitive {@code double} value represented by this
    638      * object is converted to a string exactly as if by the method
    639      * {@code toString} of one argument.
    640      *
    641      * @return  a {@code String} representation of this object.
    642      * @see java.lang.Double#toString(double)
    643      */
    644     public String toString() {
    645         return toString(value);
    646     }
    647 
    648     /**
    649      * Returns the value of this {@code Double} as a {@code byte}
    650      * after a narrowing primitive conversion.
    651      *
    652      * @return  the {@code double} value represented by this object
    653      *          converted to type {@code byte}
    654      * @jls 5.1.3 Narrowing Primitive Conversions
    655      * @since JDK1.1
    656      */
    657     public byte byteValue() {
    658         return (byte)value;
    659     }
    660 
    661     /**
    662      * Returns the value of this {@code Double} as a {@code short}
    663      * after a narrowing primitive conversion.
    664      *
    665      * @return  the {@code double} value represented by this object
    666      *          converted to type {@code short}
    667      * @jls 5.1.3 Narrowing Primitive Conversions
    668      * @since JDK1.1
    669      */
    670     public short shortValue() {
    671         return (short)value;
    672     }
    673 
    674     /**
    675      * Returns the value of this {@code Double} as an {@code int}
    676      * after a narrowing primitive conversion.
    677      * @jls 5.1.3 Narrowing Primitive Conversions
    678      *
    679      * @return  the {@code double} value represented by this object
    680      *          converted to type {@code int}
    681      */
    682     public int intValue() {
    683         return (int)value;
    684     }
    685 
    686     /**
    687      * Returns the value of this {@code Double} as a {@code long}
    688      * after a narrowing primitive conversion.
    689      *
    690      * @return  the {@code double} value represented by this object
    691      *          converted to type {@code long}
    692      * @jls 5.1.3 Narrowing Primitive Conversions
    693      */
    694     public long longValue() {
    695         return (long)value;
    696     }
    697 
    698     /**
    699      * Returns the value of this {@code Double} as a {@code float}
    700      * after a narrowing primitive conversion.
    701      *
    702      * @return  the {@code double} value represented by this object
    703      *          converted to type {@code float}
    704      * @jls 5.1.3 Narrowing Primitive Conversions
    705      * @since JDK1.0
    706      */
    707     public float floatValue() {
    708         return (float)value;
    709     }
    710 
    711     /**
    712      * Returns the {@code double} value of this {@code Double} object.
    713      *
    714      * @return the {@code double} value represented by this object
    715      */
    716     public double doubleValue() {
    717         return value;
    718     }
    719 
    720     /**
    721      * Returns a hash code for this {@code Double} object. The
    722      * result is the exclusive OR of the two halves of the
    723      * {@code long} integer bit representation, exactly as
    724      * produced by the method {@link #doubleToLongBits(double)}, of
    725      * the primitive {@code double} value represented by this
    726      * {@code Double} object. That is, the hash code is the value
    727      * of the expression:
    728      *
    729      * <blockquote>
    730      *  {@code (int)(v^(v>>>32))}
    731      * </blockquote>
    732      *
    733      * where {@code v} is defined by:
    734      *
    735      * <blockquote>
    736      *  {@code long v = Double.doubleToLongBits(this.doubleValue());}
    737      * </blockquote>
    738      *
    739      * @return  a {@code hash code} value for this object.
    740      */
    741     @Override
    742     public int hashCode() {
    743         return Double.hashCode(value);
    744     }
    745 
    746     /**
    747      * Returns a hash code for a {@code double} value; compatible with
    748      * {@code Double.hashCode()}.
    749      *
    750      * @param value the value to hash
    751      * @return a hash code value for a {@code double} value.
    752      * @since 1.8
    753      */
    754     public static int hashCode(double value) {
    755         long bits = doubleToLongBits(value);
    756         return (int)(bits ^ (bits >>> 32));
    757     }
    758 
    759     /**
    760      * Compares this object against the specified object.  The result
    761      * is {@code true} if and only if the argument is not
    762      * {@code null} and is a {@code Double} object that
    763      * represents a {@code double} that has the same value as the
    764      * {@code double} represented by this object. For this
    765      * purpose, two {@code double} values are considered to be
    766      * the same if and only if the method {@link
    767      * #doubleToLongBits(double)} returns the identical
    768      * {@code long} value when applied to each.
    769      *
    770      * <p>Note that in most cases, for two instances of class
    771      * {@code Double}, {@code d1} and {@code d2}, the
    772      * value of {@code d1.equals(d2)} is {@code true} if and
    773      * only if
    774      *
    775      * <blockquote>
    776      *  {@code d1.doubleValue() == d2.doubleValue()}
    777      * </blockquote>
    778      *
    779      * <p>also has the value {@code true}. However, there are two
    780      * exceptions:
    781      * <ul>
    782      * <li>If {@code d1} and {@code d2} both represent
    783      *     {@code Double.NaN}, then the {@code equals} method
    784      *     returns {@code true}, even though
    785      *     {@code Double.NaN==Double.NaN} has the value
    786      *     {@code false}.
    787      * <li>If {@code d1} represents {@code +0.0} while
    788      *     {@code d2} represents {@code -0.0}, or vice versa,
    789      *     the {@code equal} test has the value {@code false},
    790      *     even though {@code +0.0==-0.0} has the value {@code true}.
    791      * </ul>
    792      * This definition allows hash tables to operate properly.
    793      * @param   obj   the object to compare with.
    794      * @return  {@code true} if the objects are the same;
    795      *          {@code false} otherwise.
    796      * @see java.lang.Double#doubleToLongBits(double)
    797      */
    798     public boolean equals(Object obj) {
    799         return (obj instanceof Double)
    800                && (doubleToLongBits(((Double)obj).value) ==
    801                       doubleToLongBits(value));
    802     }
    803 
    804     /**
    805      * Returns a representation of the specified floating-point value
    806      * according to the IEEE 754 floating-point "double
    807      * format" bit layout.
    808      *
    809      * <p>Bit 63 (the bit that is selected by the mask
    810      * {@code 0x8000000000000000L}) represents the sign of the
    811      * floating-point number. Bits
    812      * 62-52 (the bits that are selected by the mask
    813      * {@code 0x7ff0000000000000L}) represent the exponent. Bits 51-0
    814      * (the bits that are selected by the mask
    815      * {@code 0x000fffffffffffffL}) represent the significand
    816      * (sometimes called the mantissa) of the floating-point number.
    817      *
    818      * <p>If the argument is positive infinity, the result is
    819      * {@code 0x7ff0000000000000L}.
    820      *
    821      * <p>If the argument is negative infinity, the result is
    822      * {@code 0xfff0000000000000L}.
    823      *
    824      * <p>If the argument is NaN, the result is
    825      * {@code 0x7ff8000000000000L}.
    826      *
    827      * <p>In all cases, the result is a {@code long} integer that, when
    828      * given to the {@link #longBitsToDouble(long)} method, will produce a
    829      * floating-point value the same as the argument to
    830      * {@code doubleToLongBits} (except all NaN values are
    831      * collapsed to a single "canonical" NaN value).
    832      *
    833      * @param   value   a {@code double} precision floating-point number.
    834      * @return the bits that represent the floating-point number.
    835      */
    836     public static long doubleToLongBits(double value) {
    837         long result = doubleToRawLongBits(value);
    838         // Check for NaN based on values of bit fields, maximum
    839         // exponent and nonzero significand.
    840         if ( ((result & DoubleConsts.EXP_BIT_MASK) ==
    841               DoubleConsts.EXP_BIT_MASK) &&
    842              (result & DoubleConsts.SIGNIF_BIT_MASK) != 0L)
    843             result = 0x7ff8000000000000L;
    844         return result;
    845     }
    846 
    847     /**
    848      * Returns a representation of the specified floating-point value
    849      * according to the IEEE 754 floating-point "double
    850      * format" bit layout, preserving Not-a-Number (NaN) values.
    851      *
    852      * <p>Bit 63 (the bit that is selected by the mask
    853      * {@code 0x8000000000000000L}) represents the sign of the
    854      * floating-point number. Bits
    855      * 62-52 (the bits that are selected by the mask
    856      * {@code 0x7ff0000000000000L}) represent the exponent. Bits 51-0
    857      * (the bits that are selected by the mask
    858      * {@code 0x000fffffffffffffL}) represent the significand
    859      * (sometimes called the mantissa) of the floating-point number.
    860      *
    861      * <p>If the argument is positive infinity, the result is
    862      * {@code 0x7ff0000000000000L}.
    863      *
    864      * <p>If the argument is negative infinity, the result is
    865      * {@code 0xfff0000000000000L}.
    866      *
    867      * <p>If the argument is NaN, the result is the {@code long}
    868      * integer representing the actual NaN value.  Unlike the
    869      * {@code doubleToLongBits} method,
    870      * {@code doubleToRawLongBits} does not collapse all the bit
    871      * patterns encoding a NaN to a single "canonical" NaN
    872      * value.
    873      *
    874      * <p>In all cases, the result is a {@code long} integer that,
    875      * when given to the {@link #longBitsToDouble(long)} method, will
    876      * produce a floating-point value the same as the argument to
    877      * {@code doubleToRawLongBits}.
    878      *
    879      * @param   value   a {@code double} precision floating-point number.
    880      * @return the bits that represent the floating-point number.
    881      * @since 1.3
    882      */
    883     public static native long doubleToRawLongBits(double value);
    884 
    885     /**
    886      * Returns the {@code double} value corresponding to a given
    887      * bit representation.
    888      * The argument is considered to be a representation of a
    889      * floating-point value according to the IEEE 754 floating-point
    890      * "double format" bit layout.
    891      *
    892      * <p>If the argument is {@code 0x7ff0000000000000L}, the result
    893      * is positive infinity.
    894      *
    895      * <p>If the argument is {@code 0xfff0000000000000L}, the result
    896      * is negative infinity.
    897      *
    898      * <p>If the argument is any value in the range
    899      * {@code 0x7ff0000000000001L} through
    900      * {@code 0x7fffffffffffffffL} or in the range
    901      * {@code 0xfff0000000000001L} through
    902      * {@code 0xffffffffffffffffL}, the result is a NaN.  No IEEE
    903      * 754 floating-point operation provided by Java can distinguish
    904      * between two NaN values of the same type with different bit
    905      * patterns.  Distinct values of NaN are only distinguishable by
    906      * use of the {@code Double.doubleToRawLongBits} method.
    907      *
    908      * <p>In all other cases, let <i>s</i>, <i>e</i>, and <i>m</i> be three
    909      * values that can be computed from the argument:
    910      *
    911      * <blockquote><pre>{@code
    912      * int s = ((bits >> 63) == 0) ? 1 : -1;
    913      * int e = (int)((bits >> 52) & 0x7ffL);
    914      * long m = (e == 0) ?
    915      *                 (bits & 0xfffffffffffffL) << 1 :
    916      *                 (bits & 0xfffffffffffffL) | 0x10000000000000L;
    917      * }</pre></blockquote>
    918      *
    919      * Then the floating-point result equals the value of the mathematical
    920      * expression <i>s</i>&middot;<i>m</i>&middot;2<sup><i>e</i>-1075</sup>.
    921      *
    922      * <p>Note that this method may not be able to return a
    923      * {@code double} NaN with exactly same bit pattern as the
    924      * {@code long} argument.  IEEE 754 distinguishes between two
    925      * kinds of NaNs, quiet NaNs and <i>signaling NaNs</i>.  The
    926      * differences between the two kinds of NaN are generally not
    927      * visible in Java.  Arithmetic operations on signaling NaNs turn
    928      * them into quiet NaNs with a different, but often similar, bit
    929      * pattern.  However, on some processors merely copying a
    930      * signaling NaN also performs that conversion.  In particular,
    931      * copying a signaling NaN to return it to the calling method
    932      * may perform this conversion.  So {@code longBitsToDouble}
    933      * may not be able to return a {@code double} with a
    934      * signaling NaN bit pattern.  Consequently, for some
    935      * {@code long} values,
    936      * {@code doubleToRawLongBits(longBitsToDouble(start))} may
    937      * <i>not</i> equal {@code start}.  Moreover, which
    938      * particular bit patterns represent signaling NaNs is platform
    939      * dependent; although all NaN bit patterns, quiet or signaling,
    940      * must be in the NaN range identified above.
    941      *
    942      * @param   bits   any {@code long} integer.
    943      * @return  the {@code double} floating-point value with the same
    944      *          bit pattern.
    945      */
    946     public static native double longBitsToDouble(long bits);
    947 
    948     /**
    949      * Compares two {@code Double} objects numerically.  There
    950      * are two ways in which comparisons performed by this method
    951      * differ from those performed by the Java language numerical
    952      * comparison operators ({@code <, <=, ==, >=, >})
    953      * when applied to primitive {@code double} values:
    954      * <ul><li>
    955      *          {@code Double.NaN} is considered by this method
    956      *          to be equal to itself and greater than all other
    957      *          {@code double} values (including
    958      *          {@code Double.POSITIVE_INFINITY}).
    959      * <li>
    960      *          {@code 0.0d} is considered by this method to be greater
    961      *          than {@code -0.0d}.
    962      * </ul>
    963      * This ensures that the <i>natural ordering</i> of
    964      * {@code Double} objects imposed by this method is <i>consistent
    965      * with equals</i>.
    966      *
    967      * @param   anotherDouble   the {@code Double} to be compared.
    968      * @return  the value {@code 0} if {@code anotherDouble} is
    969      *          numerically equal to this {@code Double}; a value
    970      *          less than {@code 0} if this {@code Double}
    971      *          is numerically less than {@code anotherDouble};
    972      *          and a value greater than {@code 0} if this
    973      *          {@code Double} is numerically greater than
    974      *          {@code anotherDouble}.
    975      *
    976      * @since   1.2
    977      */
    978     public int compareTo(Double anotherDouble) {
    979         return Double.compare(value, anotherDouble.value);
    980     }
    981 
    982     /**
    983      * Compares the two specified {@code double} values. The sign
    984      * of the integer value returned is the same as that of the
    985      * integer that would be returned by the call:
    986      * <pre>
    987      *    new Double(d1).compareTo(new Double(d2))
    988      * </pre>
    989      *
    990      * @param   d1        the first {@code double} to compare
    991      * @param   d2        the second {@code double} to compare
    992      * @return  the value {@code 0} if {@code d1} is
    993      *          numerically equal to {@code d2}; a value less than
    994      *          {@code 0} if {@code d1} is numerically less than
    995      *          {@code d2}; and a value greater than {@code 0}
    996      *          if {@code d1} is numerically greater than
    997      *          {@code d2}.
    998      * @since 1.4
    999      */
   1000     public static int compare(double d1, double d2) {
   1001         if (d1 < d2)
   1002             return -1;           // Neither val is NaN, thisVal is smaller
   1003         if (d1 > d2)
   1004             return 1;            // Neither val is NaN, thisVal is larger
   1005 
   1006         // Cannot use doubleToRawLongBits because of possibility of NaNs.
   1007         long thisBits    = Double.doubleToLongBits(d1);
   1008         long anotherBits = Double.doubleToLongBits(d2);
   1009 
   1010         return (thisBits == anotherBits ?  0 : // Values are equal
   1011                 (thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN)
   1012                  1));                          // (0.0, -0.0) or (NaN, !NaN)
   1013     }
   1014 
   1015     /**
   1016      * Adds two {@code double} values together as per the + operator.
   1017      *
   1018      * @param a the first operand
   1019      * @param b the second operand
   1020      * @return the sum of {@code a} and {@code b}
   1021      * @jls 4.2.4 Floating-Point Operations
   1022      * @see java.util.function.BinaryOperator
   1023      * @since 1.8
   1024      */
   1025     public static double sum(double a, double b) {
   1026         return a + b;
   1027     }
   1028 
   1029     /**
   1030      * Returns the greater of two {@code double} values
   1031      * as if by calling {@link Math#max(double, double) Math.max}.
   1032      *
   1033      * @param a the first operand
   1034      * @param b the second operand
   1035      * @return the greater of {@code a} and {@code b}
   1036      * @see java.util.function.BinaryOperator
   1037      * @since 1.8
   1038      */
   1039     public static double max(double a, double b) {
   1040         return Math.max(a, b);
   1041     }
   1042 
   1043     /**
   1044      * Returns the smaller of two {@code double} values
   1045      * as if by calling {@link Math#min(double, double) Math.min}.
   1046      *
   1047      * @param a the first operand
   1048      * @param b the second operand
   1049      * @return the smaller of {@code a} and {@code b}.
   1050      * @see java.util.function.BinaryOperator
   1051      * @since 1.8
   1052      */
   1053     public static double min(double a, double b) {
   1054         return Math.min(a, b);
   1055     }
   1056 
   1057     /** use serialVersionUID from JDK 1.0.2 for interoperability */
   1058     private static final long serialVersionUID = -9172774392245257468L;
   1059 }
   1060