Home | History | Annotate | Download | only in lang
      1 /*
      2  * Copyright (C) 2014 The Android Open Source Project
      3  * Copyright (c) 1994, 2013, Oracle and/or its affiliates. All rights reserved.
      4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
      5  *
      6  * This code is free software; you can redistribute it and/or modify it
      7  * under the terms of the GNU General Public License version 2 only, as
      8  * published by the Free Software Foundation.  Oracle designates this
      9  * particular file as subject to the "Classpath" exception as provided
     10  * by Oracle in the LICENSE file that accompanied this code.
     11  *
     12  * This code is distributed in the hope that it will be useful, but WITHOUT
     13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
     14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
     15  * version 2 for more details (a copy is included in the LICENSE file that
     16  * accompanied this code).
     17  *
     18  * You should have received a copy of the GNU General Public License version
     19  * 2 along with this work; if not, write to the Free Software Foundation,
     20  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
     21  *
     22  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
     23  * or visit www.oracle.com if you need additional information or have any
     24  * questions.
     25  */
     26 
     27 package java.lang;
     28 
     29 import sun.misc.FloatingDecimal;
     30 import sun.misc.FloatConsts;
     31 import sun.misc.DoubleConsts;
     32 
     33 /**
     34  * The {@code Float} class wraps a value of primitive type
     35  * {@code float} in an object. An object of type
     36  * {@code Float} contains a single field whose type is
     37  * {@code float}.
     38  *
     39  * <p>In addition, this class provides several methods for converting a
     40  * {@code float} to a {@code String} and a
     41  * {@code String} to a {@code float}, as well as other
     42  * constants and methods useful when dealing with a
     43  * {@code float}.
     44  *
     45  * @author  Lee Boynton
     46  * @author  Arthur van Hoff
     47  * @author  Joseph D. Darcy
     48  * @since JDK1.0
     49  */
     50 public final class Float extends Number implements Comparable<Float> {
     51     /**
     52      * A constant holding the positive infinity of type
     53      * {@code float}. It is equal to the value returned by
     54      * {@code Float.intBitsToFloat(0x7f800000)}.
     55      */
     56     public static final float POSITIVE_INFINITY = 1.0f / 0.0f;
     57 
     58     /**
     59      * A constant holding the negative infinity of type
     60      * {@code float}. It is equal to the value returned by
     61      * {@code Float.intBitsToFloat(0xff800000)}.
     62      */
     63     public static final float NEGATIVE_INFINITY = -1.0f / 0.0f;
     64 
     65     /**
     66      * A constant holding a Not-a-Number (NaN) value of type
     67      * {@code float}.  It is equivalent to the value returned by
     68      * {@code Float.intBitsToFloat(0x7fc00000)}.
     69      */
     70     public static final float NaN = 0.0f / 0.0f;
     71 
     72     /**
     73      * A constant holding the largest positive finite value of type
     74      * {@code float}, (2-2<sup>-23</sup>)&middot;2<sup>127</sup>.
     75      * It is equal to the hexadecimal floating-point literal
     76      * {@code 0x1.fffffeP+127f} and also equal to
     77      * {@code Float.intBitsToFloat(0x7f7fffff)}.
     78      */
     79     public static final float MAX_VALUE = 0x1.fffffeP+127f; // 3.4028235e+38f
     80 
     81     /**
     82      * A constant holding the smallest positive normal value of type
     83      * {@code float}, 2<sup>-126</sup>.  It is equal to the
     84      * hexadecimal floating-point literal {@code 0x1.0p-126f} and also
     85      * equal to {@code Float.intBitsToFloat(0x00800000)}.
     86      *
     87      * @since 1.6
     88      */
     89     public static final float MIN_NORMAL = 0x1.0p-126f; // 1.17549435E-38f
     90 
     91     /**
     92      * A constant holding the smallest positive nonzero value of type
     93      * {@code float}, 2<sup>-149</sup>. It is equal to the
     94      * hexadecimal floating-point literal {@code 0x0.000002P-126f}
     95      * and also equal to {@code Float.intBitsToFloat(0x1)}.
     96      */
     97     public static final float MIN_VALUE = 0x0.000002P-126f; // 1.4e-45f
     98 
     99     /**
    100      * Maximum exponent a finite {@code float} variable may have.  It
    101      * is equal to the value returned by {@code
    102      * Math.getExponent(Float.MAX_VALUE)}.
    103      *
    104      * @since 1.6
    105      */
    106     public static final int MAX_EXPONENT = 127;
    107 
    108     /**
    109      * Minimum exponent a normalized {@code float} variable may have.
    110      * It is equal to the value returned by {@code
    111      * Math.getExponent(Float.MIN_NORMAL)}.
    112      *
    113      * @since 1.6
    114      */
    115     public static final int MIN_EXPONENT = -126;
    116 
    117     /**
    118      * The number of bits used to represent a {@code float} value.
    119      *
    120      * @since 1.5
    121      */
    122     public static final int SIZE = 32;
    123 
    124     /**
    125      * The number of bytes used to represent a {@code float} value.
    126      *
    127      * @since 1.8
    128      */
    129     public static final int BYTES = SIZE / Byte.SIZE;
    130 
    131     /**
    132      * The {@code Class} instance representing the primitive type
    133      * {@code float}.
    134      *
    135      * @since JDK1.1
    136      */
    137     @SuppressWarnings("unchecked")
    138     public static final Class<Float> TYPE = (Class<Float>) float[].class.getComponentType();
    139 
    140     /**
    141      * Returns a string representation of the {@code float}
    142      * argument. All characters mentioned below are ASCII characters.
    143      * <ul>
    144      * <li>If the argument is NaN, the result is the string
    145      * "{@code NaN}".
    146      * <li>Otherwise, the result is a string that represents the sign and
    147      *     magnitude (absolute value) of the argument. If the sign is
    148      *     negative, the first character of the result is
    149      *     '{@code -}' ({@code '\u005Cu002D'}); if the sign is
    150      *     positive, no sign character appears in the result. As for
    151      *     the magnitude <i>m</i>:
    152      * <ul>
    153      * <li>If <i>m</i> is infinity, it is represented by the characters
    154      *     {@code "Infinity"}; thus, positive infinity produces
    155      *     the result {@code "Infinity"} and negative infinity
    156      *     produces the result {@code "-Infinity"}.
    157      * <li>If <i>m</i> is zero, it is represented by the characters
    158      *     {@code "0.0"}; thus, negative zero produces the result
    159      *     {@code "-0.0"} and positive zero produces the result
    160      *     {@code "0.0"}.
    161      * <li> If <i>m</i> is greater than or equal to 10<sup>-3</sup> but
    162      *      less than 10<sup>7</sup>, then it is represented as the
    163      *      integer part of <i>m</i>, in decimal form with no leading
    164      *      zeroes, followed by '{@code .}'
    165      *      ({@code '\u005Cu002E'}), followed by one or more
    166      *      decimal digits representing the fractional part of
    167      *      <i>m</i>.
    168      * <li> If <i>m</i> is less than 10<sup>-3</sup> or greater than or
    169      *      equal to 10<sup>7</sup>, then it is represented in
    170      *      so-called "computerized scientific notation." Let <i>n</i>
    171      *      be the unique integer such that 10<sup><i>n</i> </sup>&le;
    172      *      <i>m</i> {@literal <} 10<sup><i>n</i>+1</sup>; then let <i>a</i>
    173      *      be the mathematically exact quotient of <i>m</i> and
    174      *      10<sup><i>n</i></sup> so that 1 &le; <i>a</i> {@literal <} 10.
    175      *      The magnitude is then represented as the integer part of
    176      *      <i>a</i>, as a single decimal digit, followed by
    177      *      '{@code .}' ({@code '\u005Cu002E'}), followed by
    178      *      decimal digits representing the fractional part of
    179      *      <i>a</i>, followed by the letter '{@code E}'
    180      *      ({@code '\u005Cu0045'}), followed by a representation
    181      *      of <i>n</i> as a decimal integer, as produced by the
    182      *      method {@link java.lang.Integer#toString(int)}.
    183      *
    184      * </ul>
    185      * </ul>
    186      * How many digits must be printed for the fractional part of
    187      * <i>m</i> or <i>a</i>? There must be at least one digit
    188      * to represent the fractional part, and beyond that as many, but
    189      * only as many, more digits as are needed to uniquely distinguish
    190      * the argument value from adjacent values of type
    191      * {@code float}. That is, suppose that <i>x</i> is the
    192      * exact mathematical value represented by the decimal
    193      * representation produced by this method for a finite nonzero
    194      * argument <i>f</i>. Then <i>f</i> must be the {@code float}
    195      * value nearest to <i>x</i>; or, if two {@code float} values are
    196      * equally close to <i>x</i>, then <i>f</i> must be one of
    197      * them and the least significant bit of the significand of
    198      * <i>f</i> must be {@code 0}.
    199      *
    200      * <p>To create localized string representations of a floating-point
    201      * value, use subclasses of {@link java.text.NumberFormat}.
    202      *
    203      * @param   f   the float to be converted.
    204      * @return a string representation of the argument.
    205      */
    206     public static String toString(float f) {
    207         return FloatingDecimal.toJavaFormatString(f);
    208     }
    209 
    210     /**
    211      * Returns a hexadecimal string representation of the
    212      * {@code float} argument. All characters mentioned below are
    213      * ASCII characters.
    214      *
    215      * <ul>
    216      * <li>If the argument is NaN, the result is the string
    217      *     "{@code NaN}".
    218      * <li>Otherwise, the result is a string that represents the sign and
    219      * magnitude (absolute value) of the argument. If the sign is negative,
    220      * the first character of the result is '{@code -}'
    221      * ({@code '\u005Cu002D'}); if the sign is positive, no sign character
    222      * appears in the result. As for the magnitude <i>m</i>:
    223      *
    224      * <ul>
    225      * <li>If <i>m</i> is infinity, it is represented by the string
    226      * {@code "Infinity"}; thus, positive infinity produces the
    227      * result {@code "Infinity"} and negative infinity produces
    228      * the result {@code "-Infinity"}.
    229      *
    230      * <li>If <i>m</i> is zero, it is represented by the string
    231      * {@code "0x0.0p0"}; thus, negative zero produces the result
    232      * {@code "-0x0.0p0"} and positive zero produces the result
    233      * {@code "0x0.0p0"}.
    234      *
    235      * <li>If <i>m</i> is a {@code float} value with a
    236      * normalized representation, substrings are used to represent the
    237      * significand and exponent fields.  The significand is
    238      * represented by the characters {@code "0x1."}
    239      * followed by a lowercase hexadecimal representation of the rest
    240      * of the significand as a fraction.  Trailing zeros in the
    241      * hexadecimal representation are removed unless all the digits
    242      * are zero, in which case a single zero is used. Next, the
    243      * exponent is represented by {@code "p"} followed
    244      * by a decimal string of the unbiased exponent as if produced by
    245      * a call to {@link Integer#toString(int) Integer.toString} on the
    246      * exponent value.
    247      *
    248      * <li>If <i>m</i> is a {@code float} value with a subnormal
    249      * representation, the significand is represented by the
    250      * characters {@code "0x0."} followed by a
    251      * hexadecimal representation of the rest of the significand as a
    252      * fraction.  Trailing zeros in the hexadecimal representation are
    253      * removed. Next, the exponent is represented by
    254      * {@code "p-126"}.  Note that there must be at
    255      * least one nonzero digit in a subnormal significand.
    256      *
    257      * </ul>
    258      *
    259      * </ul>
    260      *
    261      * <table border>
    262      * <caption>Examples</caption>
    263      * <tr><th>Floating-point Value</th><th>Hexadecimal String</th>
    264      * <tr><td>{@code 1.0}</td> <td>{@code 0x1.0p0}</td>
    265      * <tr><td>{@code -1.0}</td>        <td>{@code -0x1.0p0}</td>
    266      * <tr><td>{@code 2.0}</td> <td>{@code 0x1.0p1}</td>
    267      * <tr><td>{@code 3.0}</td> <td>{@code 0x1.8p1}</td>
    268      * <tr><td>{@code 0.5}</td> <td>{@code 0x1.0p-1}</td>
    269      * <tr><td>{@code 0.25}</td>        <td>{@code 0x1.0p-2}</td>
    270      * <tr><td>{@code Float.MAX_VALUE}</td>
    271      *     <td>{@code 0x1.fffffep127}</td>
    272      * <tr><td>{@code Minimum Normal Value}</td>
    273      *     <td>{@code 0x1.0p-126}</td>
    274      * <tr><td>{@code Maximum Subnormal Value}</td>
    275      *     <td>{@code 0x0.fffffep-126}</td>
    276      * <tr><td>{@code Float.MIN_VALUE}</td>
    277      *     <td>{@code 0x0.000002p-126}</td>
    278      * </table>
    279      * @param   f   the {@code float} to be converted.
    280      * @return a hex string representation of the argument.
    281      * @since 1.5
    282      * @author Joseph D. Darcy
    283      */
    284     public static String toHexString(float f) {
    285         if (Math.abs(f) < FloatConsts.MIN_NORMAL
    286             &&  f != 0.0f ) {// float subnormal
    287             // Adjust exponent to create subnormal double, then
    288             // replace subnormal double exponent with subnormal float
    289             // exponent
    290             String s = Double.toHexString(Math.scalb((double)f,
    291                                                      /* -1022+126 */
    292                                                      DoubleConsts.MIN_EXPONENT-
    293                                                      FloatConsts.MIN_EXPONENT));
    294             return s.replaceFirst("p-1022$", "p-126");
    295         }
    296         else // double string will be the same as float string
    297             return Double.toHexString(f);
    298     }
    299 
    300     /**
    301      * Returns a {@code Float} object holding the
    302      * {@code float} value represented by the argument string
    303      * {@code s}.
    304      *
    305      * <p>If {@code s} is {@code null}, then a
    306      * {@code NullPointerException} is thrown.
    307      *
    308      * <p>Leading and trailing whitespace characters in {@code s}
    309      * are ignored.  Whitespace is removed as if by the {@link
    310      * String#trim} method; that is, both ASCII space and control
    311      * characters are removed. The rest of {@code s} should
    312      * constitute a <i>FloatValue</i> as described by the lexical
    313      * syntax rules:
    314      *
    315      * <blockquote>
    316      * <dl>
    317      * <dt><i>FloatValue:</i>
    318      * <dd><i>Sign<sub>opt</sub></i> {@code NaN}
    319      * <dd><i>Sign<sub>opt</sub></i> {@code Infinity}
    320      * <dd><i>Sign<sub>opt</sub> FloatingPointLiteral</i>
    321      * <dd><i>Sign<sub>opt</sub> HexFloatingPointLiteral</i>
    322      * <dd><i>SignedInteger</i>
    323      * </dl>
    324      *
    325      * <dl>
    326      * <dt><i>HexFloatingPointLiteral</i>:
    327      * <dd> <i>HexSignificand BinaryExponent FloatTypeSuffix<sub>opt</sub></i>
    328      * </dl>
    329      *
    330      * <dl>
    331      * <dt><i>HexSignificand:</i>
    332      * <dd><i>HexNumeral</i>
    333      * <dd><i>HexNumeral</i> {@code .}
    334      * <dd>{@code 0x} <i>HexDigits<sub>opt</sub>
    335      *     </i>{@code .}<i> HexDigits</i>
    336      * <dd>{@code 0X}<i> HexDigits<sub>opt</sub>
    337      *     </i>{@code .} <i>HexDigits</i>
    338      * </dl>
    339      *
    340      * <dl>
    341      * <dt><i>BinaryExponent:</i>
    342      * <dd><i>BinaryExponentIndicator SignedInteger</i>
    343      * </dl>
    344      *
    345      * <dl>
    346      * <dt><i>BinaryExponentIndicator:</i>
    347      * <dd>{@code p}
    348      * <dd>{@code P}
    349      * </dl>
    350      *
    351      * </blockquote>
    352      *
    353      * where <i>Sign</i>, <i>FloatingPointLiteral</i>,
    354      * <i>HexNumeral</i>, <i>HexDigits</i>, <i>SignedInteger</i> and
    355      * <i>FloatTypeSuffix</i> are as defined in the lexical structure
    356      * sections of
    357      * <cite>The Java&trade; Language Specification</cite>,
    358      * except that underscores are not accepted between digits.
    359      * If {@code s} does not have the form of
    360      * a <i>FloatValue</i>, then a {@code NumberFormatException}
    361      * is thrown. Otherwise, {@code s} is regarded as
    362      * representing an exact decimal value in the usual
    363      * "computerized scientific notation" or as an exact
    364      * hexadecimal value; this exact numerical value is then
    365      * conceptually converted to an "infinitely precise"
    366      * binary value that is then rounded to type {@code float}
    367      * by the usual round-to-nearest rule of IEEE 754 floating-point
    368      * arithmetic, which includes preserving the sign of a zero
    369      * value.
    370      *
    371      * Note that the round-to-nearest rule also implies overflow and
    372      * underflow behaviour; if the exact value of {@code s} is large
    373      * enough in magnitude (greater than or equal to ({@link
    374      * #MAX_VALUE} + {@link Math#ulp(float) ulp(MAX_VALUE)}/2),
    375      * rounding to {@code float} will result in an infinity and if the
    376      * exact value of {@code s} is small enough in magnitude (less
    377      * than or equal to {@link #MIN_VALUE}/2), rounding to float will
    378      * result in a zero.
    379      *
    380      * Finally, after rounding a {@code Float} object representing
    381      * this {@code float} value is returned.
    382      *
    383      * <p>To interpret localized string representations of a
    384      * floating-point value, use subclasses of {@link
    385      * java.text.NumberFormat}.
    386      *
    387      * <p>Note that trailing format specifiers, specifiers that
    388      * determine the type of a floating-point literal
    389      * ({@code 1.0f} is a {@code float} value;
    390      * {@code 1.0d} is a {@code double} value), do
    391      * <em>not</em> influence the results of this method.  In other
    392      * words, the numerical value of the input string is converted
    393      * directly to the target floating-point type.  In general, the
    394      * two-step sequence of conversions, string to {@code double}
    395      * followed by {@code double} to {@code float}, is
    396      * <em>not</em> equivalent to converting a string directly to
    397      * {@code float}.  For example, if first converted to an
    398      * intermediate {@code double} and then to
    399      * {@code float}, the string<br>
    400      * {@code "1.00000017881393421514957253748434595763683319091796875001d"}<br>
    401      * results in the {@code float} value
    402      * {@code 1.0000002f}; if the string is converted directly to
    403      * {@code float}, <code>1.000000<b>1</b>f</code> results.
    404      *
    405      * <p>To avoid calling this method on an invalid string and having
    406      * a {@code NumberFormatException} be thrown, the documentation
    407      * for {@link Double#valueOf Double.valueOf} lists a regular
    408      * expression which can be used to screen the input.
    409      *
    410      * @param   s   the string to be parsed.
    411      * @return  a {@code Float} object holding the value
    412      *          represented by the {@code String} argument.
    413      * @throws  NumberFormatException  if the string does not contain a
    414      *          parsable number.
    415      */
    416     public static Float valueOf(String s) throws NumberFormatException {
    417         return new Float(parseFloat(s));
    418     }
    419 
    420     /**
    421      * Returns a {@code Float} instance representing the specified
    422      * {@code float} value.
    423      * If a new {@code Float} instance is not required, this method
    424      * should generally be used in preference to the constructor
    425      * {@link #Float(float)}, as this method is likely to yield
    426      * significantly better space and time performance by caching
    427      * frequently requested values.
    428      *
    429      * @param  f a float value.
    430      * @return a {@code Float} instance representing {@code f}.
    431      * @since  1.5
    432      */
    433     public static Float valueOf(float f) {
    434         return new Float(f);
    435     }
    436 
    437     /**
    438      * Returns a new {@code float} initialized to the value
    439      * represented by the specified {@code String}, as performed
    440      * by the {@code valueOf} method of class {@code Float}.
    441      *
    442      * @param  s the string to be parsed.
    443      * @return the {@code float} value represented by the string
    444      *         argument.
    445      * @throws NullPointerException  if the string is null
    446      * @throws NumberFormatException if the string does not contain a
    447      *               parsable {@code float}.
    448      * @see    java.lang.Float#valueOf(String)
    449      * @since 1.2
    450      */
    451     public static float parseFloat(String s) throws NumberFormatException {
    452         return FloatingDecimal.parseFloat(s);
    453     }
    454 
    455     /**
    456      * Returns {@code true} if the specified number is a
    457      * Not-a-Number (NaN) value, {@code false} otherwise.
    458      *
    459      * @param   v   the value to be tested.
    460      * @return  {@code true} if the argument is NaN;
    461      *          {@code false} otherwise.
    462      */
    463     public static boolean isNaN(float v) {
    464         return (v != v);
    465     }
    466 
    467     /**
    468      * Returns {@code true} if the specified number is infinitely
    469      * large in magnitude, {@code false} otherwise.
    470      *
    471      * @param   v   the value to be tested.
    472      * @return  {@code true} if the argument is positive infinity or
    473      *          negative infinity; {@code false} otherwise.
    474      */
    475     public static boolean isInfinite(float v) {
    476         return (v == POSITIVE_INFINITY) || (v == NEGATIVE_INFINITY);
    477     }
    478 
    479 
    480     /**
    481      * Returns {@code true} if the argument is a finite floating-point
    482      * value; returns {@code false} otherwise (for NaN and infinity
    483      * arguments).
    484      *
    485      * @param f the {@code float} value to be tested
    486      * @return {@code true} if the argument is a finite
    487      * floating-point value, {@code false} otherwise.
    488      * @since 1.8
    489      */
    490      public static boolean isFinite(float f) {
    491         return Math.abs(f) <= FloatConsts.MAX_VALUE;
    492     }
    493 
    494     /**
    495      * The value of the Float.
    496      *
    497      * @serial
    498      */
    499     private final float value;
    500 
    501     /**
    502      * Constructs a newly allocated {@code Float} object that
    503      * represents the primitive {@code float} argument.
    504      *
    505      * @param   value   the value to be represented by the {@code Float}.
    506      */
    507     public Float(float value) {
    508         this.value = value;
    509     }
    510 
    511     /**
    512      * Constructs a newly allocated {@code Float} object that
    513      * represents the argument converted to type {@code float}.
    514      *
    515      * @param   value   the value to be represented by the {@code Float}.
    516      */
    517     public Float(double value) {
    518         this.value = (float)value;
    519     }
    520 
    521     /**
    522      * Constructs a newly allocated {@code Float} object that
    523      * represents the floating-point value of type {@code float}
    524      * represented by the string. The string is converted to a
    525      * {@code float} value as if by the {@code valueOf} method.
    526      *
    527      * @param      s   a string to be converted to a {@code Float}.
    528      * @throws  NumberFormatException  if the string does not contain a
    529      *               parsable number.
    530      * @see        java.lang.Float#valueOf(java.lang.String)
    531      */
    532     public Float(String s) throws NumberFormatException {
    533         value = parseFloat(s);
    534     }
    535 
    536     /**
    537      * Returns {@code true} if this {@code Float} value is a
    538      * Not-a-Number (NaN), {@code false} otherwise.
    539      *
    540      * @return  {@code true} if the value represented by this object is
    541      *          NaN; {@code false} otherwise.
    542      */
    543     public boolean isNaN() {
    544         return isNaN(value);
    545     }
    546 
    547     /**
    548      * Returns {@code true} if this {@code Float} value is
    549      * infinitely large in magnitude, {@code false} otherwise.
    550      *
    551      * @return  {@code true} if the value represented by this object is
    552      *          positive infinity or negative infinity;
    553      *          {@code false} otherwise.
    554      */
    555     public boolean isInfinite() {
    556         return isInfinite(value);
    557     }
    558 
    559     /**
    560      * Returns a string representation of this {@code Float} object.
    561      * The primitive {@code float} value represented by this object
    562      * is converted to a {@code String} exactly as if by the method
    563      * {@code toString} of one argument.
    564      *
    565      * @return  a {@code String} representation of this object.
    566      * @see java.lang.Float#toString(float)
    567      */
    568     public String toString() {
    569         return Float.toString(value);
    570     }
    571 
    572     /**
    573      * Returns the value of this {@code Float} as a {@code byte} after
    574      * a narrowing primitive conversion.
    575      *
    576      * @return  the {@code float} value represented by this object
    577      *          converted to type {@code byte}
    578      * @jls 5.1.3 Narrowing Primitive Conversions
    579      */
    580     public byte byteValue() {
    581         return (byte)value;
    582     }
    583 
    584     /**
    585      * Returns the value of this {@code Float} as a {@code short}
    586      * after a narrowing primitive conversion.
    587      *
    588      * @return  the {@code float} value represented by this object
    589      *          converted to type {@code short}
    590      * @jls 5.1.3 Narrowing Primitive Conversions
    591      * @since JDK1.1
    592      */
    593     public short shortValue() {
    594         return (short)value;
    595     }
    596 
    597     /**
    598      * Returns the value of this {@code Float} as an {@code int} after
    599      * a narrowing primitive conversion.
    600      *
    601      * @return  the {@code float} value represented by this object
    602      *          converted to type {@code int}
    603      * @jls 5.1.3 Narrowing Primitive Conversions
    604      */
    605     public int intValue() {
    606         return (int)value;
    607     }
    608 
    609     /**
    610      * Returns value of this {@code Float} as a {@code long} after a
    611      * narrowing primitive conversion.
    612      *
    613      * @return  the {@code float} value represented by this object
    614      *          converted to type {@code long}
    615      * @jls 5.1.3 Narrowing Primitive Conversions
    616      */
    617     public long longValue() {
    618         return (long)value;
    619     }
    620 
    621     /**
    622      * Returns the {@code float} value of this {@code Float} object.
    623      *
    624      * @return the {@code float} value represented by this object
    625      */
    626     public float floatValue() {
    627         return value;
    628     }
    629 
    630     /**
    631      * Returns the value of this {@code Float} as a {@code double}
    632      * after a widening primitive conversion.
    633      *
    634      * @return the {@code float} value represented by this
    635      *         object converted to type {@code double}
    636      * @jls 5.1.2 Widening Primitive Conversions
    637      */
    638     public double doubleValue() {
    639         return (double)value;
    640     }
    641 
    642     /**
    643      * Returns a hash code for this {@code Float} object. The
    644      * result is the integer bit representation, exactly as produced
    645      * by the method {@link #floatToIntBits(float)}, of the primitive
    646      * {@code float} value represented by this {@code Float}
    647      * object.
    648      *
    649      * @return a hash code value for this object.
    650      */
    651     @Override
    652     public int hashCode() {
    653         return Float.hashCode(value);
    654     }
    655 
    656     /**
    657      * Returns a hash code for a {@code float} value; compatible with
    658      * {@code Float.hashCode()}.
    659      *
    660      * @param value the value to hash
    661      * @return a hash code value for a {@code float} value.
    662      * @since 1.8
    663      */
    664     public static int hashCode(float value) {
    665         return floatToIntBits(value);
    666     }
    667 
    668     /**
    669 
    670      * Compares this object against the specified object.  The result
    671      * is {@code true} if and only if the argument is not
    672      * {@code null} and is a {@code Float} object that
    673      * represents a {@code float} with the same value as the
    674      * {@code float} represented by this object. For this
    675      * purpose, two {@code float} values are considered to be the
    676      * same if and only if the method {@link #floatToIntBits(float)}
    677      * returns the identical {@code int} value when applied to
    678      * each.
    679      *
    680      * <p>Note that in most cases, for two instances of class
    681      * {@code Float}, {@code f1} and {@code f2}, the value
    682      * of {@code f1.equals(f2)} is {@code true} if and only if
    683      *
    684      * <blockquote><pre>
    685      *   f1.floatValue() == f2.floatValue()
    686      * </pre></blockquote>
    687      *
    688      * <p>also has the value {@code true}. However, there are two exceptions:
    689      * <ul>
    690      * <li>If {@code f1} and {@code f2} both represent
    691      *     {@code Float.NaN}, then the {@code equals} method returns
    692      *     {@code true}, even though {@code Float.NaN==Float.NaN}
    693      *     has the value {@code false}.
    694      * <li>If {@code f1} represents {@code +0.0f} while
    695      *     {@code f2} represents {@code -0.0f}, or vice
    696      *     versa, the {@code equal} test has the value
    697      *     {@code false}, even though {@code 0.0f==-0.0f}
    698      *     has the value {@code true}.
    699      * </ul>
    700      *
    701      * This definition allows hash tables to operate properly.
    702      *
    703      * @param obj the object to be compared
    704      * @return  {@code true} if the objects are the same;
    705      *          {@code false} otherwise.
    706      * @see java.lang.Float#floatToIntBits(float)
    707      */
    708     public boolean equals(Object obj) {
    709         return (obj instanceof Float)
    710                && (floatToIntBits(((Float)obj).value) == floatToIntBits(value));
    711     }
    712 
    713     /**
    714      * Returns a representation of the specified floating-point value
    715      * according to the IEEE 754 floating-point "single format" bit
    716      * layout.
    717      *
    718      * <p>Bit 31 (the bit that is selected by the mask
    719      * {@code 0x80000000}) represents the sign of the floating-point
    720      * number.
    721      * Bits 30-23 (the bits that are selected by the mask
    722      * {@code 0x7f800000}) represent the exponent.
    723      * Bits 22-0 (the bits that are selected by the mask
    724      * {@code 0x007fffff}) represent the significand (sometimes called
    725      * the mantissa) of the floating-point number.
    726      *
    727      * <p>If the argument is positive infinity, the result is
    728      * {@code 0x7f800000}.
    729      *
    730      * <p>If the argument is negative infinity, the result is
    731      * {@code 0xff800000}.
    732      *
    733      * <p>If the argument is NaN, the result is {@code 0x7fc00000}.
    734      *
    735      * <p>In all cases, the result is an integer that, when given to the
    736      * {@link #intBitsToFloat(int)} method, will produce a floating-point
    737      * value the same as the argument to {@code floatToIntBits}
    738      * (except all NaN values are collapsed to a single
    739      * "canonical" NaN value).
    740      *
    741      * @param   value   a floating-point number.
    742      * @return the bits that represent the floating-point number.
    743      */
    744     public static int floatToIntBits(float value) {
    745         int result = floatToRawIntBits(value);
    746         // Check for NaN based on values of bit fields, maximum
    747         // exponent and nonzero significand.
    748         if ( ((result & FloatConsts.EXP_BIT_MASK) ==
    749               FloatConsts.EXP_BIT_MASK) &&
    750              (result & FloatConsts.SIGNIF_BIT_MASK) != 0)
    751             result = 0x7fc00000;
    752         return result;
    753     }
    754 
    755     /**
    756      * Returns a representation of the specified floating-point value
    757      * according to the IEEE 754 floating-point "single format" bit
    758      * layout, preserving Not-a-Number (NaN) values.
    759      *
    760      * <p>Bit 31 (the bit that is selected by the mask
    761      * {@code 0x80000000}) represents the sign of the floating-point
    762      * number.
    763      * Bits 30-23 (the bits that are selected by the mask
    764      * {@code 0x7f800000}) represent the exponent.
    765      * Bits 22-0 (the bits that are selected by the mask
    766      * {@code 0x007fffff}) represent the significand (sometimes called
    767      * the mantissa) of the floating-point number.
    768      *
    769      * <p>If the argument is positive infinity, the result is
    770      * {@code 0x7f800000}.
    771      *
    772      * <p>If the argument is negative infinity, the result is
    773      * {@code 0xff800000}.
    774      *
    775      * <p>If the argument is NaN, the result is the integer representing
    776      * the actual NaN value.  Unlike the {@code floatToIntBits}
    777      * method, {@code floatToRawIntBits} does not collapse all the
    778      * bit patterns encoding a NaN to a single "canonical"
    779      * NaN value.
    780      *
    781      * <p>In all cases, the result is an integer that, when given to the
    782      * {@link #intBitsToFloat(int)} method, will produce a
    783      * floating-point value the same as the argument to
    784      * {@code floatToRawIntBits}.
    785      *
    786      * @param   value   a floating-point number.
    787      * @return the bits that represent the floating-point number.
    788      * @since 1.3
    789      */
    790     public static native int floatToRawIntBits(float value);
    791 
    792     /**
    793      * Returns the {@code float} value corresponding to a given
    794      * bit representation.
    795      * The argument is considered to be a representation of a
    796      * floating-point value according to the IEEE 754 floating-point
    797      * "single format" bit layout.
    798      *
    799      * <p>If the argument is {@code 0x7f800000}, the result is positive
    800      * infinity.
    801      *
    802      * <p>If the argument is {@code 0xff800000}, the result is negative
    803      * infinity.
    804      *
    805      * <p>If the argument is any value in the range
    806      * {@code 0x7f800001} through {@code 0x7fffffff} or in
    807      * the range {@code 0xff800001} through
    808      * {@code 0xffffffff}, the result is a NaN.  No IEEE 754
    809      * floating-point operation provided by Java can distinguish
    810      * between two NaN values of the same type with different bit
    811      * patterns.  Distinct values of NaN are only distinguishable by
    812      * use of the {@code Float.floatToRawIntBits} method.
    813      *
    814      * <p>In all other cases, let <i>s</i>, <i>e</i>, and <i>m</i> be three
    815      * values that can be computed from the argument:
    816      *
    817      * <blockquote><pre>{@code
    818      * int s = ((bits >> 31) == 0) ? 1 : -1;
    819      * int e = ((bits >> 23) & 0xff);
    820      * int m = (e == 0) ?
    821      *                 (bits & 0x7fffff) << 1 :
    822      *                 (bits & 0x7fffff) | 0x800000;
    823      * }</pre></blockquote>
    824      *
    825      * Then the floating-point result equals the value of the mathematical
    826      * expression <i>s</i>&middot;<i>m</i>&middot;2<sup><i>e</i>-150</sup>.
    827      *
    828      * <p>Note that this method may not be able to return a
    829      * {@code float} NaN with exactly same bit pattern as the
    830      * {@code int} argument.  IEEE 754 distinguishes between two
    831      * kinds of NaNs, quiet NaNs and <i>signaling NaNs</i>.  The
    832      * differences between the two kinds of NaN are generally not
    833      * visible in Java.  Arithmetic operations on signaling NaNs turn
    834      * them into quiet NaNs with a different, but often similar, bit
    835      * pattern.  However, on some processors merely copying a
    836      * signaling NaN also performs that conversion.  In particular,
    837      * copying a signaling NaN to return it to the calling method may
    838      * perform this conversion.  So {@code intBitsToFloat} may
    839      * not be able to return a {@code float} with a signaling NaN
    840      * bit pattern.  Consequently, for some {@code int} values,
    841      * {@code floatToRawIntBits(intBitsToFloat(start))} may
    842      * <i>not</i> equal {@code start}.  Moreover, which
    843      * particular bit patterns represent signaling NaNs is platform
    844      * dependent; although all NaN bit patterns, quiet or signaling,
    845      * must be in the NaN range identified above.
    846      *
    847      * @param   bits   an integer.
    848      * @return  the {@code float} floating-point value with the same bit
    849      *          pattern.
    850      */
    851     public static native float intBitsToFloat(int bits);
    852 
    853     /**
    854      * Compares two {@code Float} objects numerically.  There are
    855      * two ways in which comparisons performed by this method differ
    856      * from those performed by the Java language numerical comparison
    857      * operators ({@code <, <=, ==, >=, >}) when
    858      * applied to primitive {@code float} values:
    859      *
    860      * <ul><li>
    861      *          {@code Float.NaN} is considered by this method to
    862      *          be equal to itself and greater than all other
    863      *          {@code float} values
    864      *          (including {@code Float.POSITIVE_INFINITY}).
    865      * <li>
    866      *          {@code 0.0f} is considered by this method to be greater
    867      *          than {@code -0.0f}.
    868      * </ul>
    869      *
    870      * This ensures that the <i>natural ordering</i> of {@code Float}
    871      * objects imposed by this method is <i>consistent with equals</i>.
    872      *
    873      * @param   anotherFloat   the {@code Float} to be compared.
    874      * @return  the value {@code 0} if {@code anotherFloat} is
    875      *          numerically equal to this {@code Float}; a value
    876      *          less than {@code 0} if this {@code Float}
    877      *          is numerically less than {@code anotherFloat};
    878      *          and a value greater than {@code 0} if this
    879      *          {@code Float} is numerically greater than
    880      *          {@code anotherFloat}.
    881      *
    882      * @since   1.2
    883      * @see Comparable#compareTo(Object)
    884      */
    885     public int compareTo(Float anotherFloat) {
    886         return Float.compare(value, anotherFloat.value);
    887     }
    888 
    889     /**
    890      * Compares the two specified {@code float} values. The sign
    891      * of the integer value returned is the same as that of the
    892      * integer that would be returned by the call:
    893      * <pre>
    894      *    new Float(f1).compareTo(new Float(f2))
    895      * </pre>
    896      *
    897      * @param   f1        the first {@code float} to compare.
    898      * @param   f2        the second {@code float} to compare.
    899      * @return  the value {@code 0} if {@code f1} is
    900      *          numerically equal to {@code f2}; a value less than
    901      *          {@code 0} if {@code f1} is numerically less than
    902      *          {@code f2}; and a value greater than {@code 0}
    903      *          if {@code f1} is numerically greater than
    904      *          {@code f2}.
    905      * @since 1.4
    906      */
    907     public static int compare(float f1, float f2) {
    908         if (f1 < f2)
    909             return -1;           // Neither val is NaN, thisVal is smaller
    910         if (f1 > f2)
    911             return 1;            // Neither val is NaN, thisVal is larger
    912 
    913         // Cannot use floatToRawIntBits because of possibility of NaNs.
    914         int thisBits    = Float.floatToIntBits(f1);
    915         int anotherBits = Float.floatToIntBits(f2);
    916 
    917         return (thisBits == anotherBits ?  0 : // Values are equal
    918                 (thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN)
    919                  1));                          // (0.0, -0.0) or (NaN, !NaN)
    920     }
    921 
    922     /**
    923      * Adds two {@code float} values together as per the + operator.
    924      *
    925      * @param a the first operand
    926      * @param b the second operand
    927      * @return the sum of {@code a} and {@code b}
    928      * @jls 4.2.4 Floating-Point Operations
    929      * @see java.util.function.BinaryOperator
    930      * @since 1.8
    931      */
    932     public static float sum(float a, float b) {
    933         return a + b;
    934     }
    935 
    936     /**
    937      * Returns the greater of two {@code float} values
    938      * as if by calling {@link Math#max(float, float) Math.max}.
    939      *
    940      * @param a the first operand
    941      * @param b the second operand
    942      * @return the greater of {@code a} and {@code b}
    943      * @see java.util.function.BinaryOperator
    944      * @since 1.8
    945      */
    946     public static float max(float a, float b) {
    947         return Math.max(a, b);
    948     }
    949 
    950     /**
    951      * Returns the smaller of two {@code float} values
    952      * as if by calling {@link Math#min(float, float) Math.min}.
    953      *
    954      * @param a the first operand
    955      * @param b the second operand
    956      * @return the smaller of {@code a} and {@code b}
    957      * @see java.util.function.BinaryOperator
    958      * @since 1.8
    959      */
    960     public static float min(float a, float b) {
    961         return Math.min(a, b);
    962     }
    963 
    964     /** use serialVersionUID from JDK 1.0.2 for interoperability */
    965     private static final long serialVersionUID = -2671257302660747028L;
    966 }
    967