Home | History | Annotate | Download | only in util
      1 /*
      2  * Copyright (c) 1995, 2013, Oracle and/or its affiliates. All rights reserved.
      3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
      4  *
      5  * This code is free software; you can redistribute it and/or modify it
      6  * under the terms of the GNU General Public License version 2 only, as
      7  * published by the Free Software Foundation.  Oracle designates this
      8  * particular file as subject to the "Classpath" exception as provided
      9  * by Oracle in the LICENSE file that accompanied this code.
     10  *
     11  * This code is distributed in the hope that it will be useful, but WITHOUT
     12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
     13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
     14  * version 2 for more details (a copy is included in the LICENSE file that
     15  * accompanied this code).
     16  *
     17  * You should have received a copy of the GNU General Public License version
     18  * 2 along with this work; if not, write to the Free Software Foundation,
     19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
     20  *
     21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
     22  * or visit www.oracle.com if you need additional information or have any
     23  * questions.
     24  */
     25 
     26 package java.util;
     27 import java.io.*;
     28 import java.util.concurrent.atomic.AtomicLong;
     29 import java.util.function.DoubleConsumer;
     30 import java.util.function.IntConsumer;
     31 import java.util.function.LongConsumer;
     32 import java.util.stream.DoubleStream;
     33 import java.util.stream.IntStream;
     34 import java.util.stream.LongStream;
     35 import java.util.stream.StreamSupport;
     36 
     37 import sun.misc.Unsafe;
     38 
     39 /**
     40  * An instance of this class is used to generate a stream of
     41  * pseudorandom numbers. The class uses a 48-bit seed, which is
     42  * modified using a linear congruential formula. (See Donald Knuth,
     43  * <i>The Art of Computer Programming, Volume 2</i>, Section 3.2.1.)
     44  * <p>
     45  * If two instances of {@code Random} are created with the same
     46  * seed, and the same sequence of method calls is made for each, they
     47  * will generate and return identical sequences of numbers. In order to
     48  * guarantee this property, particular algorithms are specified for the
     49  * class {@code Random}. Java implementations must use all the algorithms
     50  * shown here for the class {@code Random}, for the sake of absolute
     51  * portability of Java code. However, subclasses of class {@code Random}
     52  * are permitted to use other algorithms, so long as they adhere to the
     53  * general contracts for all the methods.
     54  * <p>
     55  * The algorithms implemented by class {@code Random} use a
     56  * {@code protected} utility method that on each invocation can supply
     57  * up to 32 pseudorandomly generated bits.
     58  * <p>
     59  * Many applications will find the method {@link Math#random} simpler to use.
     60  *
     61  * <p>Instances of {@code java.util.Random} are threadsafe.
     62  * However, the concurrent use of the same {@code java.util.Random}
     63  * instance across threads may encounter contention and consequent
     64  * poor performance. Consider instead using
     65  * {@link java.util.concurrent.ThreadLocalRandom} in multithreaded
     66  * designs.
     67  *
     68  * <p>Instances of {@code java.util.Random} are not cryptographically
     69  * secure.  Consider instead using {@link java.security.SecureRandom} to
     70  * get a cryptographically secure pseudo-random number generator for use
     71  * by security-sensitive applications.
     72  *
     73  * @author  Frank Yellin
     74  * @since   1.0
     75  */
     76 public
     77 class Random implements java.io.Serializable {
     78     /** use serialVersionUID from JDK 1.1 for interoperability */
     79     static final long serialVersionUID = 3905348978240129619L;
     80 
     81     /**
     82      * The internal state associated with this pseudorandom number generator.
     83      * (The specs for the methods in this class describe the ongoing
     84      * computation of this value.)
     85      */
     86     private final AtomicLong seed;
     87 
     88     private static final long multiplier = 0x5DEECE66DL;
     89     private static final long addend = 0xBL;
     90     private static final long mask = (1L << 48) - 1;
     91 
     92     private static final double DOUBLE_UNIT = 0x1.0p-53; // 1.0 / (1L << 53)
     93 
     94     // IllegalArgumentException messages
     95     static final String BadBound = "bound must be positive";
     96     static final String BadRange = "bound must be greater than origin";
     97     static final String BadSize  = "size must be non-negative";
     98 
     99     /**
    100      * Creates a new random number generator. This constructor sets
    101      * the seed of the random number generator to a value very likely
    102      * to be distinct from any other invocation of this constructor.
    103      */
    104     public Random() {
    105         this(seedUniquifier() ^ System.nanoTime());
    106     }
    107 
    108     private static long seedUniquifier() {
    109         // L'Ecuyer, "Tables of Linear Congruential Generators of
    110         // Different Sizes and Good Lattice Structure", 1999
    111         for (;;) {
    112             long current = seedUniquifier.get();
    113             long next = current * 181783497276652981L;
    114             if (seedUniquifier.compareAndSet(current, next))
    115                 return next;
    116         }
    117     }
    118 
    119     private static final AtomicLong seedUniquifier
    120         = new AtomicLong(8682522807148012L);
    121 
    122     /**
    123      * Creates a new random number generator using a single {@code long} seed.
    124      * The seed is the initial value of the internal state of the pseudorandom
    125      * number generator which is maintained by method {@link #next}.
    126      *
    127      * <p>The invocation {@code new Random(seed)} is equivalent to:
    128      *  <pre> {@code
    129      * Random rnd = new Random();
    130      * rnd.setSeed(seed);}</pre>
    131      *
    132      * @param seed the initial seed
    133      * @see   #setSeed(long)
    134      */
    135     public Random(long seed) {
    136         if (getClass() == Random.class)
    137             this.seed = new AtomicLong(initialScramble(seed));
    138         else {
    139             // subclass might have overriden setSeed
    140             this.seed = new AtomicLong();
    141             setSeed(seed);
    142         }
    143     }
    144 
    145     private static long initialScramble(long seed) {
    146         return (seed ^ multiplier) & mask;
    147     }
    148 
    149     /**
    150      * Sets the seed of this random number generator using a single
    151      * {@code long} seed. The general contract of {@code setSeed} is
    152      * that it alters the state of this random number generator object
    153      * so as to be in exactly the same state as if it had just been
    154      * created with the argument {@code seed} as a seed. The method
    155      * {@code setSeed} is implemented by class {@code Random} by
    156      * atomically updating the seed to
    157      *  <pre>{@code (seed ^ 0x5DEECE66DL) & ((1L << 48) - 1)}</pre>
    158      * and clearing the {@code haveNextNextGaussian} flag used by {@link
    159      * #nextGaussian}.
    160      *
    161      * <p>The implementation of {@code setSeed} by class {@code Random}
    162      * happens to use only 48 bits of the given seed. In general, however,
    163      * an overriding method may use all 64 bits of the {@code long}
    164      * argument as a seed value.
    165      *
    166      * @param seed the initial seed
    167      */
    168     synchronized public void setSeed(long seed) {
    169         this.seed.set(initialScramble(seed));
    170         haveNextNextGaussian = false;
    171     }
    172 
    173     /**
    174      * Generates the next pseudorandom number. Subclasses should
    175      * override this, as this is used by all other methods.
    176      *
    177      * <p>The general contract of {@code next} is that it returns an
    178      * {@code int} value and if the argument {@code bits} is between
    179      * {@code 1} and {@code 32} (inclusive), then that many low-order
    180      * bits of the returned value will be (approximately) independently
    181      * chosen bit values, each of which is (approximately) equally
    182      * likely to be {@code 0} or {@code 1}. The method {@code next} is
    183      * implemented by class {@code Random} by atomically updating the seed to
    184      *  <pre>{@code (seed * 0x5DEECE66DL + 0xBL) & ((1L << 48) - 1)}</pre>
    185      * and returning
    186      *  <pre>{@code (int)(seed >>> (48 - bits))}.</pre>
    187      *
    188      * This is a linear congruential pseudorandom number generator, as
    189      * defined by D. H. Lehmer and described by Donald E. Knuth in
    190      * <i>The Art of Computer Programming,</i> Volume 3:
    191      * <i>Seminumerical Algorithms</i>, section 3.2.1.
    192      *
    193      * @param  bits random bits
    194      * @return the next pseudorandom value from this random number
    195      *         generator's sequence
    196      * @since  1.1
    197      */
    198     protected int next(int bits) {
    199         long oldseed, nextseed;
    200         AtomicLong seed = this.seed;
    201         do {
    202             oldseed = seed.get();
    203             nextseed = (oldseed * multiplier + addend) & mask;
    204         } while (!seed.compareAndSet(oldseed, nextseed));
    205         return (int)(nextseed >>> (48 - bits));
    206     }
    207 
    208     /**
    209      * Generates random bytes and places them into a user-supplied
    210      * byte array.  The number of random bytes produced is equal to
    211      * the length of the byte array.
    212      *
    213      * <p>The method {@code nextBytes} is implemented by class {@code Random}
    214      * as if by:
    215      *  <pre> {@code
    216      * public void nextBytes(byte[] bytes) {
    217      *   for (int i = 0; i < bytes.length; )
    218      *     for (int rnd = nextInt(), n = Math.min(bytes.length - i, 4);
    219      *          n-- > 0; rnd >>= 8)
    220      *       bytes[i++] = (byte)rnd;
    221      * }}</pre>
    222      *
    223      * @param  bytes the byte array to fill with random bytes
    224      * @throws NullPointerException if the byte array is null
    225      * @since  1.1
    226      */
    227     public void nextBytes(byte[] bytes) {
    228         for (int i = 0, len = bytes.length; i < len; )
    229             for (int rnd = nextInt(),
    230                      n = Math.min(len - i, Integer.SIZE/Byte.SIZE);
    231                  n-- > 0; rnd >>= Byte.SIZE)
    232                 bytes[i++] = (byte)rnd;
    233     }
    234 
    235     /**
    236      * The form of nextLong used by LongStream Spliterators.  If
    237      * origin is greater than bound, acts as unbounded form of
    238      * nextLong, else as bounded form.
    239      *
    240      * @param origin the least value, unless greater than bound
    241      * @param bound the upper bound (exclusive), must not equal origin
    242      * @return a pseudorandom value
    243      */
    244     final long internalNextLong(long origin, long bound) {
    245         long r = nextLong();
    246         if (origin < bound) {
    247             long n = bound - origin, m = n - 1;
    248             if ((n & m) == 0L)  // power of two
    249                 r = (r & m) + origin;
    250             else if (n > 0L) {  // reject over-represented candidates
    251                 for (long u = r >>> 1;            // ensure nonnegative
    252                      u + m - (r = u % n) < 0L;    // rejection check
    253                      u = nextLong() >>> 1) // retry
    254                     ;
    255                 r += origin;
    256             }
    257             else {              // range not representable as long
    258                 while (r < origin || r >= bound)
    259                     r = nextLong();
    260             }
    261         }
    262         return r;
    263     }
    264 
    265     /**
    266      * The form of nextInt used by IntStream Spliterators.
    267      * For the unbounded case: uses nextInt().
    268      * For the bounded case with representable range: uses nextInt(int bound)
    269      * For the bounded case with unrepresentable range: uses nextInt()
    270      *
    271      * @param origin the least value, unless greater than bound
    272      * @param bound the upper bound (exclusive), must not equal origin
    273      * @return a pseudorandom value
    274      */
    275     final int internalNextInt(int origin, int bound) {
    276         if (origin < bound) {
    277             int n = bound - origin;
    278             if (n > 0) {
    279                 return nextInt(n) + origin;
    280             }
    281             else {  // range not representable as int
    282                 int r;
    283                 do {
    284                     r = nextInt();
    285                 } while (r < origin || r >= bound);
    286                 return r;
    287             }
    288         }
    289         else {
    290             return nextInt();
    291         }
    292     }
    293 
    294     /**
    295      * The form of nextDouble used by DoubleStream Spliterators.
    296      *
    297      * @param origin the least value, unless greater than bound
    298      * @param bound the upper bound (exclusive), must not equal origin
    299      * @return a pseudorandom value
    300      */
    301     final double internalNextDouble(double origin, double bound) {
    302         double r = nextDouble();
    303         if (origin < bound) {
    304             r = r * (bound - origin) + origin;
    305             if (r >= bound) // correct for rounding
    306                 r = Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
    307         }
    308         return r;
    309     }
    310 
    311     /**
    312      * Returns the next pseudorandom, uniformly distributed {@code int}
    313      * value from this random number generator's sequence. The general
    314      * contract of {@code nextInt} is that one {@code int} value is
    315      * pseudorandomly generated and returned. All 2<sup>32</sup> possible
    316      * {@code int} values are produced with (approximately) equal probability.
    317      *
    318      * <p>The method {@code nextInt} is implemented by class {@code Random}
    319      * as if by:
    320      *  <pre> {@code
    321      * public int nextInt() {
    322      *   return next(32);
    323      * }}</pre>
    324      *
    325      * @return the next pseudorandom, uniformly distributed {@code int}
    326      *         value from this random number generator's sequence
    327      */
    328     public int nextInt() {
    329         return next(32);
    330     }
    331 
    332     /**
    333      * Returns a pseudorandom, uniformly distributed {@code int} value
    334      * between 0 (inclusive) and the specified value (exclusive), drawn from
    335      * this random number generator's sequence.  The general contract of
    336      * {@code nextInt} is that one {@code int} value in the specified range
    337      * is pseudorandomly generated and returned.  All {@code bound} possible
    338      * {@code int} values are produced with (approximately) equal
    339      * probability.  The method {@code nextInt(int bound)} is implemented by
    340      * class {@code Random} as if by:
    341      *  <pre> {@code
    342      * public int nextInt(int bound) {
    343      *   if (bound <= 0)
    344      *     throw new IllegalArgumentException("bound must be positive");
    345      *
    346      *   if ((bound & -bound) == bound)  // i.e., bound is a power of 2
    347      *     return (int)((bound * (long)next(31)) >> 31);
    348      *
    349      *   int bits, val;
    350      *   do {
    351      *       bits = next(31);
    352      *       val = bits % bound;
    353      *   } while (bits - val + (bound-1) < 0);
    354      *   return val;
    355      * }}</pre>
    356      *
    357      * <p>The hedge "approximately" is used in the foregoing description only
    358      * because the next method is only approximately an unbiased source of
    359      * independently chosen bits.  If it were a perfect source of randomly
    360      * chosen bits, then the algorithm shown would choose {@code int}
    361      * values from the stated range with perfect uniformity.
    362      * <p>
    363      * The algorithm is slightly tricky.  It rejects values that would result
    364      * in an uneven distribution (due to the fact that 2^31 is not divisible
    365      * by n). The probability of a value being rejected depends on n.  The
    366      * worst case is n=2^30+1, for which the probability of a reject is 1/2,
    367      * and the expected number of iterations before the loop terminates is 2.
    368      * <p>
    369      * The algorithm treats the case where n is a power of two specially: it
    370      * returns the correct number of high-order bits from the underlying
    371      * pseudo-random number generator.  In the absence of special treatment,
    372      * the correct number of <i>low-order</i> bits would be returned.  Linear
    373      * congruential pseudo-random number generators such as the one
    374      * implemented by this class are known to have short periods in the
    375      * sequence of values of their low-order bits.  Thus, this special case
    376      * greatly increases the length of the sequence of values returned by
    377      * successive calls to this method if n is a small power of two.
    378      *
    379      * @param bound the upper bound (exclusive).  Must be positive.
    380      * @return the next pseudorandom, uniformly distributed {@code int}
    381      *         value between zero (inclusive) and {@code bound} (exclusive)
    382      *         from this random number generator's sequence
    383      * @throws IllegalArgumentException if bound is not positive
    384      * @since 1.2
    385      */
    386     public int nextInt(int bound) {
    387         if (bound <= 0)
    388             throw new IllegalArgumentException(BadBound);
    389 
    390         int r = next(31);
    391         int m = bound - 1;
    392         if ((bound & m) == 0)  // i.e., bound is a power of 2
    393             r = (int)((bound * (long)r) >> 31);
    394         else {
    395             for (int u = r;
    396                  u - (r = u % bound) + m < 0;
    397                  u = next(31))
    398                 ;
    399         }
    400         return r;
    401     }
    402 
    403     /**
    404      * Returns the next pseudorandom, uniformly distributed {@code long}
    405      * value from this random number generator's sequence. The general
    406      * contract of {@code nextLong} is that one {@code long} value is
    407      * pseudorandomly generated and returned.
    408      *
    409      * <p>The method {@code nextLong} is implemented by class {@code Random}
    410      * as if by:
    411      *  <pre> {@code
    412      * public long nextLong() {
    413      *   return ((long)next(32) << 32) + next(32);
    414      * }}</pre>
    415      *
    416      * Because class {@code Random} uses a seed with only 48 bits,
    417      * this algorithm will not return all possible {@code long} values.
    418      *
    419      * @return the next pseudorandom, uniformly distributed {@code long}
    420      *         value from this random number generator's sequence
    421      */
    422     public long nextLong() {
    423         // it's okay that the bottom word remains signed.
    424         return ((long)(next(32)) << 32) + next(32);
    425     }
    426 
    427     /**
    428      * Returns the next pseudorandom, uniformly distributed
    429      * {@code boolean} value from this random number generator's
    430      * sequence. The general contract of {@code nextBoolean} is that one
    431      * {@code boolean} value is pseudorandomly generated and returned.  The
    432      * values {@code true} and {@code false} are produced with
    433      * (approximately) equal probability.
    434      *
    435      * <p>The method {@code nextBoolean} is implemented by class {@code Random}
    436      * as if by:
    437      *  <pre> {@code
    438      * public boolean nextBoolean() {
    439      *   return next(1) != 0;
    440      * }}</pre>
    441      *
    442      * @return the next pseudorandom, uniformly distributed
    443      *         {@code boolean} value from this random number generator's
    444      *         sequence
    445      * @since 1.2
    446      */
    447     public boolean nextBoolean() {
    448         return next(1) != 0;
    449     }
    450 
    451     /**
    452      * Returns the next pseudorandom, uniformly distributed {@code float}
    453      * value between {@code 0.0} and {@code 1.0} from this random
    454      * number generator's sequence.
    455      *
    456      * <p>The general contract of {@code nextFloat} is that one
    457      * {@code float} value, chosen (approximately) uniformly from the
    458      * range {@code 0.0f} (inclusive) to {@code 1.0f} (exclusive), is
    459      * pseudorandomly generated and returned. All 2<sup>24</sup> possible
    460      * {@code float} values of the form <i>m&nbsp;x&nbsp;</i>2<sup>-24</sup>,
    461      * where <i>m</i> is a positive integer less than 2<sup>24</sup>, are
    462      * produced with (approximately) equal probability.
    463      *
    464      * <p>The method {@code nextFloat} is implemented by class {@code Random}
    465      * as if by:
    466      *  <pre> {@code
    467      * public float nextFloat() {
    468      *   return next(24) / ((float)(1 << 24));
    469      * }}</pre>
    470      *
    471      * <p>The hedge "approximately" is used in the foregoing description only
    472      * because the next method is only approximately an unbiased source of
    473      * independently chosen bits. If it were a perfect source of randomly
    474      * chosen bits, then the algorithm shown would choose {@code float}
    475      * values from the stated range with perfect uniformity.<p>
    476      * [In early versions of Java, the result was incorrectly calculated as:
    477      *  <pre> {@code
    478      *   return next(30) / ((float)(1 << 30));}</pre>
    479      * This might seem to be equivalent, if not better, but in fact it
    480      * introduced a slight nonuniformity because of the bias in the rounding
    481      * of floating-point numbers: it was slightly more likely that the
    482      * low-order bit of the significand would be 0 than that it would be 1.]
    483      *
    484      * @return the next pseudorandom, uniformly distributed {@code float}
    485      *         value between {@code 0.0} and {@code 1.0} from this
    486      *         random number generator's sequence
    487      */
    488     public float nextFloat() {
    489         return next(24) / ((float)(1 << 24));
    490     }
    491 
    492     /**
    493      * Returns the next pseudorandom, uniformly distributed
    494      * {@code double} value between {@code 0.0} and
    495      * {@code 1.0} from this random number generator's sequence.
    496      *
    497      * <p>The general contract of {@code nextDouble} is that one
    498      * {@code double} value, chosen (approximately) uniformly from the
    499      * range {@code 0.0d} (inclusive) to {@code 1.0d} (exclusive), is
    500      * pseudorandomly generated and returned.
    501      *
    502      * <p>The method {@code nextDouble} is implemented by class {@code Random}
    503      * as if by:
    504      *  <pre> {@code
    505      * public double nextDouble() {
    506      *   return (((long)next(26) << 27) + next(27))
    507      *     / (double)(1L << 53);
    508      * }}</pre>
    509      *
    510      * <p>The hedge "approximately" is used in the foregoing description only
    511      * because the {@code next} method is only approximately an unbiased
    512      * source of independently chosen bits. If it were a perfect source of
    513      * randomly chosen bits, then the algorithm shown would choose
    514      * {@code double} values from the stated range with perfect uniformity.
    515      * <p>[In early versions of Java, the result was incorrectly calculated as:
    516      *  <pre> {@code
    517      *   return (((long)next(27) << 27) + next(27))
    518      *     / (double)(1L << 54);}</pre>
    519      * This might seem to be equivalent, if not better, but in fact it
    520      * introduced a large nonuniformity because of the bias in the rounding
    521      * of floating-point numbers: it was three times as likely that the
    522      * low-order bit of the significand would be 0 than that it would be 1!
    523      * This nonuniformity probably doesn't matter much in practice, but we
    524      * strive for perfection.]
    525      *
    526      * @return the next pseudorandom, uniformly distributed {@code double}
    527      *         value between {@code 0.0} and {@code 1.0} from this
    528      *         random number generator's sequence
    529      * @see Math#random
    530      */
    531     public double nextDouble() {
    532         return (((long)(next(26)) << 27) + next(27)) * DOUBLE_UNIT;
    533     }
    534 
    535     private double nextNextGaussian;
    536     private boolean haveNextNextGaussian = false;
    537 
    538     /**
    539      * Returns the next pseudorandom, Gaussian ("normally") distributed
    540      * {@code double} value with mean {@code 0.0} and standard
    541      * deviation {@code 1.0} from this random number generator's sequence.
    542      * <p>
    543      * The general contract of {@code nextGaussian} is that one
    544      * {@code double} value, chosen from (approximately) the usual
    545      * normal distribution with mean {@code 0.0} and standard deviation
    546      * {@code 1.0}, is pseudorandomly generated and returned.
    547      *
    548      * <p>The method {@code nextGaussian} is implemented by class
    549      * {@code Random} as if by a threadsafe version of the following:
    550      *  <pre> {@code
    551      * private double nextNextGaussian;
    552      * private boolean haveNextNextGaussian = false;
    553      *
    554      * public double nextGaussian() {
    555      *   if (haveNextNextGaussian) {
    556      *     haveNextNextGaussian = false;
    557      *     return nextNextGaussian;
    558      *   } else {
    559      *     double v1, v2, s;
    560      *     do {
    561      *       v1 = 2 * nextDouble() - 1;   // between -1.0 and 1.0
    562      *       v2 = 2 * nextDouble() - 1;   // between -1.0 and 1.0
    563      *       s = v1 * v1 + v2 * v2;
    564      *     } while (s >= 1 || s == 0);
    565      *     double multiplier = StrictMath.sqrt(-2 * StrictMath.log(s)/s);
    566      *     nextNextGaussian = v2 * multiplier;
    567      *     haveNextNextGaussian = true;
    568      *     return v1 * multiplier;
    569      *   }
    570      * }}</pre>
    571      * This uses the <i>polar method</i> of G. E. P. Box, M. E. Muller, and
    572      * G. Marsaglia, as described by Donald E. Knuth in <i>The Art of
    573      * Computer Programming</i>, Volume 3: <i>Seminumerical Algorithms</i>,
    574      * section 3.4.1, subsection C, algorithm P. Note that it generates two
    575      * independent values at the cost of only one call to {@code StrictMath.log}
    576      * and one call to {@code StrictMath.sqrt}.
    577      *
    578      * @return the next pseudorandom, Gaussian ("normally") distributed
    579      *         {@code double} value with mean {@code 0.0} and
    580      *         standard deviation {@code 1.0} from this random number
    581      *         generator's sequence
    582      */
    583     synchronized public double nextGaussian() {
    584         // See Knuth, ACP, Section 3.4.1 Algorithm C.
    585         if (haveNextNextGaussian) {
    586             haveNextNextGaussian = false;
    587             return nextNextGaussian;
    588         } else {
    589             double v1, v2, s;
    590             do {
    591                 v1 = 2 * nextDouble() - 1; // between -1 and 1
    592                 v2 = 2 * nextDouble() - 1; // between -1 and 1
    593                 s = v1 * v1 + v2 * v2;
    594             } while (s >= 1 || s == 0);
    595             double multiplier = StrictMath.sqrt(-2 * StrictMath.log(s)/s);
    596             nextNextGaussian = v2 * multiplier;
    597             haveNextNextGaussian = true;
    598             return v1 * multiplier;
    599         }
    600     }
    601 
    602     // stream methods, coded in a way intended to better isolate for
    603     // maintenance purposes the small differences across forms.
    604 
    605     /**
    606      * Returns a stream producing the given {@code streamSize} number of
    607      * pseudorandom {@code int} values.
    608      *
    609      * <p>A pseudorandom {@code int} value is generated as if it's the result of
    610      * calling the method {@link #nextInt()}.
    611      *
    612      * @param streamSize the number of values to generate
    613      * @return a stream of pseudorandom {@code int} values
    614      * @throws IllegalArgumentException if {@code streamSize} is
    615      *         less than zero
    616      * @since 1.8
    617      */
    618     public IntStream ints(long streamSize) {
    619         if (streamSize < 0L)
    620             throw new IllegalArgumentException(BadSize);
    621         return StreamSupport.intStream
    622                 (new RandomIntsSpliterator
    623                          (this, 0L, streamSize, Integer.MAX_VALUE, 0),
    624                  false);
    625     }
    626 
    627     /**
    628      * Returns an effectively unlimited stream of pseudorandom {@code int}
    629      * values.
    630      *
    631      * <p>A pseudorandom {@code int} value is generated as if it's the result of
    632      * calling the method {@link #nextInt()}.
    633      *
    634      * @implNote This method is implemented to be equivalent to {@code
    635      * ints(Long.MAX_VALUE)}.
    636      *
    637      * @return a stream of pseudorandom {@code int} values
    638      * @since 1.8
    639      */
    640     public IntStream ints() {
    641         return StreamSupport.intStream
    642                 (new RandomIntsSpliterator
    643                          (this, 0L, Long.MAX_VALUE, Integer.MAX_VALUE, 0),
    644                  false);
    645     }
    646 
    647     /**
    648      * Returns a stream producing the given {@code streamSize} number
    649      * of pseudorandom {@code int} values, each conforming to the given
    650      * origin (inclusive) and bound (exclusive).
    651      *
    652      * <p>A pseudorandom {@code int} value is generated as if it's the result of
    653      * calling the following method with the origin and bound:
    654      * <pre> {@code
    655      * int nextInt(int origin, int bound) {
    656      *   int n = bound - origin;
    657      *   if (n > 0) {
    658      *     return nextInt(n) + origin;
    659      *   }
    660      *   else {  // range not representable as int
    661      *     int r;
    662      *     do {
    663      *       r = nextInt();
    664      *     } while (r < origin || r >= bound);
    665      *     return r;
    666      *   }
    667      * }}</pre>
    668      *
    669      * @param streamSize the number of values to generate
    670      * @param randomNumberOrigin the origin (inclusive) of each random value
    671      * @param randomNumberBound the bound (exclusive) of each random value
    672      * @return a stream of pseudorandom {@code int} values,
    673      *         each with the given origin (inclusive) and bound (exclusive)
    674      * @throws IllegalArgumentException if {@code streamSize} is
    675      *         less than zero, or {@code randomNumberOrigin}
    676      *         is greater than or equal to {@code randomNumberBound}
    677      * @since 1.8
    678      */
    679     public IntStream ints(long streamSize, int randomNumberOrigin,
    680                           int randomNumberBound) {
    681         if (streamSize < 0L)
    682             throw new IllegalArgumentException(BadSize);
    683         if (randomNumberOrigin >= randomNumberBound)
    684             throw new IllegalArgumentException(BadRange);
    685         return StreamSupport.intStream
    686                 (new RandomIntsSpliterator
    687                          (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
    688                  false);
    689     }
    690 
    691     /**
    692      * Returns an effectively unlimited stream of pseudorandom {@code
    693      * int} values, each conforming to the given origin (inclusive) and bound
    694      * (exclusive).
    695      *
    696      * <p>A pseudorandom {@code int} value is generated as if it's the result of
    697      * calling the following method with the origin and bound:
    698      * <pre> {@code
    699      * int nextInt(int origin, int bound) {
    700      *   int n = bound - origin;
    701      *   if (n > 0) {
    702      *     return nextInt(n) + origin;
    703      *   }
    704      *   else {  // range not representable as int
    705      *     int r;
    706      *     do {
    707      *       r = nextInt();
    708      *     } while (r < origin || r >= bound);
    709      *     return r;
    710      *   }
    711      * }}</pre>
    712      *
    713      * @implNote This method is implemented to be equivalent to {@code
    714      * ints(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
    715      *
    716      * @param randomNumberOrigin the origin (inclusive) of each random value
    717      * @param randomNumberBound the bound (exclusive) of each random value
    718      * @return a stream of pseudorandom {@code int} values,
    719      *         each with the given origin (inclusive) and bound (exclusive)
    720      * @throws IllegalArgumentException if {@code randomNumberOrigin}
    721      *         is greater than or equal to {@code randomNumberBound}
    722      * @since 1.8
    723      */
    724     public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
    725         if (randomNumberOrigin >= randomNumberBound)
    726             throw new IllegalArgumentException(BadRange);
    727         return StreamSupport.intStream
    728                 (new RandomIntsSpliterator
    729                          (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
    730                  false);
    731     }
    732 
    733     /**
    734      * Returns a stream producing the given {@code streamSize} number of
    735      * pseudorandom {@code long} values.
    736      *
    737      * <p>A pseudorandom {@code long} value is generated as if it's the result
    738      * of calling the method {@link #nextLong()}.
    739      *
    740      * @param streamSize the number of values to generate
    741      * @return a stream of pseudorandom {@code long} values
    742      * @throws IllegalArgumentException if {@code streamSize} is
    743      *         less than zero
    744      * @since 1.8
    745      */
    746     public LongStream longs(long streamSize) {
    747         if (streamSize < 0L)
    748             throw new IllegalArgumentException(BadSize);
    749         return StreamSupport.longStream
    750                 (new RandomLongsSpliterator
    751                          (this, 0L, streamSize, Long.MAX_VALUE, 0L),
    752                  false);
    753     }
    754 
    755     /**
    756      * Returns an effectively unlimited stream of pseudorandom {@code long}
    757      * values.
    758      *
    759      * <p>A pseudorandom {@code long} value is generated as if it's the result
    760      * of calling the method {@link #nextLong()}.
    761      *
    762      * @implNote This method is implemented to be equivalent to {@code
    763      * longs(Long.MAX_VALUE)}.
    764      *
    765      * @return a stream of pseudorandom {@code long} values
    766      * @since 1.8
    767      */
    768     public LongStream longs() {
    769         return StreamSupport.longStream
    770                 (new RandomLongsSpliterator
    771                          (this, 0L, Long.MAX_VALUE, Long.MAX_VALUE, 0L),
    772                  false);
    773     }
    774 
    775     /**
    776      * Returns a stream producing the given {@code streamSize} number of
    777      * pseudorandom {@code long}, each conforming to the given origin
    778      * (inclusive) and bound (exclusive).
    779      *
    780      * <p>A pseudorandom {@code long} value is generated as if it's the result
    781      * of calling the following method with the origin and bound:
    782      * <pre> {@code
    783      * long nextLong(long origin, long bound) {
    784      *   long r = nextLong();
    785      *   long n = bound - origin, m = n - 1;
    786      *   if ((n & m) == 0L)  // power of two
    787      *     r = (r & m) + origin;
    788      *   else if (n > 0L) {  // reject over-represented candidates
    789      *     for (long u = r >>> 1;            // ensure nonnegative
    790      *          u + m - (r = u % n) < 0L;    // rejection check
    791      *          u = nextLong() >>> 1) // retry
    792      *         ;
    793      *     r += origin;
    794      *   }
    795      *   else {              // range not representable as long
    796      *     while (r < origin || r >= bound)
    797      *       r = nextLong();
    798      *   }
    799      *   return r;
    800      * }}</pre>
    801      *
    802      * @param streamSize the number of values to generate
    803      * @param randomNumberOrigin the origin (inclusive) of each random value
    804      * @param randomNumberBound the bound (exclusive) of each random value
    805      * @return a stream of pseudorandom {@code long} values,
    806      *         each with the given origin (inclusive) and bound (exclusive)
    807      * @throws IllegalArgumentException if {@code streamSize} is
    808      *         less than zero, or {@code randomNumberOrigin}
    809      *         is greater than or equal to {@code randomNumberBound}
    810      * @since 1.8
    811      */
    812     public LongStream longs(long streamSize, long randomNumberOrigin,
    813                             long randomNumberBound) {
    814         if (streamSize < 0L)
    815             throw new IllegalArgumentException(BadSize);
    816         if (randomNumberOrigin >= randomNumberBound)
    817             throw new IllegalArgumentException(BadRange);
    818         return StreamSupport.longStream
    819                 (new RandomLongsSpliterator
    820                          (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
    821                  false);
    822     }
    823 
    824     /**
    825      * Returns an effectively unlimited stream of pseudorandom {@code
    826      * long} values, each conforming to the given origin (inclusive) and bound
    827      * (exclusive).
    828      *
    829      * <p>A pseudorandom {@code long} value is generated as if it's the result
    830      * of calling the following method with the origin and bound:
    831      * <pre> {@code
    832      * long nextLong(long origin, long bound) {
    833      *   long r = nextLong();
    834      *   long n = bound - origin, m = n - 1;
    835      *   if ((n & m) == 0L)  // power of two
    836      *     r = (r & m) + origin;
    837      *   else if (n > 0L) {  // reject over-represented candidates
    838      *     for (long u = r >>> 1;            // ensure nonnegative
    839      *          u + m - (r = u % n) < 0L;    // rejection check
    840      *          u = nextLong() >>> 1) // retry
    841      *         ;
    842      *     r += origin;
    843      *   }
    844      *   else {              // range not representable as long
    845      *     while (r < origin || r >= bound)
    846      *       r = nextLong();
    847      *   }
    848      *   return r;
    849      * }}</pre>
    850      *
    851      * @implNote This method is implemented to be equivalent to {@code
    852      * longs(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
    853      *
    854      * @param randomNumberOrigin the origin (inclusive) of each random value
    855      * @param randomNumberBound the bound (exclusive) of each random value
    856      * @return a stream of pseudorandom {@code long} values,
    857      *         each with the given origin (inclusive) and bound (exclusive)
    858      * @throws IllegalArgumentException if {@code randomNumberOrigin}
    859      *         is greater than or equal to {@code randomNumberBound}
    860      * @since 1.8
    861      */
    862     public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
    863         if (randomNumberOrigin >= randomNumberBound)
    864             throw new IllegalArgumentException(BadRange);
    865         return StreamSupport.longStream
    866                 (new RandomLongsSpliterator
    867                          (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
    868                  false);
    869     }
    870 
    871     /**
    872      * Returns a stream producing the given {@code streamSize} number of
    873      * pseudorandom {@code double} values, each between zero
    874      * (inclusive) and one (exclusive).
    875      *
    876      * <p>A pseudorandom {@code double} value is generated as if it's the result
    877      * of calling the method {@link #nextDouble()}.
    878      *
    879      * @param streamSize the number of values to generate
    880      * @return a stream of {@code double} values
    881      * @throws IllegalArgumentException if {@code streamSize} is
    882      *         less than zero
    883      * @since 1.8
    884      */
    885     public DoubleStream doubles(long streamSize) {
    886         if (streamSize < 0L)
    887             throw new IllegalArgumentException(BadSize);
    888         return StreamSupport.doubleStream
    889                 (new RandomDoublesSpliterator
    890                          (this, 0L, streamSize, Double.MAX_VALUE, 0.0),
    891                  false);
    892     }
    893 
    894     /**
    895      * Returns an effectively unlimited stream of pseudorandom {@code
    896      * double} values, each between zero (inclusive) and one
    897      * (exclusive).
    898      *
    899      * <p>A pseudorandom {@code double} value is generated as if it's the result
    900      * of calling the method {@link #nextDouble()}.
    901      *
    902      * @implNote This method is implemented to be equivalent to {@code
    903      * doubles(Long.MAX_VALUE)}.
    904      *
    905      * @return a stream of pseudorandom {@code double} values
    906      * @since 1.8
    907      */
    908     public DoubleStream doubles() {
    909         return StreamSupport.doubleStream
    910                 (new RandomDoublesSpliterator
    911                          (this, 0L, Long.MAX_VALUE, Double.MAX_VALUE, 0.0),
    912                  false);
    913     }
    914 
    915     /**
    916      * Returns a stream producing the given {@code streamSize} number of
    917      * pseudorandom {@code double} values, each conforming to the given origin
    918      * (inclusive) and bound (exclusive).
    919      *
    920      * <p>A pseudorandom {@code double} value is generated as if it's the result
    921      * of calling the following method with the origin and bound:
    922      * <pre> {@code
    923      * double nextDouble(double origin, double bound) {
    924      *   double r = nextDouble();
    925      *   r = r * (bound - origin) + origin;
    926      *   if (r >= bound) // correct for rounding
    927      *     r = Math.nextDown(bound);
    928      *   return r;
    929      * }}</pre>
    930      *
    931      * @param streamSize the number of values to generate
    932      * @param randomNumberOrigin the origin (inclusive) of each random value
    933      * @param randomNumberBound the bound (exclusive) of each random value
    934      * @return a stream of pseudorandom {@code double} values,
    935      *         each with the given origin (inclusive) and bound (exclusive)
    936      * @throws IllegalArgumentException if {@code streamSize} is
    937      *         less than zero
    938      * @throws IllegalArgumentException if {@code randomNumberOrigin}
    939      *         is greater than or equal to {@code randomNumberBound}
    940      * @since 1.8
    941      */
    942     public DoubleStream doubles(long streamSize, double randomNumberOrigin,
    943                                 double randomNumberBound) {
    944         if (streamSize < 0L)
    945             throw new IllegalArgumentException(BadSize);
    946         if (!(randomNumberOrigin < randomNumberBound))
    947             throw new IllegalArgumentException(BadRange);
    948         return StreamSupport.doubleStream
    949                 (new RandomDoublesSpliterator
    950                          (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
    951                  false);
    952     }
    953 
    954     /**
    955      * Returns an effectively unlimited stream of pseudorandom {@code
    956      * double} values, each conforming to the given origin (inclusive) and bound
    957      * (exclusive).
    958      *
    959      * <p>A pseudorandom {@code double} value is generated as if it's the result
    960      * of calling the following method with the origin and bound:
    961      * <pre> {@code
    962      * double nextDouble(double origin, double bound) {
    963      *   double r = nextDouble();
    964      *   r = r * (bound - origin) + origin;
    965      *   if (r >= bound) // correct for rounding
    966      *     r = Math.nextDown(bound);
    967      *   return r;
    968      * }}</pre>
    969      *
    970      * @implNote This method is implemented to be equivalent to {@code
    971      * doubles(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
    972      *
    973      * @param randomNumberOrigin the origin (inclusive) of each random value
    974      * @param randomNumberBound the bound (exclusive) of each random value
    975      * @return a stream of pseudorandom {@code double} values,
    976      *         each with the given origin (inclusive) and bound (exclusive)
    977      * @throws IllegalArgumentException if {@code randomNumberOrigin}
    978      *         is greater than or equal to {@code randomNumberBound}
    979      * @since 1.8
    980      */
    981     public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
    982         if (!(randomNumberOrigin < randomNumberBound))
    983             throw new IllegalArgumentException(BadRange);
    984         return StreamSupport.doubleStream
    985                 (new RandomDoublesSpliterator
    986                          (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
    987                  false);
    988     }
    989 
    990     /**
    991      * Spliterator for int streams.  We multiplex the four int
    992      * versions into one class by treating a bound less than origin as
    993      * unbounded, and also by treating "infinite" as equivalent to
    994      * Long.MAX_VALUE. For splits, it uses the standard divide-by-two
    995      * approach. The long and double versions of this class are
    996      * identical except for types.
    997      */
    998     static final class RandomIntsSpliterator implements Spliterator.OfInt {
    999         final Random rng;
   1000         long index;
   1001         final long fence;
   1002         final int origin;
   1003         final int bound;
   1004         RandomIntsSpliterator(Random rng, long index, long fence,
   1005                               int origin, int bound) {
   1006             this.rng = rng; this.index = index; this.fence = fence;
   1007             this.origin = origin; this.bound = bound;
   1008         }
   1009 
   1010         public RandomIntsSpliterator trySplit() {
   1011             long i = index, m = (i + fence) >>> 1;
   1012             return (m <= i) ? null :
   1013                    new RandomIntsSpliterator(rng, i, index = m, origin, bound);
   1014         }
   1015 
   1016         public long estimateSize() {
   1017             return fence - index;
   1018         }
   1019 
   1020         public int characteristics() {
   1021             return (Spliterator.SIZED | Spliterator.SUBSIZED |
   1022                     Spliterator.NONNULL | Spliterator.IMMUTABLE);
   1023         }
   1024 
   1025         public boolean tryAdvance(IntConsumer consumer) {
   1026             if (consumer == null) throw new NullPointerException();
   1027             long i = index, f = fence;
   1028             if (i < f) {
   1029                 consumer.accept(rng.internalNextInt(origin, bound));
   1030                 index = i + 1;
   1031                 return true;
   1032             }
   1033             return false;
   1034         }
   1035 
   1036         public void forEachRemaining(IntConsumer consumer) {
   1037             if (consumer == null) throw new NullPointerException();
   1038             long i = index, f = fence;
   1039             if (i < f) {
   1040                 index = f;
   1041                 Random r = rng;
   1042                 int o = origin, b = bound;
   1043                 do {
   1044                     consumer.accept(r.internalNextInt(o, b));
   1045                 } while (++i < f);
   1046             }
   1047         }
   1048     }
   1049 
   1050     /**
   1051      * Spliterator for long streams.
   1052      */
   1053     static final class RandomLongsSpliterator implements Spliterator.OfLong {
   1054         final Random rng;
   1055         long index;
   1056         final long fence;
   1057         final long origin;
   1058         final long bound;
   1059         RandomLongsSpliterator(Random rng, long index, long fence,
   1060                                long origin, long bound) {
   1061             this.rng = rng; this.index = index; this.fence = fence;
   1062             this.origin = origin; this.bound = bound;
   1063         }
   1064 
   1065         public RandomLongsSpliterator trySplit() {
   1066             long i = index, m = (i + fence) >>> 1;
   1067             return (m <= i) ? null :
   1068                    new RandomLongsSpliterator(rng, i, index = m, origin, bound);
   1069         }
   1070 
   1071         public long estimateSize() {
   1072             return fence - index;
   1073         }
   1074 
   1075         public int characteristics() {
   1076             return (Spliterator.SIZED | Spliterator.SUBSIZED |
   1077                     Spliterator.NONNULL | Spliterator.IMMUTABLE);
   1078         }
   1079 
   1080         public boolean tryAdvance(LongConsumer consumer) {
   1081             if (consumer == null) throw new NullPointerException();
   1082             long i = index, f = fence;
   1083             if (i < f) {
   1084                 consumer.accept(rng.internalNextLong(origin, bound));
   1085                 index = i + 1;
   1086                 return true;
   1087             }
   1088             return false;
   1089         }
   1090 
   1091         public void forEachRemaining(LongConsumer consumer) {
   1092             if (consumer == null) throw new NullPointerException();
   1093             long i = index, f = fence;
   1094             if (i < f) {
   1095                 index = f;
   1096                 Random r = rng;
   1097                 long o = origin, b = bound;
   1098                 do {
   1099                     consumer.accept(r.internalNextLong(o, b));
   1100                 } while (++i < f);
   1101             }
   1102         }
   1103 
   1104     }
   1105 
   1106     /**
   1107      * Spliterator for double streams.
   1108      */
   1109     static final class RandomDoublesSpliterator implements Spliterator.OfDouble {
   1110         final Random rng;
   1111         long index;
   1112         final long fence;
   1113         final double origin;
   1114         final double bound;
   1115         RandomDoublesSpliterator(Random rng, long index, long fence,
   1116                                  double origin, double bound) {
   1117             this.rng = rng; this.index = index; this.fence = fence;
   1118             this.origin = origin; this.bound = bound;
   1119         }
   1120 
   1121         public RandomDoublesSpliterator trySplit() {
   1122             long i = index, m = (i + fence) >>> 1;
   1123             return (m <= i) ? null :
   1124                    new RandomDoublesSpliterator(rng, i, index = m, origin, bound);
   1125         }
   1126 
   1127         public long estimateSize() {
   1128             return fence - index;
   1129         }
   1130 
   1131         public int characteristics() {
   1132             return (Spliterator.SIZED | Spliterator.SUBSIZED |
   1133                     Spliterator.NONNULL | Spliterator.IMMUTABLE);
   1134         }
   1135 
   1136         public boolean tryAdvance(DoubleConsumer consumer) {
   1137             if (consumer == null) throw new NullPointerException();
   1138             long i = index, f = fence;
   1139             if (i < f) {
   1140                 consumer.accept(rng.internalNextDouble(origin, bound));
   1141                 index = i + 1;
   1142                 return true;
   1143             }
   1144             return false;
   1145         }
   1146 
   1147         public void forEachRemaining(DoubleConsumer consumer) {
   1148             if (consumer == null) throw new NullPointerException();
   1149             long i = index, f = fence;
   1150             if (i < f) {
   1151                 index = f;
   1152                 Random r = rng;
   1153                 double o = origin, b = bound;
   1154                 do {
   1155                     consumer.accept(r.internalNextDouble(o, b));
   1156                 } while (++i < f);
   1157             }
   1158         }
   1159     }
   1160 
   1161     /**
   1162      * Serializable fields for Random.
   1163      *
   1164      * @serialField    seed long
   1165      *              seed for random computations
   1166      * @serialField    nextNextGaussian double
   1167      *              next Gaussian to be returned
   1168      * @serialField      haveNextNextGaussian boolean
   1169      *              nextNextGaussian is valid
   1170      */
   1171     private static final ObjectStreamField[] serialPersistentFields = {
   1172         new ObjectStreamField("seed", Long.TYPE),
   1173         new ObjectStreamField("nextNextGaussian", Double.TYPE),
   1174         new ObjectStreamField("haveNextNextGaussian", Boolean.TYPE)
   1175     };
   1176 
   1177     /**
   1178      * Reconstitute the {@code Random} instance from a stream (that is,
   1179      * deserialize it).
   1180      */
   1181     private void readObject(java.io.ObjectInputStream s)
   1182         throws java.io.IOException, ClassNotFoundException {
   1183 
   1184         ObjectInputStream.GetField fields = s.readFields();
   1185 
   1186         // The seed is read in as {@code long} for
   1187         // historical reasons, but it is converted to an AtomicLong.
   1188         long seedVal = fields.get("seed", -1L);
   1189         if (seedVal < 0)
   1190           throw new java.io.StreamCorruptedException(
   1191                               "Random: invalid seed");
   1192         resetSeed(seedVal);
   1193         nextNextGaussian = fields.get("nextNextGaussian", 0.0);
   1194         haveNextNextGaussian = fields.get("haveNextNextGaussian", false);
   1195     }
   1196 
   1197     /**
   1198      * Save the {@code Random} instance to a stream.
   1199      */
   1200     synchronized private void writeObject(ObjectOutputStream s)
   1201         throws IOException {
   1202 
   1203         // set the values of the Serializable fields
   1204         ObjectOutputStream.PutField fields = s.putFields();
   1205 
   1206         // The seed is serialized as a long for historical reasons.
   1207         fields.put("seed", seed.get());
   1208         fields.put("nextNextGaussian", nextNextGaussian);
   1209         fields.put("haveNextNextGaussian", haveNextNextGaussian);
   1210 
   1211         // save them
   1212         s.writeFields();
   1213     }
   1214 
   1215     // Support for resetting seed while deserializing
   1216     private static final Unsafe unsafe = Unsafe.getUnsafe();
   1217     private static final long seedOffset;
   1218     static {
   1219         try {
   1220             seedOffset = unsafe.objectFieldOffset
   1221                 (Random.class.getDeclaredField("seed"));
   1222         } catch (Exception ex) { throw new Error(ex); }
   1223     }
   1224     private void resetSeed(long seedVal) {
   1225         unsafe.putObjectVolatile(this, seedOffset, new AtomicLong(seedVal));
   1226     }
   1227 }
   1228