Home | History | Annotate | Download | only in concurrent
      1 /*
      2  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
      3  *
      4  * This code is free software; you can redistribute it and/or modify it
      5  * under the terms of the GNU General Public License version 2 only, as
      6  * published by the Free Software Foundation.  Oracle designates this
      7  * particular file as subject to the "Classpath" exception as provided
      8  * by Oracle in the LICENSE file that accompanied this code.
      9  *
     10  * This code is distributed in the hope that it will be useful, but WITHOUT
     11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
     12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
     13  * version 2 for more details (a copy is included in the LICENSE file that
     14  * accompanied this code).
     15  *
     16  * You should have received a copy of the GNU General Public License version
     17  * 2 along with this work; if not, write to the Free Software Foundation,
     18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
     19  *
     20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
     21  * or visit www.oracle.com if you need additional information or have any
     22  * questions.
     23  */
     24 
     25 /*
     26  * This file is available under and governed by the GNU General Public
     27  * License version 2 only, as published by the Free Software Foundation.
     28  * However, the following notice accompanied the original version of this
     29  * file:
     30  *
     31  * Written by Doug Lea with assistance from members of JCP JSR-166
     32  * Expert Group and released to the public domain, as explained at
     33  * http://creativecommons.org/publicdomain/zero/1.0/
     34  */
     35 
     36 package java.util.concurrent;
     37 
     38 import java.io.ObjectStreamField;
     39 import java.util.Random;
     40 import java.util.Spliterator;
     41 import java.util.concurrent.atomic.AtomicInteger;
     42 import java.util.concurrent.atomic.AtomicLong;
     43 import java.util.function.DoubleConsumer;
     44 import java.util.function.IntConsumer;
     45 import java.util.function.LongConsumer;
     46 import java.util.stream.DoubleStream;
     47 import java.util.stream.IntStream;
     48 import java.util.stream.LongStream;
     49 import java.util.stream.StreamSupport;
     50 
     51 /**
     52  * A random number generator isolated to the current thread.  Like the
     53  * global {@link java.util.Random} generator used by the {@link
     54  * java.lang.Math} class, a {@code ThreadLocalRandom} is initialized
     55  * with an internally generated seed that may not otherwise be
     56  * modified. When applicable, use of {@code ThreadLocalRandom} rather
     57  * than shared {@code Random} objects in concurrent programs will
     58  * typically encounter much less overhead and contention.  Use of
     59  * {@code ThreadLocalRandom} is particularly appropriate when multiple
     60  * tasks (for example, each a {@link ForkJoinTask}) use random numbers
     61  * in parallel in thread pools.
     62  *
     63  * <p>Usages of this class should typically be of the form:
     64  * {@code ThreadLocalRandom.current().nextX(...)} (where
     65  * {@code X} is {@code Int}, {@code Long}, etc).
     66  * When all usages are of this form, it is never possible to
     67  * accidently share a {@code ThreadLocalRandom} across multiple threads.
     68  *
     69  * <p>This class also provides additional commonly used bounded random
     70  * generation methods.
     71  *
     72  * <p>Instances of {@code ThreadLocalRandom} are not cryptographically
     73  * secure.  Consider instead using {@link java.security.SecureRandom}
     74  * in security-sensitive applications. Additionally,
     75  * default-constructed instances do not use a cryptographically random
     76  * seed unless the {@linkplain System#getProperty system property}
     77  * {@code java.util.secureRandomSeed} is set to {@code true}.
     78  *
     79  * @since 1.7
     80  * @author Doug Lea
     81  */
     82 public class ThreadLocalRandom extends Random {
     83     /*
     84      * This class implements the java.util.Random API (and subclasses
     85      * Random) using a single static instance that accesses random
     86      * number state held in class Thread (primarily, field
     87      * threadLocalRandomSeed). In doing so, it also provides a home
     88      * for managing package-private utilities that rely on exactly the
     89      * same state as needed to maintain the ThreadLocalRandom
     90      * instances. We leverage the need for an initialization flag
     91      * field to also use it as a "probe" -- a self-adjusting thread
     92      * hash used for contention avoidance, as well as a secondary
     93      * simpler (xorShift) random seed that is conservatively used to
     94      * avoid otherwise surprising users by hijacking the
     95      * ThreadLocalRandom sequence.  The dual use is a marriage of
     96      * convenience, but is a simple and efficient way of reducing
     97      * application-level overhead and footprint of most concurrent
     98      * programs.
     99      *
    100      * Even though this class subclasses java.util.Random, it uses the
    101      * same basic algorithm as java.util.SplittableRandom.  (See its
    102      * internal documentation for explanations, which are not repeated
    103      * here.)  Because ThreadLocalRandoms are not splittable
    104      * though, we use only a single 64bit gamma.
    105      *
    106      * Because this class is in a different package than class Thread,
    107      * field access methods use Unsafe to bypass access control rules.
    108      * To conform to the requirements of the Random superclass
    109      * constructor, the common static ThreadLocalRandom maintains an
    110      * "initialized" field for the sake of rejecting user calls to
    111      * setSeed while still allowing a call from constructor.  Note
    112      * that serialization is completely unnecessary because there is
    113      * only a static singleton.  But we generate a serial form
    114      * containing "rnd" and "initialized" fields to ensure
    115      * compatibility across versions.
    116      *
    117      * Implementations of non-core methods are mostly the same as in
    118      * SplittableRandom, that were in part derived from a previous
    119      * version of this class.
    120      *
    121      * The nextLocalGaussian ThreadLocal supports the very rarely used
    122      * nextGaussian method by providing a holder for the second of a
    123      * pair of them. As is true for the base class version of this
    124      * method, this time/space tradeoff is probably never worthwhile,
    125      * but we provide identical statistical properties.
    126      */
    127 
    128     private static long mix64(long z) {
    129         z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL;
    130         z = (z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L;
    131         return z ^ (z >>> 33);
    132     }
    133 
    134     private static int mix32(long z) {
    135         z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL;
    136         return (int)(((z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L) >>> 32);
    137     }
    138 
    139     /**
    140      * Field used only during singleton initialization.
    141      * True when constructor completes.
    142      */
    143     boolean initialized;
    144 
    145     /** Constructor used only for static singleton */
    146     private ThreadLocalRandom() {
    147         initialized = true; // false during super() call
    148     }
    149 
    150     /**
    151      * Initialize Thread fields for the current thread.  Called only
    152      * when Thread.threadLocalRandomProbe is zero, indicating that a
    153      * thread local seed value needs to be generated. Note that even
    154      * though the initialization is purely thread-local, we need to
    155      * rely on (static) atomic generators to initialize the values.
    156      */
    157     static final void localInit() {
    158         int p = probeGenerator.addAndGet(PROBE_INCREMENT);
    159         int probe = (p == 0) ? 1 : p; // skip 0
    160         long seed = mix64(seeder.getAndAdd(SEEDER_INCREMENT));
    161         Thread t = Thread.currentThread();
    162         U.putLong(t, SEED, seed);
    163         U.putInt(t, PROBE, probe);
    164     }
    165 
    166     /**
    167      * Returns the current thread's {@code ThreadLocalRandom}.
    168      *
    169      * @return the current thread's {@code ThreadLocalRandom}
    170      */
    171     public static ThreadLocalRandom current() {
    172         if (U.getInt(Thread.currentThread(), PROBE) == 0)
    173             localInit();
    174         return instance;
    175     }
    176 
    177     /**
    178      * Throws {@code UnsupportedOperationException}.  Setting seeds in
    179      * this generator is not supported.
    180      *
    181      * @throws UnsupportedOperationException always
    182      */
    183     public void setSeed(long seed) {
    184         // only allow call from super() constructor
    185         if (initialized)
    186             throw new UnsupportedOperationException();
    187     }
    188 
    189     final long nextSeed() {
    190         Thread t; long r; // read and update per-thread seed
    191         U.putLong(t = Thread.currentThread(), SEED,
    192                   r = U.getLong(t, SEED) + GAMMA);
    193         return r;
    194     }
    195 
    196     // We must define this, but never use it.
    197     protected int next(int bits) {
    198         return (int)(mix64(nextSeed()) >>> (64 - bits));
    199     }
    200 
    201     /**
    202      * The form of nextLong used by LongStream Spliterators.  If
    203      * origin is greater than bound, acts as unbounded form of
    204      * nextLong, else as bounded form.
    205      *
    206      * @param origin the least value, unless greater than bound
    207      * @param bound the upper bound (exclusive), must not equal origin
    208      * @return a pseudorandom value
    209      */
    210     final long internalNextLong(long origin, long bound) {
    211         long r = mix64(nextSeed());
    212         if (origin < bound) {
    213             long n = bound - origin, m = n - 1;
    214             if ((n & m) == 0L)  // power of two
    215                 r = (r & m) + origin;
    216             else if (n > 0L) {  // reject over-represented candidates
    217                 for (long u = r >>> 1;            // ensure nonnegative
    218                      u + m - (r = u % n) < 0L;    // rejection check
    219                      u = mix64(nextSeed()) >>> 1) // retry
    220                     ;
    221                 r += origin;
    222             }
    223             else {              // range not representable as long
    224                 while (r < origin || r >= bound)
    225                     r = mix64(nextSeed());
    226             }
    227         }
    228         return r;
    229     }
    230 
    231     /**
    232      * The form of nextInt used by IntStream Spliterators.
    233      * Exactly the same as long version, except for types.
    234      *
    235      * @param origin the least value, unless greater than bound
    236      * @param bound the upper bound (exclusive), must not equal origin
    237      * @return a pseudorandom value
    238      */
    239     final int internalNextInt(int origin, int bound) {
    240         int r = mix32(nextSeed());
    241         if (origin < bound) {
    242             int n = bound - origin, m = n - 1;
    243             if ((n & m) == 0)
    244                 r = (r & m) + origin;
    245             else if (n > 0) {
    246                 for (int u = r >>> 1;
    247                      u + m - (r = u % n) < 0;
    248                      u = mix32(nextSeed()) >>> 1)
    249                     ;
    250                 r += origin;
    251             }
    252             else {
    253                 while (r < origin || r >= bound)
    254                     r = mix32(nextSeed());
    255             }
    256         }
    257         return r;
    258     }
    259 
    260     /**
    261      * The form of nextDouble used by DoubleStream Spliterators.
    262      *
    263      * @param origin the least value, unless greater than bound
    264      * @param bound the upper bound (exclusive), must not equal origin
    265      * @return a pseudorandom value
    266      */
    267     final double internalNextDouble(double origin, double bound) {
    268         double r = (nextLong() >>> 11) * DOUBLE_UNIT;
    269         if (origin < bound) {
    270             r = r * (bound - origin) + origin;
    271             if (r >= bound) // correct for rounding
    272                 r = Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
    273         }
    274         return r;
    275     }
    276 
    277     /**
    278      * Returns a pseudorandom {@code int} value.
    279      *
    280      * @return a pseudorandom {@code int} value
    281      */
    282     public int nextInt() {
    283         return mix32(nextSeed());
    284     }
    285 
    286     /**
    287      * Returns a pseudorandom {@code int} value between zero (inclusive)
    288      * and the specified bound (exclusive).
    289      *
    290      * @param bound the upper bound (exclusive).  Must be positive.
    291      * @return a pseudorandom {@code int} value between zero
    292      *         (inclusive) and the bound (exclusive)
    293      * @throws IllegalArgumentException if {@code bound} is not positive
    294      */
    295     public int nextInt(int bound) {
    296         if (bound <= 0)
    297             throw new IllegalArgumentException(BAD_BOUND);
    298         int r = mix32(nextSeed());
    299         int m = bound - 1;
    300         if ((bound & m) == 0) // power of two
    301             r &= m;
    302         else { // reject over-represented candidates
    303             for (int u = r >>> 1;
    304                  u + m - (r = u % bound) < 0;
    305                  u = mix32(nextSeed()) >>> 1)
    306                 ;
    307         }
    308         return r;
    309     }
    310 
    311     /**
    312      * Returns a pseudorandom {@code int} value between the specified
    313      * origin (inclusive) and the specified bound (exclusive).
    314      *
    315      * @param origin the least value returned
    316      * @param bound the upper bound (exclusive)
    317      * @return a pseudorandom {@code int} value between the origin
    318      *         (inclusive) and the bound (exclusive)
    319      * @throws IllegalArgumentException if {@code origin} is greater than
    320      *         or equal to {@code bound}
    321      */
    322     public int nextInt(int origin, int bound) {
    323         if (origin >= bound)
    324             throw new IllegalArgumentException(BAD_RANGE);
    325         return internalNextInt(origin, bound);
    326     }
    327 
    328     /**
    329      * Returns a pseudorandom {@code long} value.
    330      *
    331      * @return a pseudorandom {@code long} value
    332      */
    333     public long nextLong() {
    334         return mix64(nextSeed());
    335     }
    336 
    337     /**
    338      * Returns a pseudorandom {@code long} value between zero (inclusive)
    339      * and the specified bound (exclusive).
    340      *
    341      * @param bound the upper bound (exclusive).  Must be positive.
    342      * @return a pseudorandom {@code long} value between zero
    343      *         (inclusive) and the bound (exclusive)
    344      * @throws IllegalArgumentException if {@code bound} is not positive
    345      */
    346     public long nextLong(long bound) {
    347         if (bound <= 0)
    348             throw new IllegalArgumentException(BAD_BOUND);
    349         long r = mix64(nextSeed());
    350         long m = bound - 1;
    351         if ((bound & m) == 0L) // power of two
    352             r &= m;
    353         else { // reject over-represented candidates
    354             for (long u = r >>> 1;
    355                  u + m - (r = u % bound) < 0L;
    356                  u = mix64(nextSeed()) >>> 1)
    357                 ;
    358         }
    359         return r;
    360     }
    361 
    362     /**
    363      * Returns a pseudorandom {@code long} value between the specified
    364      * origin (inclusive) and the specified bound (exclusive).
    365      *
    366      * @param origin the least value returned
    367      * @param bound the upper bound (exclusive)
    368      * @return a pseudorandom {@code long} value between the origin
    369      *         (inclusive) and the bound (exclusive)
    370      * @throws IllegalArgumentException if {@code origin} is greater than
    371      *         or equal to {@code bound}
    372      */
    373     public long nextLong(long origin, long bound) {
    374         if (origin >= bound)
    375             throw new IllegalArgumentException(BAD_RANGE);
    376         return internalNextLong(origin, bound);
    377     }
    378 
    379     /**
    380      * Returns a pseudorandom {@code double} value between zero
    381      * (inclusive) and one (exclusive).
    382      *
    383      * @return a pseudorandom {@code double} value between zero
    384      *         (inclusive) and one (exclusive)
    385      */
    386     public double nextDouble() {
    387         return (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT;
    388     }
    389 
    390     /**
    391      * Returns a pseudorandom {@code double} value between 0.0
    392      * (inclusive) and the specified bound (exclusive).
    393      *
    394      * @param bound the upper bound (exclusive).  Must be positive.
    395      * @return a pseudorandom {@code double} value between zero
    396      *         (inclusive) and the bound (exclusive)
    397      * @throws IllegalArgumentException if {@code bound} is not positive
    398      */
    399     public double nextDouble(double bound) {
    400         if (!(bound > 0.0))
    401             throw new IllegalArgumentException(BAD_BOUND);
    402         double result = (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT * bound;
    403         return (result < bound) ? result : // correct for rounding
    404             Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
    405     }
    406 
    407     /**
    408      * Returns a pseudorandom {@code double} value between the specified
    409      * origin (inclusive) and bound (exclusive).
    410      *
    411      * @param origin the least value returned
    412      * @param bound the upper bound (exclusive)
    413      * @return a pseudorandom {@code double} value between the origin
    414      *         (inclusive) and the bound (exclusive)
    415      * @throws IllegalArgumentException if {@code origin} is greater than
    416      *         or equal to {@code bound}
    417      */
    418     public double nextDouble(double origin, double bound) {
    419         if (!(origin < bound))
    420             throw new IllegalArgumentException(BAD_RANGE);
    421         return internalNextDouble(origin, bound);
    422     }
    423 
    424     /**
    425      * Returns a pseudorandom {@code boolean} value.
    426      *
    427      * @return a pseudorandom {@code boolean} value
    428      */
    429     public boolean nextBoolean() {
    430         return mix32(nextSeed()) < 0;
    431     }
    432 
    433     /**
    434      * Returns a pseudorandom {@code float} value between zero
    435      * (inclusive) and one (exclusive).
    436      *
    437      * @return a pseudorandom {@code float} value between zero
    438      *         (inclusive) and one (exclusive)
    439      */
    440     public float nextFloat() {
    441         return (mix32(nextSeed()) >>> 8) * FLOAT_UNIT;
    442     }
    443 
    444     public double nextGaussian() {
    445         // Use nextLocalGaussian instead of nextGaussian field
    446         Double d = nextLocalGaussian.get();
    447         if (d != null) {
    448             nextLocalGaussian.set(null);
    449             return d.doubleValue();
    450         }
    451         double v1, v2, s;
    452         do {
    453             v1 = 2 * nextDouble() - 1; // between -1 and 1
    454             v2 = 2 * nextDouble() - 1; // between -1 and 1
    455             s = v1 * v1 + v2 * v2;
    456         } while (s >= 1 || s == 0);
    457         double multiplier = StrictMath.sqrt(-2 * StrictMath.log(s)/s);
    458         nextLocalGaussian.set(new Double(v2 * multiplier));
    459         return v1 * multiplier;
    460     }
    461 
    462     // stream methods, coded in a way intended to better isolate for
    463     // maintenance purposes the small differences across forms.
    464     /**
    465      * Returns a stream producing the given {@code streamSize} number of
    466      * pseudorandom {@code int} values.
    467      *
    468      * @param streamSize the number of values to generate
    469      * @return a stream of pseudorandom {@code int} values
    470      * @throws IllegalArgumentException if {@code streamSize} is
    471      *         less than zero
    472      * @since 1.8
    473      */
    474     public IntStream ints(long streamSize) {
    475         if (streamSize < 0L)
    476             throw new IllegalArgumentException(BAD_SIZE);
    477         return StreamSupport.intStream
    478             (new RandomIntsSpliterator
    479              (0L, streamSize, Integer.MAX_VALUE, 0),
    480              false);
    481     }
    482 
    483     /**
    484      * Returns an effectively unlimited stream of pseudorandom {@code int}
    485      * values.
    486      *
    487      * @implNote This method is implemented to be equivalent to {@code
    488      * ints(Long.MAX_VALUE)}.
    489      *
    490      * @return a stream of pseudorandom {@code int} values
    491      * @since 1.8
    492      */
    493     public IntStream ints() {
    494         return StreamSupport.intStream
    495             (new RandomIntsSpliterator
    496              (0L, Long.MAX_VALUE, Integer.MAX_VALUE, 0),
    497              false);
    498     }
    499 
    500     /**
    501      * Returns a stream producing the given {@code streamSize} number
    502      * of pseudorandom {@code int} values, each conforming to the given
    503      * origin (inclusive) and bound (exclusive).
    504      *
    505      * @param streamSize the number of values to generate
    506      * @param randomNumberOrigin the origin (inclusive) of each random value
    507      * @param randomNumberBound the bound (exclusive) of each random value
    508      * @return a stream of pseudorandom {@code int} values,
    509      *         each with the given origin (inclusive) and bound (exclusive)
    510      * @throws IllegalArgumentException if {@code streamSize} is
    511      *         less than zero, or {@code randomNumberOrigin}
    512      *         is greater than or equal to {@code randomNumberBound}
    513      * @since 1.8
    514      */
    515     public IntStream ints(long streamSize, int randomNumberOrigin,
    516                           int randomNumberBound) {
    517         if (streamSize < 0L)
    518             throw new IllegalArgumentException(BAD_SIZE);
    519         if (randomNumberOrigin >= randomNumberBound)
    520             throw new IllegalArgumentException(BAD_RANGE);
    521         return StreamSupport.intStream
    522             (new RandomIntsSpliterator
    523              (0L, streamSize, randomNumberOrigin, randomNumberBound),
    524              false);
    525     }
    526 
    527     /**
    528      * Returns an effectively unlimited stream of pseudorandom {@code
    529      * int} values, each conforming to the given origin (inclusive) and bound
    530      * (exclusive).
    531      *
    532      * @implNote This method is implemented to be equivalent to {@code
    533      * ints(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
    534      *
    535      * @param randomNumberOrigin the origin (inclusive) of each random value
    536      * @param randomNumberBound the bound (exclusive) of each random value
    537      * @return a stream of pseudorandom {@code int} values,
    538      *         each with the given origin (inclusive) and bound (exclusive)
    539      * @throws IllegalArgumentException if {@code randomNumberOrigin}
    540      *         is greater than or equal to {@code randomNumberBound}
    541      * @since 1.8
    542      */
    543     public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
    544         if (randomNumberOrigin >= randomNumberBound)
    545             throw new IllegalArgumentException(BAD_RANGE);
    546         return StreamSupport.intStream
    547             (new RandomIntsSpliterator
    548              (0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
    549              false);
    550     }
    551 
    552     /**
    553      * Returns a stream producing the given {@code streamSize} number of
    554      * pseudorandom {@code long} values.
    555      *
    556      * @param streamSize the number of values to generate
    557      * @return a stream of pseudorandom {@code long} values
    558      * @throws IllegalArgumentException if {@code streamSize} is
    559      *         less than zero
    560      * @since 1.8
    561      */
    562     public LongStream longs(long streamSize) {
    563         if (streamSize < 0L)
    564             throw new IllegalArgumentException(BAD_SIZE);
    565         return StreamSupport.longStream
    566             (new RandomLongsSpliterator
    567              (0L, streamSize, Long.MAX_VALUE, 0L),
    568              false);
    569     }
    570 
    571     /**
    572      * Returns an effectively unlimited stream of pseudorandom {@code long}
    573      * values.
    574      *
    575      * @implNote This method is implemented to be equivalent to {@code
    576      * longs(Long.MAX_VALUE)}.
    577      *
    578      * @return a stream of pseudorandom {@code long} values
    579      * @since 1.8
    580      */
    581     public LongStream longs() {
    582         return StreamSupport.longStream
    583             (new RandomLongsSpliterator
    584              (0L, Long.MAX_VALUE, Long.MAX_VALUE, 0L),
    585              false);
    586     }
    587 
    588     /**
    589      * Returns a stream producing the given {@code streamSize} number of
    590      * pseudorandom {@code long}, each conforming to the given origin
    591      * (inclusive) and bound (exclusive).
    592      *
    593      * @param streamSize the number of values to generate
    594      * @param randomNumberOrigin the origin (inclusive) of each random value
    595      * @param randomNumberBound the bound (exclusive) of each random value
    596      * @return a stream of pseudorandom {@code long} values,
    597      *         each with the given origin (inclusive) and bound (exclusive)
    598      * @throws IllegalArgumentException if {@code streamSize} is
    599      *         less than zero, or {@code randomNumberOrigin}
    600      *         is greater than or equal to {@code randomNumberBound}
    601      * @since 1.8
    602      */
    603     public LongStream longs(long streamSize, long randomNumberOrigin,
    604                             long randomNumberBound) {
    605         if (streamSize < 0L)
    606             throw new IllegalArgumentException(BAD_SIZE);
    607         if (randomNumberOrigin >= randomNumberBound)
    608             throw new IllegalArgumentException(BAD_RANGE);
    609         return StreamSupport.longStream
    610             (new RandomLongsSpliterator
    611              (0L, streamSize, randomNumberOrigin, randomNumberBound),
    612              false);
    613     }
    614 
    615     /**
    616      * Returns an effectively unlimited stream of pseudorandom {@code
    617      * long} values, each conforming to the given origin (inclusive) and bound
    618      * (exclusive).
    619      *
    620      * @implNote This method is implemented to be equivalent to {@code
    621      * longs(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
    622      *
    623      * @param randomNumberOrigin the origin (inclusive) of each random value
    624      * @param randomNumberBound the bound (exclusive) of each random value
    625      * @return a stream of pseudorandom {@code long} values,
    626      *         each with the given origin (inclusive) and bound (exclusive)
    627      * @throws IllegalArgumentException if {@code randomNumberOrigin}
    628      *         is greater than or equal to {@code randomNumberBound}
    629      * @since 1.8
    630      */
    631     public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
    632         if (randomNumberOrigin >= randomNumberBound)
    633             throw new IllegalArgumentException(BAD_RANGE);
    634         return StreamSupport.longStream
    635             (new RandomLongsSpliterator
    636              (0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
    637              false);
    638     }
    639 
    640     /**
    641      * Returns a stream producing the given {@code streamSize} number of
    642      * pseudorandom {@code double} values, each between zero
    643      * (inclusive) and one (exclusive).
    644      *
    645      * @param streamSize the number of values to generate
    646      * @return a stream of {@code double} values
    647      * @throws IllegalArgumentException if {@code streamSize} is
    648      *         less than zero
    649      * @since 1.8
    650      */
    651     public DoubleStream doubles(long streamSize) {
    652         if (streamSize < 0L)
    653             throw new IllegalArgumentException(BAD_SIZE);
    654         return StreamSupport.doubleStream
    655             (new RandomDoublesSpliterator
    656              (0L, streamSize, Double.MAX_VALUE, 0.0),
    657              false);
    658     }
    659 
    660     /**
    661      * Returns an effectively unlimited stream of pseudorandom {@code
    662      * double} values, each between zero (inclusive) and one
    663      * (exclusive).
    664      *
    665      * @implNote This method is implemented to be equivalent to {@code
    666      * doubles(Long.MAX_VALUE)}.
    667      *
    668      * @return a stream of pseudorandom {@code double} values
    669      * @since 1.8
    670      */
    671     public DoubleStream doubles() {
    672         return StreamSupport.doubleStream
    673             (new RandomDoublesSpliterator
    674              (0L, Long.MAX_VALUE, Double.MAX_VALUE, 0.0),
    675              false);
    676     }
    677 
    678     /**
    679      * Returns a stream producing the given {@code streamSize} number of
    680      * pseudorandom {@code double} values, each conforming to the given origin
    681      * (inclusive) and bound (exclusive).
    682      *
    683      * @param streamSize the number of values to generate
    684      * @param randomNumberOrigin the origin (inclusive) of each random value
    685      * @param randomNumberBound the bound (exclusive) of each random value
    686      * @return a stream of pseudorandom {@code double} values,
    687      *         each with the given origin (inclusive) and bound (exclusive)
    688      * @throws IllegalArgumentException if {@code streamSize} is
    689      *         less than zero
    690      * @throws IllegalArgumentException if {@code randomNumberOrigin}
    691      *         is greater than or equal to {@code randomNumberBound}
    692      * @since 1.8
    693      */
    694     public DoubleStream doubles(long streamSize, double randomNumberOrigin,
    695                                 double randomNumberBound) {
    696         if (streamSize < 0L)
    697             throw new IllegalArgumentException(BAD_SIZE);
    698         if (!(randomNumberOrigin < randomNumberBound))
    699             throw new IllegalArgumentException(BAD_RANGE);
    700         return StreamSupport.doubleStream
    701             (new RandomDoublesSpliterator
    702              (0L, streamSize, randomNumberOrigin, randomNumberBound),
    703              false);
    704     }
    705 
    706     /**
    707      * Returns an effectively unlimited stream of pseudorandom {@code
    708      * double} values, each conforming to the given origin (inclusive) and bound
    709      * (exclusive).
    710      *
    711      * @implNote This method is implemented to be equivalent to {@code
    712      * doubles(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
    713      *
    714      * @param randomNumberOrigin the origin (inclusive) of each random value
    715      * @param randomNumberBound the bound (exclusive) of each random value
    716      * @return a stream of pseudorandom {@code double} values,
    717      *         each with the given origin (inclusive) and bound (exclusive)
    718      * @throws IllegalArgumentException if {@code randomNumberOrigin}
    719      *         is greater than or equal to {@code randomNumberBound}
    720      * @since 1.8
    721      */
    722     public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
    723         if (!(randomNumberOrigin < randomNumberBound))
    724             throw new IllegalArgumentException(BAD_RANGE);
    725         return StreamSupport.doubleStream
    726             (new RandomDoublesSpliterator
    727              (0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
    728              false);
    729     }
    730 
    731     /**
    732      * Spliterator for int streams.  We multiplex the four int
    733      * versions into one class by treating a bound less than origin as
    734      * unbounded, and also by treating "infinite" as equivalent to
    735      * Long.MAX_VALUE. For splits, it uses the standard divide-by-two
    736      * approach. The long and double versions of this class are
    737      * identical except for types.
    738      */
    739     private static final class RandomIntsSpliterator
    740             implements Spliterator.OfInt {
    741         long index;
    742         final long fence;
    743         final int origin;
    744         final int bound;
    745         RandomIntsSpliterator(long index, long fence,
    746                               int origin, int bound) {
    747             this.index = index; this.fence = fence;
    748             this.origin = origin; this.bound = bound;
    749         }
    750 
    751         public RandomIntsSpliterator trySplit() {
    752             long i = index, m = (i + fence) >>> 1;
    753             return (m <= i) ? null :
    754                 new RandomIntsSpliterator(i, index = m, origin, bound);
    755         }
    756 
    757         public long estimateSize() {
    758             return fence - index;
    759         }
    760 
    761         public int characteristics() {
    762             return (Spliterator.SIZED | Spliterator.SUBSIZED |
    763                     Spliterator.NONNULL | Spliterator.IMMUTABLE);
    764         }
    765 
    766         public boolean tryAdvance(IntConsumer consumer) {
    767             if (consumer == null) throw new NullPointerException();
    768             long i = index, f = fence;
    769             if (i < f) {
    770                 consumer.accept(ThreadLocalRandom.current().internalNextInt(origin, bound));
    771                 index = i + 1;
    772                 return true;
    773             }
    774             return false;
    775         }
    776 
    777         public void forEachRemaining(IntConsumer consumer) {
    778             if (consumer == null) throw new NullPointerException();
    779             long i = index, f = fence;
    780             if (i < f) {
    781                 index = f;
    782                 int o = origin, b = bound;
    783                 ThreadLocalRandom rng = ThreadLocalRandom.current();
    784                 do {
    785                     consumer.accept(rng.internalNextInt(o, b));
    786                 } while (++i < f);
    787             }
    788         }
    789     }
    790 
    791     /**
    792      * Spliterator for long streams.
    793      */
    794     private static final class RandomLongsSpliterator
    795             implements Spliterator.OfLong {
    796         long index;
    797         final long fence;
    798         final long origin;
    799         final long bound;
    800         RandomLongsSpliterator(long index, long fence,
    801                                long origin, long bound) {
    802             this.index = index; this.fence = fence;
    803             this.origin = origin; this.bound = bound;
    804         }
    805 
    806         public RandomLongsSpliterator trySplit() {
    807             long i = index, m = (i + fence) >>> 1;
    808             return (m <= i) ? null :
    809                 new RandomLongsSpliterator(i, index = m, origin, bound);
    810         }
    811 
    812         public long estimateSize() {
    813             return fence - index;
    814         }
    815 
    816         public int characteristics() {
    817             return (Spliterator.SIZED | Spliterator.SUBSIZED |
    818                     Spliterator.NONNULL | Spliterator.IMMUTABLE);
    819         }
    820 
    821         public boolean tryAdvance(LongConsumer consumer) {
    822             if (consumer == null) throw new NullPointerException();
    823             long i = index, f = fence;
    824             if (i < f) {
    825                 consumer.accept(ThreadLocalRandom.current().internalNextLong(origin, bound));
    826                 index = i + 1;
    827                 return true;
    828             }
    829             return false;
    830         }
    831 
    832         public void forEachRemaining(LongConsumer consumer) {
    833             if (consumer == null) throw new NullPointerException();
    834             long i = index, f = fence;
    835             if (i < f) {
    836                 index = f;
    837                 long o = origin, b = bound;
    838                 ThreadLocalRandom rng = ThreadLocalRandom.current();
    839                 do {
    840                     consumer.accept(rng.internalNextLong(o, b));
    841                 } while (++i < f);
    842             }
    843         }
    844 
    845     }
    846 
    847     /**
    848      * Spliterator for double streams.
    849      */
    850     private static final class RandomDoublesSpliterator
    851             implements Spliterator.OfDouble {
    852         long index;
    853         final long fence;
    854         final double origin;
    855         final double bound;
    856         RandomDoublesSpliterator(long index, long fence,
    857                                  double origin, double bound) {
    858             this.index = index; this.fence = fence;
    859             this.origin = origin; this.bound = bound;
    860         }
    861 
    862         public RandomDoublesSpliterator trySplit() {
    863             long i = index, m = (i + fence) >>> 1;
    864             return (m <= i) ? null :
    865                 new RandomDoublesSpliterator(i, index = m, origin, bound);
    866         }
    867 
    868         public long estimateSize() {
    869             return fence - index;
    870         }
    871 
    872         public int characteristics() {
    873             return (Spliterator.SIZED | Spliterator.SUBSIZED |
    874                     Spliterator.NONNULL | Spliterator.IMMUTABLE);
    875         }
    876 
    877         public boolean tryAdvance(DoubleConsumer consumer) {
    878             if (consumer == null) throw new NullPointerException();
    879             long i = index, f = fence;
    880             if (i < f) {
    881                 consumer.accept(ThreadLocalRandom.current().internalNextDouble(origin, bound));
    882                 index = i + 1;
    883                 return true;
    884             }
    885             return false;
    886         }
    887 
    888         public void forEachRemaining(DoubleConsumer consumer) {
    889             if (consumer == null) throw new NullPointerException();
    890             long i = index, f = fence;
    891             if (i < f) {
    892                 index = f;
    893                 double o = origin, b = bound;
    894                 ThreadLocalRandom rng = ThreadLocalRandom.current();
    895                 do {
    896                     consumer.accept(rng.internalNextDouble(o, b));
    897                 } while (++i < f);
    898             }
    899         }
    900     }
    901 
    902 
    903     // Within-package utilities
    904 
    905     /*
    906      * Descriptions of the usages of the methods below can be found in
    907      * the classes that use them. Briefly, a thread's "probe" value is
    908      * a non-zero hash code that (probably) does not collide with
    909      * other existing threads with respect to any power of two
    910      * collision space. When it does collide, it is pseudo-randomly
    911      * adjusted (using a Marsaglia XorShift). The nextSecondarySeed
    912      * method is used in the same contexts as ThreadLocalRandom, but
    913      * only for transient usages such as random adaptive spin/block
    914      * sequences for which a cheap RNG suffices and for which it could
    915      * in principle disrupt user-visible statistical properties of the
    916      * main ThreadLocalRandom if we were to use it.
    917      *
    918      * Note: Because of package-protection issues, versions of some
    919      * these methods also appear in some subpackage classes.
    920      */
    921 
    922     /**
    923      * Returns the probe value for the current thread without forcing
    924      * initialization. Note that invoking ThreadLocalRandom.current()
    925      * can be used to force initialization on zero return.
    926      */
    927     static final int getProbe() {
    928         return U.getInt(Thread.currentThread(), PROBE);
    929     }
    930 
    931     /**
    932      * Pseudo-randomly advances and records the given probe value for the
    933      * given thread.
    934      */
    935     static final int advanceProbe(int probe) {
    936         probe ^= probe << 13;   // xorshift
    937         probe ^= probe >>> 17;
    938         probe ^= probe << 5;
    939         U.putInt(Thread.currentThread(), PROBE, probe);
    940         return probe;
    941     }
    942 
    943     /**
    944      * Returns the pseudo-randomly initialized or updated secondary seed.
    945      */
    946     static final int nextSecondarySeed() {
    947         int r;
    948         Thread t = Thread.currentThread();
    949         if ((r = U.getInt(t, SECONDARY)) != 0) {
    950             r ^= r << 13;   // xorshift
    951             r ^= r >>> 17;
    952             r ^= r << 5;
    953         }
    954         else if ((r = mix32(seeder.getAndAdd(SEEDER_INCREMENT))) == 0)
    955             r = 1; // avoid zero
    956         U.putInt(t, SECONDARY, r);
    957         return r;
    958     }
    959 
    960     // Serialization support
    961 
    962     private static final long serialVersionUID = -5851777807851030925L;
    963 
    964     /**
    965      * @serialField rnd long
    966      *              seed for random computations
    967      * @serialField initialized boolean
    968      *              always true
    969      */
    970     private static final ObjectStreamField[] serialPersistentFields = {
    971         new ObjectStreamField("rnd", long.class),
    972         new ObjectStreamField("initialized", boolean.class),
    973     };
    974 
    975     /**
    976      * Saves the {@code ThreadLocalRandom} to a stream (that is, serializes it).
    977      * @param s the stream
    978      * @throws java.io.IOException if an I/O error occurs
    979      */
    980     private void writeObject(java.io.ObjectOutputStream s)
    981         throws java.io.IOException {
    982 
    983         java.io.ObjectOutputStream.PutField fields = s.putFields();
    984         fields.put("rnd", U.getLong(Thread.currentThread(), SEED));
    985         fields.put("initialized", true);
    986         s.writeFields();
    987     }
    988 
    989     /**
    990      * Returns the {@link #current() current} thread's {@code ThreadLocalRandom}.
    991      * @return the {@link #current() current} thread's {@code ThreadLocalRandom}
    992      */
    993     private Object readResolve() {
    994         return current();
    995     }
    996 
    997     // Static initialization
    998 
    999     /**
   1000      * The seed increment.
   1001      */
   1002     private static final long GAMMA = 0x9e3779b97f4a7c15L;
   1003 
   1004     /**
   1005      * The increment for generating probe values.
   1006      */
   1007     private static final int PROBE_INCREMENT = 0x9e3779b9;
   1008 
   1009     /**
   1010      * The increment of seeder per new instance.
   1011      */
   1012     private static final long SEEDER_INCREMENT = 0xbb67ae8584caa73bL;
   1013 
   1014     // Constants from SplittableRandom
   1015     private static final double DOUBLE_UNIT = 0x1.0p-53;  // 1.0  / (1L << 53)
   1016     private static final float  FLOAT_UNIT  = 0x1.0p-24f; // 1.0f / (1 << 24)
   1017 
   1018     // IllegalArgumentException messages
   1019     static final String BAD_BOUND = "bound must be positive";
   1020     static final String BAD_RANGE = "bound must be greater than origin";
   1021     static final String BAD_SIZE  = "size must be non-negative";
   1022 
   1023     // Unsafe mechanics
   1024     private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
   1025     private static final long SEED;
   1026     private static final long PROBE;
   1027     private static final long SECONDARY;
   1028     static {
   1029         try {
   1030             SEED = U.objectFieldOffset
   1031                 (Thread.class.getDeclaredField("threadLocalRandomSeed"));
   1032             PROBE = U.objectFieldOffset
   1033                 (Thread.class.getDeclaredField("threadLocalRandomProbe"));
   1034             SECONDARY = U.objectFieldOffset
   1035                 (Thread.class.getDeclaredField("threadLocalRandomSecondarySeed"));
   1036         } catch (ReflectiveOperationException e) {
   1037             throw new Error(e);
   1038         }
   1039     }
   1040 
   1041     /** Rarely-used holder for the second of a pair of Gaussians */
   1042     private static final ThreadLocal<Double> nextLocalGaussian =
   1043         new ThreadLocal<>();
   1044 
   1045     /** Generates per-thread initialization/probe field */
   1046     private static final AtomicInteger probeGenerator = new AtomicInteger();
   1047 
   1048     /** The common ThreadLocalRandom */
   1049     static final ThreadLocalRandom instance = new ThreadLocalRandom();
   1050 
   1051     /**
   1052      * The next seed for default constructors.
   1053      */
   1054     private static final AtomicLong seeder
   1055         = new AtomicLong(mix64(System.currentTimeMillis()) ^
   1056                          mix64(System.nanoTime()));
   1057 
   1058     // at end of <clinit> to survive static initialization circularity
   1059     static {
   1060         if (java.security.AccessController.doPrivileged(
   1061             new java.security.PrivilegedAction<Boolean>() {
   1062                 public Boolean run() {
   1063                     return Boolean.getBoolean("java.util.secureRandomSeed");
   1064                 }})) {
   1065             byte[] seedBytes = java.security.SecureRandom.getSeed(8);
   1066             long s = (long)seedBytes[0] & 0xffL;
   1067             for (int i = 1; i < 8; ++i)
   1068                 s = (s << 8) | ((long)seedBytes[i] & 0xffL);
   1069             seeder.set(s);
   1070         }
   1071     }
   1072 }
   1073