Home | History | Annotate | Download | only in x509
      1 /*
      2  * Copyright (c) 1997, 2002, Oracle and/or its affiliates. All rights reserved.
      3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
      4  *
      5  * This code is free software; you can redistribute it and/or modify it
      6  * under the terms of the GNU General Public License version 2 only, as
      7  * published by the Free Software Foundation.  Oracle designates this
      8  * particular file as subject to the "Classpath" exception as provided
      9  * by Oracle in the LICENSE file that accompanied this code.
     10  *
     11  * This code is distributed in the hope that it will be useful, but WITHOUT
     12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
     13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
     14  * version 2 for more details (a copy is included in the LICENSE file that
     15  * accompanied this code).
     16  *
     17  * You should have received a copy of the GNU General Public License version
     18  * 2 along with this work; if not, write to the Free Software Foundation,
     19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
     20  *
     21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
     22  * or visit www.oracle.com if you need additional information or have any
     23  * questions.
     24  */
     25 
     26 package sun.security.x509;
     27 
     28 import java.io.IOException;
     29 import java.lang.Integer;
     30 import java.net.InetAddress;
     31 import java.util.Arrays;
     32 import sun.misc.HexDumpEncoder;
     33 import sun.security.util.BitArray;
     34 import sun.security.util.DerOutputStream;
     35 import sun.security.util.DerValue;
     36 
     37 /**
     38  * This class implements the IPAddressName as required by the GeneralNames
     39  * ASN.1 object.  Both IPv4 and IPv6 addresses are supported using the
     40  * formats specified in IETF PKIX RFC2459.
     41  * <p>
     42  * [RFC2459 4.2.1.7 Subject Alternative Name]
     43  * When the subjectAltName extension contains a iPAddress, the address
     44  * MUST be stored in the octet string in "network byte order," as
     45  * specified in RFC 791. The least significant bit (LSB) of
     46  * each octet is the LSB of the corresponding byte in the network
     47  * address. For IP Version 4, as specified in RFC 791, the octet string
     48  * MUST contain exactly four octets.  For IP Version 6, as specified in
     49  * RFC 1883, the octet string MUST contain exactly sixteen octets.
     50  * <p>
     51  * [RFC2459 4.2.1.11 Name Constraints]
     52  * The syntax of iPAddress MUST be as described in section 4.2.1.7 with
     53  * the following additions specifically for Name Constraints.  For IPv4
     54  * addresses, the ipAddress field of generalName MUST contain eight (8)
     55  * octets, encoded in the style of RFC 1519 (CIDR) to represent an
     56  * address range.[RFC 1519]  For IPv6 addresses, the ipAddress field
     57  * MUST contain 32 octets similarly encoded.  For example, a name
     58  * constraint for "class C" subnet 10.9.8.0 shall be represented as the
     59  * octets 0A 09 08 00 FF FF FF 00, representing the CIDR notation
     60  * 10.9.8.0/255.255.255.0.
     61  * <p>
     62  * @see GeneralName
     63  * @see GeneralNameInterface
     64  * @see GeneralNames
     65  *
     66  *
     67  * @author Amit Kapoor
     68  * @author Hemma Prafullchandra
     69  */
     70 public class IPAddressName implements GeneralNameInterface {
     71     private byte[] address;
     72     private boolean isIPv4;
     73     private String name;
     74 
     75     /**
     76      * Create the IPAddressName object from the passed encoded Der value.
     77      *
     78      * @params derValue the encoded DER IPAddressName.
     79      * @exception IOException on error.
     80      */
     81     public IPAddressName(DerValue derValue) throws IOException {
     82         this(derValue.getOctetString());
     83     }
     84 
     85     /**
     86      * Create the IPAddressName object with the specified octets.
     87      *
     88      * @params address the IP address
     89      * @throws IOException if address is not a valid IPv4 or IPv6 address
     90      */
     91     public IPAddressName(byte[] address) throws IOException {
     92         /*
     93          * A valid address must consist of 4 bytes of address and
     94          * optional 4 bytes of 4 bytes of mask, or 16 bytes of address
     95          * and optional 16 bytes of mask.
     96          */
     97         if (address.length == 4 || address.length == 8) {
     98             isIPv4 = true;
     99         } else if (address.length == 16 || address.length == 32) {
    100             isIPv4 = false;
    101         } else {
    102             throw new IOException("Invalid IPAddressName");
    103         }
    104         this.address = address;
    105     }
    106 
    107     /**
    108      * Create an IPAddressName from a String.
    109      * [IETF RFC1338 Supernetting & IETF RFC1519 Classless Inter-Domain
    110      * Routing (CIDR)] For IPv4 addresses, the forms are
    111      * "b1.b2.b3.b4" or "b1.b2.b3.b4/m1.m2.m3.m4", where b1 - b4 are decimal
    112      * byte values 0-255 and m1 - m4 are decimal mask values
    113      * 0 - 255.
    114      * <p>
    115      * [IETF RFC2373 IP Version 6 Addressing Architecture]
    116      * For IPv6 addresses, the forms are "a1:a2:...:a8" or "a1:a2:...:a8/n",
    117      * where a1-a8 are hexadecimal values representing the eight 16-bit pieces
    118      * of the address. If /n is used, n is a decimal number indicating how many
    119      * of the leftmost contiguous bits of the address comprise the prefix for
    120      * this subnet. Internally, a mask value is created using the prefix length.
    121      * <p>
    122      * @param name String form of IPAddressName
    123      * @throws IOException if name can not be converted to a valid IPv4 or IPv6
    124      *     address
    125      */
    126     public IPAddressName(String name) throws IOException {
    127 
    128         if (name == null || name.length() == 0) {
    129             throw new IOException("IPAddress cannot be null or empty");
    130         }
    131         if (name.charAt(name.length() - 1) == '/') {
    132             throw new IOException("Invalid IPAddress: " + name);
    133         }
    134 
    135         if (name.indexOf(':') >= 0) {
    136             // name is IPv6: uses colons as value separators
    137             // Parse name into byte-value address components and optional
    138             // prefix
    139             parseIPv6(name);
    140             isIPv4 = false;
    141         } else if (name.indexOf('.') >= 0) {
    142             //name is IPv4: uses dots as value separators
    143             parseIPv4(name);
    144             isIPv4 = true;
    145         } else {
    146             throw new IOException("Invalid IPAddress: " + name);
    147         }
    148     }
    149 
    150     /**
    151      * Parse an IPv4 address.
    152      *
    153      * @param name IPv4 address with optional mask values
    154      * @throws IOException on error
    155      */
    156     private void parseIPv4(String name) throws IOException {
    157 
    158         // Parse name into byte-value address components
    159         int slashNdx = name.indexOf('/');
    160         if (slashNdx == -1) {
    161             address = InetAddress.getByName(name).getAddress();
    162         } else {
    163             address = new byte[8];
    164 
    165             // parse mask
    166             byte[] mask = InetAddress.getByName
    167                 (name.substring(slashNdx+1)).getAddress();
    168 
    169             // parse base address
    170             byte[] host = InetAddress.getByName
    171                 (name.substring(0, slashNdx)).getAddress();
    172 
    173             System.arraycopy(host, 0, address, 0, 4);
    174             System.arraycopy(mask, 0, address, 4, 4);
    175         }
    176     }
    177 
    178     /**
    179      * Parse an IPv6 address.
    180      *
    181      * @param name String IPv6 address with optional /<prefix length>
    182      *             If /<prefix length> is present, address[] array will
    183      *             be 32 bytes long, otherwise 16.
    184      * @throws IOException on error
    185      */
    186     private final static int MASKSIZE = 16;
    187     private void parseIPv6(String name) throws IOException {
    188 
    189         int slashNdx = name.indexOf('/');
    190         if (slashNdx == -1) {
    191             address = InetAddress.getByName(name).getAddress();
    192         } else {
    193             address = new byte[32];
    194             byte[] base = InetAddress.getByName
    195                 (name.substring(0, slashNdx)).getAddress();
    196             System.arraycopy(base, 0, address, 0, 16);
    197 
    198             // append a mask corresponding to the num of prefix bits specified
    199             int prefixLen = Integer.parseInt(name.substring(slashNdx+1));
    200             if (prefixLen > 128)
    201                 throw new IOException("IPv6Address prefix is longer than 128");
    202 
    203             // create new bit array initialized to zeros
    204             BitArray bitArray = new BitArray(MASKSIZE * 8);
    205 
    206             // set all most significant bits up to prefix length
    207             for (int i = 0; i < prefixLen; i++)
    208                 bitArray.set(i, true);
    209             byte[] maskArray = bitArray.toByteArray();
    210 
    211             // copy mask bytes into mask portion of address
    212             for (int i = 0; i < MASKSIZE; i++)
    213                 address[MASKSIZE+i] = maskArray[i];
    214         }
    215     }
    216 
    217     /**
    218      * Return the type of the GeneralName.
    219      */
    220     public int getType() {
    221         return NAME_IP;
    222     }
    223 
    224     /**
    225      * Encode the IPAddress name into the DerOutputStream.
    226      *
    227      * @params out the DER stream to encode the IPAddressName to.
    228      * @exception IOException on encoding errors.
    229      */
    230     public void encode(DerOutputStream out) throws IOException {
    231         out.putOctetString(address);
    232     }
    233 
    234     /**
    235      * Return a printable string of IPaddress
    236      */
    237     public String toString() {
    238         try {
    239             return "IPAddress: " + getName();
    240         } catch (IOException ioe) {
    241             // dump out hex rep for debugging purposes
    242             HexDumpEncoder enc = new HexDumpEncoder();
    243             return "IPAddress: " + enc.encodeBuffer(address);
    244         }
    245     }
    246 
    247     /**
    248      * Return a standard String representation of IPAddress.
    249      * See IPAddressName(String) for the formats used for IPv4
    250      * and IPv6 addresses.
    251      *
    252      * @throws IOException if the IPAddress cannot be converted to a String
    253      */
    254     public String getName() throws IOException {
    255         if (name != null)
    256             return name;
    257 
    258         if (isIPv4) {
    259             //IPv4 address or subdomain
    260             byte[] host = new byte[4];
    261             System.arraycopy(address, 0, host, 0, 4);
    262             name = InetAddress.getByAddress(host).getHostAddress();
    263             if (address.length == 8) {
    264                 byte[] mask = new byte[4];
    265                 System.arraycopy(address, 4, mask, 0, 4);
    266                 name = name + "/" +
    267                        InetAddress.getByAddress(mask).getHostAddress();
    268             }
    269         } else {
    270             //IPv6 address or subdomain
    271             byte[] host = new byte[16];
    272             System.arraycopy(address, 0, host, 0, 16);
    273             name = InetAddress.getByAddress(host).getHostAddress();
    274             if (address.length == 32) {
    275                 // IPv6 subdomain: display prefix length
    276 
    277                 // copy subdomain into new array and convert to BitArray
    278                 byte[] maskBytes = new byte[16];
    279                 for (int i=16; i < 32; i++)
    280                     maskBytes[i-16] = address[i];
    281                 BitArray ba = new BitArray(16*8, maskBytes);
    282                 // Find first zero bit
    283                 int i=0;
    284                 for (; i < 16*8; i++) {
    285                     if (!ba.get(i))
    286                         break;
    287                 }
    288                 name = name + "/" + i;
    289                 // Verify remaining bits 0
    290                 for (; i < 16*8; i++) {
    291                     if (ba.get(i)) {
    292                         throw new IOException("Invalid IPv6 subdomain - set " +
    293                             "bit " + i + " not contiguous");
    294                     }
    295                 }
    296             }
    297         }
    298         return name;
    299     }
    300 
    301     /**
    302      * Returns this IPAddress name as a byte array.
    303      */
    304     public byte[] getBytes() {
    305         return address.clone();
    306     }
    307 
    308     /**
    309      * Compares this name with another, for equality.
    310      *
    311      * @return true iff the names are identical.
    312      */
    313     public boolean equals(Object obj) {
    314         if (this == obj)
    315             return true;
    316 
    317         if (!(obj instanceof IPAddressName))
    318             return false;
    319 
    320         byte[] other = ((IPAddressName)obj).getBytes();
    321 
    322         if (other.length != address.length)
    323             return false;
    324 
    325         if (address.length == 8 || address.length == 32) {
    326             // Two subnet addresses
    327             // Mask each and compare masked values
    328             int maskLen = address.length/2;
    329             byte[] maskedThis = new byte[maskLen];
    330             byte[] maskedOther = new byte[maskLen];
    331             for (int i=0; i < maskLen; i++) {
    332                 maskedThis[i] = (byte)(address[i] & address[i+maskLen]);
    333                 maskedOther[i] = (byte)(other[i] & other[i+maskLen]);
    334                 if (maskedThis[i] != maskedOther[i]) {
    335                     return false;
    336                 }
    337             }
    338             // Now compare masks
    339             for (int i=maskLen; i < address.length; i++)
    340                 if (address[i] != other[i])
    341                     return false;
    342             return true;
    343         } else {
    344             // Two IPv4 host addresses or two IPv6 host addresses
    345             // Compare bytes
    346             return Arrays.equals(other, address);
    347         }
    348     }
    349 
    350     /**
    351      * Returns the hash code value for this object.
    352      *
    353      * @return a hash code value for this object.
    354      */
    355     public int hashCode() {
    356         int retval = 0;
    357 
    358         for (int i=0; i<address.length; i++)
    359             retval += address[i] * i;
    360 
    361         return retval;
    362     }
    363 
    364     /**
    365      * Return type of constraint inputName places on this name:<ul>
    366      *   <li>NAME_DIFF_TYPE = -1: input name is different type from name
    367      *       (i.e. does not constrain).
    368      *   <li>NAME_MATCH = 0: input name matches name.
    369      *   <li>NAME_NARROWS = 1: input name narrows name (is lower in the naming
    370      *       subtree)
    371      *   <li>NAME_WIDENS = 2: input name widens name (is higher in the naming
    372      *       subtree)
    373      *   <li>NAME_SAME_TYPE = 3: input name does not match or narrow name, but
    374      *       is same type.
    375      * </ul>.  These results are used in checking NameConstraints during
    376      * certification path verification.
    377      * <p>
    378      * [RFC2459] The syntax of iPAddress MUST be as described in section
    379      * 4.2.1.7 with the following additions specifically for Name Constraints.
    380      * For IPv4 addresses, the ipAddress field of generalName MUST contain
    381      * eight (8) octets, encoded in the style of RFC 1519 (CIDR) to represent an
    382      * address range.[RFC 1519]  For IPv6 addresses, the ipAddress field
    383      * MUST contain 32 octets similarly encoded.  For example, a name
    384      * constraint for "class C" subnet 10.9.8.0 shall be represented as the
    385      * octets 0A 09 08 00 FF FF FF 00, representing the CIDR notation
    386      * 10.9.8.0/255.255.255.0.
    387      * <p>
    388      * @param inputName to be checked for being constrained
    389      * @returns constraint type above
    390      * @throws UnsupportedOperationException if name is not exact match, but
    391      * narrowing and widening are not supported for this name type.
    392      */
    393     public int constrains(GeneralNameInterface inputName)
    394     throws UnsupportedOperationException {
    395         int constraintType;
    396         if (inputName == null)
    397             constraintType = NAME_DIFF_TYPE;
    398         else if (inputName.getType() != NAME_IP)
    399             constraintType = NAME_DIFF_TYPE;
    400         else if (((IPAddressName)inputName).equals(this))
    401             constraintType = NAME_MATCH;
    402         else {
    403             byte[] otherAddress = ((IPAddressName)inputName).getBytes();
    404             if (otherAddress.length == 4 && address.length == 4)
    405                 // Two host addresses
    406                 constraintType = NAME_SAME_TYPE;
    407             else if ((otherAddress.length == 8 && address.length == 8) ||
    408                      (otherAddress.length == 32 && address.length == 32)) {
    409                 // Two subnet addresses
    410                 // See if one address fully encloses the other address
    411                 boolean otherSubsetOfThis = true;
    412                 boolean thisSubsetOfOther = true;
    413                 boolean thisEmpty = false;
    414                 boolean otherEmpty = false;
    415                 int maskOffset = address.length/2;
    416                 for (int i=0; i < maskOffset; i++) {
    417                     if ((byte)(address[i] & address[i+maskOffset]) != address[i])
    418                         thisEmpty=true;
    419                     if ((byte)(otherAddress[i] & otherAddress[i+maskOffset]) != otherAddress[i])
    420                         otherEmpty=true;
    421                     if (!(((byte)(address[i+maskOffset] & otherAddress[i+maskOffset]) == address[i+maskOffset]) &&
    422                           ((byte)(address[i]   & address[i+maskOffset])      == (byte)(otherAddress[i] & address[i+maskOffset])))) {
    423                         otherSubsetOfThis = false;
    424                     }
    425                     if (!(((byte)(otherAddress[i+maskOffset] & address[i+maskOffset])      == otherAddress[i+maskOffset]) &&
    426                           ((byte)(otherAddress[i]   & otherAddress[i+maskOffset]) == (byte)(address[i] & otherAddress[i+maskOffset])))) {
    427                         thisSubsetOfOther = false;
    428                     }
    429                 }
    430                 if (thisEmpty || otherEmpty) {
    431                     if (thisEmpty && otherEmpty)
    432                         constraintType = NAME_MATCH;
    433                     else if (thisEmpty)
    434                         constraintType = NAME_WIDENS;
    435                     else
    436                         constraintType = NAME_NARROWS;
    437                 } else if (otherSubsetOfThis)
    438                     constraintType = NAME_NARROWS;
    439                 else if (thisSubsetOfOther)
    440                     constraintType = NAME_WIDENS;
    441                 else
    442                     constraintType = NAME_SAME_TYPE;
    443             } else if (otherAddress.length == 8 || otherAddress.length == 32) {
    444                 //Other is a subnet, this is a host address
    445                 int i = 0;
    446                 int maskOffset = otherAddress.length/2;
    447                 for (; i < maskOffset; i++) {
    448                     // Mask this address by other address mask and compare to other address
    449                     // If all match, then this address is in other address subnet
    450                     if ((address[i] & otherAddress[i+maskOffset]) != otherAddress[i])
    451                         break;
    452                 }
    453                 if (i == maskOffset)
    454                     constraintType = NAME_WIDENS;
    455                 else
    456                     constraintType = NAME_SAME_TYPE;
    457             } else if (address.length == 8 || address.length == 32) {
    458                 //This is a subnet, other is a host address
    459                 int i = 0;
    460                 int maskOffset = address.length/2;
    461                 for (; i < maskOffset; i++) {
    462                     // Mask other address by this address mask and compare to this address
    463                     if ((otherAddress[i] & address[i+maskOffset]) != address[i])
    464                         break;
    465                 }
    466                 if (i == maskOffset)
    467                     constraintType = NAME_NARROWS;
    468                 else
    469                     constraintType = NAME_SAME_TYPE;
    470             } else {
    471                 constraintType = NAME_SAME_TYPE;
    472             }
    473         }
    474         return constraintType;
    475     }
    476 
    477     /**
    478      * Return subtree depth of this name for purposes of determining
    479      * NameConstraints minimum and maximum bounds and for calculating
    480      * path lengths in name subtrees.
    481      *
    482      * @returns distance of name from root
    483      * @throws UnsupportedOperationException if not supported for this name type
    484      */
    485     public int subtreeDepth() throws UnsupportedOperationException {
    486         throw new UnsupportedOperationException
    487             ("subtreeDepth() not defined for IPAddressName");
    488     }
    489 }
    490