Home | History | Annotate | Download | only in doc
      1 <!--{
      2 	"Title": "The Go Programming Language Specification",
      3 	"Subtitle": "Version of November 18, 2016",
      4 	"Path": "/ref/spec"
      5 }-->
      6 
      7 <h2 id="Introduction">Introduction</h2>
      8 
      9 <p>
     10 This is a reference manual for the Go programming language. For
     11 more information and other documents, see <a href="/">golang.org</a>.
     12 </p>
     13 
     14 <p>
     15 Go is a general-purpose language designed with systems programming
     16 in mind. It is strongly typed and garbage-collected and has explicit
     17 support for concurrent programming.  Programs are constructed from
     18 <i>packages</i>, whose properties allow efficient management of
     19 dependencies. The existing implementations use a traditional
     20 compile/link model to generate executable binaries.
     21 </p>
     22 
     23 <p>
     24 The grammar is compact and regular, allowing for easy analysis by
     25 automatic tools such as integrated development environments.
     26 </p>
     27 
     28 <h2 id="Notation">Notation</h2>
     29 <p>
     30 The syntax is specified using Extended Backus-Naur Form (EBNF):
     31 </p>
     32 
     33 <pre class="grammar">
     34 Production  = production_name "=" [ Expression ] "." .
     35 Expression  = Alternative { "|" Alternative } .
     36 Alternative = Term { Term } .
     37 Term        = production_name | token [ "" token ] | Group | Option | Repetition .
     38 Group       = "(" Expression ")" .
     39 Option      = "[" Expression "]" .
     40 Repetition  = "{" Expression "}" .
     41 </pre>
     42 
     43 <p>
     44 Productions are expressions constructed from terms and the following
     45 operators, in increasing precedence:
     46 </p>
     47 <pre class="grammar">
     48 |   alternation
     49 ()  grouping
     50 []  option (0 or 1 times)
     51 {}  repetition (0 to n times)
     52 </pre>
     53 
     54 <p>
     55 Lower-case production names are used to identify lexical tokens.
     56 Non-terminals are in CamelCase. Lexical tokens are enclosed in
     57 double quotes <code>""</code> or back quotes <code>``</code>.
     58 </p>
     59 
     60 <p>
     61 The form <code>a  b</code> represents the set of characters from
     62 <code>a</code> through <code>b</code> as alternatives. The horizontal
     63 ellipsis <code></code> is also used elsewhere in the spec to informally denote various
     64 enumerations or code snippets that are not further specified. The character <code></code>
     65 (as opposed to the three characters <code>...</code>) is not a token of the Go
     66 language.
     67 </p>
     68 
     69 <h2 id="Source_code_representation">Source code representation</h2>
     70 
     71 <p>
     72 Source code is Unicode text encoded in
     73 <a href="http://en.wikipedia.org/wiki/UTF-8">UTF-8</a>. The text is not
     74 canonicalized, so a single accented code point is distinct from the
     75 same character constructed from combining an accent and a letter;
     76 those are treated as two code points.  For simplicity, this document
     77 will use the unqualified term <i>character</i> to refer to a Unicode code point
     78 in the source text.
     79 </p>
     80 <p>
     81 Each code point is distinct; for instance, upper and lower case letters
     82 are different characters.
     83 </p>
     84 <p>
     85 Implementation restriction: For compatibility with other tools, a
     86 compiler may disallow the NUL character (U+0000) in the source text.
     87 </p>
     88 <p>
     89 Implementation restriction: For compatibility with other tools, a
     90 compiler may ignore a UTF-8-encoded byte order mark
     91 (U+FEFF) if it is the first Unicode code point in the source text.
     92 A byte order mark may be disallowed anywhere else in the source.
     93 </p>
     94 
     95 <h3 id="Characters">Characters</h3>
     96 
     97 <p>
     98 The following terms are used to denote specific Unicode character classes:
     99 </p>
    100 <pre class="ebnf">
    101 newline        = /* the Unicode code point U+000A */ .
    102 unicode_char   = /* an arbitrary Unicode code point except newline */ .
    103 unicode_letter = /* a Unicode code point classified as "Letter" */ .
    104 unicode_digit  = /* a Unicode code point classified as "Number, decimal digit" */ .
    105 </pre>
    106 
    107 <p>
    108 In <a href="http://www.unicode.org/versions/Unicode8.0.0/">The Unicode Standard 8.0</a>,
    109 Section 4.5 "General Category" defines a set of character categories.
    110 Go treats all characters in any of the Letter categories Lu, Ll, Lt, Lm, or Lo
    111 as Unicode letters, and those in the Number category Nd as Unicode digits.
    112 </p>
    113 
    114 <h3 id="Letters_and_digits">Letters and digits</h3>
    115 
    116 <p>
    117 The underscore character <code>_</code> (U+005F) is considered a letter.
    118 </p>
    119 <pre class="ebnf">
    120 letter        = unicode_letter | "_" .
    121 decimal_digit = "0"  "9" .
    122 octal_digit   = "0"  "7" .
    123 hex_digit     = "0"  "9" | "A"  "F" | "a"  "f" .
    124 </pre>
    125 
    126 <h2 id="Lexical_elements">Lexical elements</h2>
    127 
    128 <h3 id="Comments">Comments</h3>
    129 
    130 <p>
    131 Comments serve as program documentation. There are two forms:
    132 </p>
    133 
    134 <ol>
    135 <li>
    136 <i>Line comments</i> start with the character sequence <code>//</code>
    137 and stop at the end of the line.
    138 </li>
    139 <li>
    140 <i>General comments</i> start with the character sequence <code>/*</code>
    141 and stop with the first subsequent character sequence <code>*/</code>.
    142 </li>
    143 </ol>
    144 
    145 <p>
    146 A comment cannot start inside a <a href="#Rune_literals">rune</a> or
    147 <a href="#String_literals">string literal</a>, or inside a comment.
    148 A general comment containing no newlines acts like a space.
    149 Any other comment acts like a newline.
    150 </p>
    151 
    152 <h3 id="Tokens">Tokens</h3>
    153 
    154 <p>
    155 Tokens form the vocabulary of the Go language.
    156 There are four classes: <i>identifiers</i>, <i>keywords</i>, <i>operators
    157 and delimiters</i>, and <i>literals</i>.  <i>White space</i>, formed from
    158 spaces (U+0020), horizontal tabs (U+0009),
    159 carriage returns (U+000D), and newlines (U+000A),
    160 is ignored except as it separates tokens
    161 that would otherwise combine into a single token. Also, a newline or end of file
    162 may trigger the insertion of a <a href="#Semicolons">semicolon</a>.
    163 While breaking the input into tokens,
    164 the next token is the longest sequence of characters that form a
    165 valid token.
    166 </p>
    167 
    168 <h3 id="Semicolons">Semicolons</h3>
    169 
    170 <p>
    171 The formal grammar uses semicolons <code>";"</code> as terminators in
    172 a number of productions. Go programs may omit most of these semicolons
    173 using the following two rules:
    174 </p>
    175 
    176 <ol>
    177 <li>
    178 When the input is broken into tokens, a semicolon is automatically inserted
    179 into the token stream immediately after a line's final token if that token is
    180 <ul>
    181 	<li>an
    182 	    <a href="#Identifiers">identifier</a>
    183 	</li>
    184 
    185 	<li>an
    186 	    <a href="#Integer_literals">integer</a>,
    187 	    <a href="#Floating-point_literals">floating-point</a>,
    188 	    <a href="#Imaginary_literals">imaginary</a>,
    189 	    <a href="#Rune_literals">rune</a>, or
    190 	    <a href="#String_literals">string</a> literal
    191 	</li>
    192 
    193 	<li>one of the <a href="#Keywords">keywords</a>
    194 	    <code>break</code>,
    195 	    <code>continue</code>,
    196 	    <code>fallthrough</code>, or
    197 	    <code>return</code>
    198 	</li>
    199 
    200 	<li>one of the <a href="#Operators_and_Delimiters">operators and delimiters</a>
    201 	    <code>++</code>,
    202 	    <code>--</code>,
    203 	    <code>)</code>,
    204 	    <code>]</code>, or
    205 	    <code>}</code>
    206 	</li>
    207 </ul>
    208 </li>
    209 
    210 <li>
    211 To allow complex statements to occupy a single line, a semicolon
    212 may be omitted before a closing <code>")"</code> or <code>"}"</code>.
    213 </li>
    214 </ol>
    215 
    216 <p>
    217 To reflect idiomatic use, code examples in this document elide semicolons
    218 using these rules.
    219 </p>
    220 
    221 
    222 <h3 id="Identifiers">Identifiers</h3>
    223 
    224 <p>
    225 Identifiers name program entities such as variables and types.
    226 An identifier is a sequence of one or more letters and digits.
    227 The first character in an identifier must be a letter.
    228 </p>
    229 <pre class="ebnf">
    230 identifier = letter { letter | unicode_digit } .
    231 </pre>
    232 <pre>
    233 a
    234 _x9
    235 ThisVariableIsExported
    236 
    237 </pre>
    238 
    239 <p>
    240 Some identifiers are <a href="#Predeclared_identifiers">predeclared</a>.
    241 </p>
    242 
    243 
    244 <h3 id="Keywords">Keywords</h3>
    245 
    246 <p>
    247 The following keywords are reserved and may not be used as identifiers.
    248 </p>
    249 <pre class="grammar">
    250 break        default      func         interface    select
    251 case         defer        go           map          struct
    252 chan         else         goto         package      switch
    253 const        fallthrough  if           range        type
    254 continue     for          import       return       var
    255 </pre>
    256 
    257 <h3 id="Operators_and_Delimiters">Operators and Delimiters</h3>
    258 
    259 <p>
    260 The following character sequences represent <a href="#Operators">operators</a>, delimiters, and other special tokens:
    261 </p>
    262 <pre class="grammar">
    263 +    &amp;     +=    &amp;=     &amp;&amp;    ==    !=    (    )
    264 -    |     -=    |=     ||    &lt;     &lt;=    [    ]
    265 *    ^     *=    ^=     &lt;-    &gt;     &gt;=    {    }
    266 /    &lt;&lt;    /=    &lt;&lt;=    ++    =     :=    ,    ;
    267 %    &gt;&gt;    %=    &gt;&gt;=    --    !     ...   .    :
    268      &amp;^          &amp;^=
    269 </pre>
    270 
    271 <h3 id="Integer_literals">Integer literals</h3>
    272 
    273 <p>
    274 An integer literal is a sequence of digits representing an
    275 <a href="#Constants">integer constant</a>.
    276 An optional prefix sets a non-decimal base: <code>0</code> for octal, <code>0x</code> or
    277 <code>0X</code> for hexadecimal.  In hexadecimal literals, letters
    278 <code>a-f</code> and <code>A-F</code> represent values 10 through 15.
    279 </p>
    280 <pre class="ebnf">
    281 int_lit     = decimal_lit | octal_lit | hex_lit .
    282 decimal_lit = ( "1"  "9" ) { decimal_digit } .
    283 octal_lit   = "0" { octal_digit } .
    284 hex_lit     = "0" ( "x" | "X" ) hex_digit { hex_digit } .
    285 </pre>
    286 
    287 <pre>
    288 42
    289 0600
    290 0xBadFace
    291 170141183460469231731687303715884105727
    292 </pre>
    293 
    294 <h3 id="Floating-point_literals">Floating-point literals</h3>
    295 <p>
    296 A floating-point literal is a decimal representation of a
    297 <a href="#Constants">floating-point constant</a>.
    298 It has an integer part, a decimal point, a fractional part,
    299 and an exponent part.  The integer and fractional part comprise
    300 decimal digits; the exponent part is an <code>e</code> or <code>E</code>
    301 followed by an optionally signed decimal exponent.  One of the
    302 integer part or the fractional part may be elided; one of the decimal
    303 point or the exponent may be elided.
    304 </p>
    305 <pre class="ebnf">
    306 float_lit = decimals "." [ decimals ] [ exponent ] |
    307             decimals exponent |
    308             "." decimals [ exponent ] .
    309 decimals  = decimal_digit { decimal_digit } .
    310 exponent  = ( "e" | "E" ) [ "+" | "-" ] decimals .
    311 </pre>
    312 
    313 <pre>
    314 0.
    315 72.40
    316 072.40  // == 72.40
    317 2.71828
    318 1.e+0
    319 6.67428e-11
    320 1E6
    321 .25
    322 .12345E+5
    323 </pre>
    324 
    325 <h3 id="Imaginary_literals">Imaginary literals</h3>
    326 <p>
    327 An imaginary literal is a decimal representation of the imaginary part of a
    328 <a href="#Constants">complex constant</a>.
    329 It consists of a
    330 <a href="#Floating-point_literals">floating-point literal</a>
    331 or decimal integer followed
    332 by the lower-case letter <code>i</code>.
    333 </p>
    334 <pre class="ebnf">
    335 imaginary_lit = (decimals | float_lit) "i" .
    336 </pre>
    337 
    338 <pre>
    339 0i
    340 011i  // == 11i
    341 0.i
    342 2.71828i
    343 1.e+0i
    344 6.67428e-11i
    345 1E6i
    346 .25i
    347 .12345E+5i
    348 </pre>
    349 
    350 
    351 <h3 id="Rune_literals">Rune literals</h3>
    352 
    353 <p>
    354 A rune literal represents a <a href="#Constants">rune constant</a>,
    355 an integer value identifying a Unicode code point.
    356 A rune literal is expressed as one or more characters enclosed in single quotes,
    357 as in <code>'x'</code> or <code>'\n'</code>.
    358 Within the quotes, any character may appear except newline and unescaped single
    359 quote. A single quoted character represents the Unicode value
    360 of the character itself,
    361 while multi-character sequences beginning with a backslash encode
    362 values in various formats.
    363 </p>
    364 <p>
    365 The simplest form represents the single character within the quotes;
    366 since Go source text is Unicode characters encoded in UTF-8, multiple
    367 UTF-8-encoded bytes may represent a single integer value.  For
    368 instance, the literal <code>'a'</code> holds a single byte representing
    369 a literal <code>a</code>, Unicode U+0061, value <code>0x61</code>, while
    370 <code>''</code> holds two bytes (<code>0xc3</code> <code>0xa4</code>) representing
    371 a literal <code>a</code>-dieresis, U+00E4, value <code>0xe4</code>.
    372 </p>
    373 <p>
    374 Several backslash escapes allow arbitrary values to be encoded as
    375 ASCII text.  There are four ways to represent the integer value
    376 as a numeric constant: <code>\x</code> followed by exactly two hexadecimal
    377 digits; <code>\u</code> followed by exactly four hexadecimal digits;
    378 <code>\U</code> followed by exactly eight hexadecimal digits, and a
    379 plain backslash <code>\</code> followed by exactly three octal digits.
    380 In each case the value of the literal is the value represented by
    381 the digits in the corresponding base.
    382 </p>
    383 <p>
    384 Although these representations all result in an integer, they have
    385 different valid ranges.  Octal escapes must represent a value between
    386 0 and 255 inclusive.  Hexadecimal escapes satisfy this condition
    387 by construction. The escapes <code>\u</code> and <code>\U</code>
    388 represent Unicode code points so within them some values are illegal,
    389 in particular those above <code>0x10FFFF</code> and surrogate halves.
    390 </p>
    391 <p>
    392 After a backslash, certain single-character escapes represent special values:
    393 </p>
    394 <pre class="grammar">
    395 \a   U+0007 alert or bell
    396 \b   U+0008 backspace
    397 \f   U+000C form feed
    398 \n   U+000A line feed or newline
    399 \r   U+000D carriage return
    400 \t   U+0009 horizontal tab
    401 \v   U+000b vertical tab
    402 \\   U+005c backslash
    403 \'   U+0027 single quote  (valid escape only within rune literals)
    404 \"   U+0022 double quote  (valid escape only within string literals)
    405 </pre>
    406 <p>
    407 All other sequences starting with a backslash are illegal inside rune literals.
    408 </p>
    409 <pre class="ebnf">
    410 rune_lit         = "'" ( unicode_value | byte_value ) "'" .
    411 unicode_value    = unicode_char | little_u_value | big_u_value | escaped_char .
    412 byte_value       = octal_byte_value | hex_byte_value .
    413 octal_byte_value = `\` octal_digit octal_digit octal_digit .
    414 hex_byte_value   = `\` "x" hex_digit hex_digit .
    415 little_u_value   = `\` "u" hex_digit hex_digit hex_digit hex_digit .
    416 big_u_value      = `\` "U" hex_digit hex_digit hex_digit hex_digit
    417                            hex_digit hex_digit hex_digit hex_digit .
    418 escaped_char     = `\` ( "a" | "b" | "f" | "n" | "r" | "t" | "v" | `\` | "'" | `"` ) .
    419 </pre>
    420 
    421 <pre>
    422 'a'
    423 ''
    424 ''
    425 '\t'
    426 '\000'
    427 '\007'
    428 '\377'
    429 '\x07'
    430 '\xff'
    431 '\u12e4'
    432 '\U00101234'
    433 '\''         // rune literal containing single quote character
    434 'aa'         // illegal: too many characters
    435 '\xa'        // illegal: too few hexadecimal digits
    436 '\0'         // illegal: too few octal digits
    437 '\uDFFF'     // illegal: surrogate half
    438 '\U00110000' // illegal: invalid Unicode code point
    439 </pre>
    440 
    441 
    442 <h3 id="String_literals">String literals</h3>
    443 
    444 <p>
    445 A string literal represents a <a href="#Constants">string constant</a>
    446 obtained from concatenating a sequence of characters. There are two forms:
    447 raw string literals and interpreted string literals.
    448 </p>
    449 <p>
    450 Raw string literals are character sequences between back quotes, as in
    451 <code>`foo`</code>.  Within the quotes, any character may appear except
    452 back quote. The value of a raw string literal is the
    453 string composed of the uninterpreted (implicitly UTF-8-encoded) characters
    454 between the quotes;
    455 in particular, backslashes have no special meaning and the string may
    456 contain newlines.
    457 Carriage return characters ('\r') inside raw string literals
    458 are discarded from the raw string value.
    459 </p>
    460 <p>
    461 Interpreted string literals are character sequences between double
    462 quotes, as in <code>&quot;bar&quot;</code>.
    463 Within the quotes, any character may appear except newline and unescaped double quote.
    464 The text between the quotes forms the
    465 value of the literal, with backslash escapes interpreted as they
    466 are in <a href="#Rune_literals">rune literals</a> (except that <code>\'</code> is illegal and
    467 <code>\"</code> is legal), with the same restrictions.
    468 The three-digit octal (<code>\</code><i>nnn</i>)
    469 and two-digit hexadecimal (<code>\x</code><i>nn</i>) escapes represent individual
    470 <i>bytes</i> of the resulting string; all other escapes represent
    471 the (possibly multi-byte) UTF-8 encoding of individual <i>characters</i>.
    472 Thus inside a string literal <code>\377</code> and <code>\xFF</code> represent
    473 a single byte of value <code>0xFF</code>=255, while <code></code>,
    474 <code>\u00FF</code>, <code>\U000000FF</code> and <code>\xc3\xbf</code> represent
    475 the two bytes <code>0xc3</code> <code>0xbf</code> of the UTF-8 encoding of character
    476 U+00FF.
    477 </p>
    478 
    479 <pre class="ebnf">
    480 string_lit             = raw_string_lit | interpreted_string_lit .
    481 raw_string_lit         = "`" { unicode_char | newline } "`" .
    482 interpreted_string_lit = `"` { unicode_value | byte_value } `"` .
    483 </pre>
    484 
    485 <pre>
    486 `abc`                // same as "abc"
    487 `\n
    488 \n`                  // same as "\\n\n\\n"
    489 "\n"
    490 "\""                 // same as `"`
    491 "Hello, world!\n"
    492 ""
    493 "\u65e5\U00008a9e"
    494 "\xff\u00FF"
    495 "\uD800"             // illegal: surrogate half
    496 "\U00110000"         // illegal: invalid Unicode code point
    497 </pre>
    498 
    499 <p>
    500 These examples all represent the same string:
    501 </p>
    502 
    503 <pre>
    504 ""                                 // UTF-8 input text
    505 ``                                 // UTF-8 input text as a raw literal
    506 "\u65e5\u672c\u8a9e"                    // the explicit Unicode code points
    507 "\U000065e5\U0000672c\U00008a9e"        // the explicit Unicode code points
    508 "\xe6\x97\xa5\xe6\x9c\xac\xe8\xaa\x9e"  // the explicit UTF-8 bytes
    509 </pre>
    510 
    511 <p>
    512 If the source code represents a character as two code points, such as
    513 a combining form involving an accent and a letter, the result will be
    514 an error if placed in a rune literal (it is not a single code
    515 point), and will appear as two code points if placed in a string
    516 literal.
    517 </p>
    518 
    519 
    520 <h2 id="Constants">Constants</h2>
    521 
    522 <p>There are <i>boolean constants</i>,
    523 <i>rune constants</i>,
    524 <i>integer constants</i>,
    525 <i>floating-point constants</i>, <i>complex constants</i>,
    526 and <i>string constants</i>. Rune, integer, floating-point,
    527 and complex constants are
    528 collectively called <i>numeric constants</i>.
    529 </p>
    530 
    531 <p>
    532 A constant value is represented by a
    533 <a href="#Rune_literals">rune</a>,
    534 <a href="#Integer_literals">integer</a>,
    535 <a href="#Floating-point_literals">floating-point</a>,
    536 <a href="#Imaginary_literals">imaginary</a>,
    537 or
    538 <a href="#String_literals">string</a> literal,
    539 an identifier denoting a constant,
    540 a <a href="#Constant_expressions">constant expression</a>,
    541 a <a href="#Conversions">conversion</a> with a result that is a constant, or
    542 the result value of some built-in functions such as
    543 <code>unsafe.Sizeof</code> applied to any value,
    544 <code>cap</code> or <code>len</code> applied to
    545 <a href="#Length_and_capacity">some expressions</a>,
    546 <code>real</code> and <code>imag</code> applied to a complex constant
    547 and <code>complex</code> applied to numeric constants.
    548 The boolean truth values are represented by the predeclared constants
    549 <code>true</code> and <code>false</code>. The predeclared identifier
    550 <a href="#Iota">iota</a> denotes an integer constant.
    551 </p>
    552 
    553 <p>
    554 In general, complex constants are a form of
    555 <a href="#Constant_expressions">constant expression</a>
    556 and are discussed in that section.
    557 </p>
    558 
    559 <p>
    560 Numeric constants represent exact values of arbitrary precision and do not overflow.
    561 Consequently, there are no constants denoting the IEEE-754 negative zero, infinity,
    562 and not-a-number values.
    563 </p>
    564 
    565 <p>
    566 Constants may be <a href="#Types">typed</a> or <i>untyped</i>.
    567 Literal constants, <code>true</code>, <code>false</code>, <code>iota</code>,
    568 and certain <a href="#Constant_expressions">constant expressions</a>
    569 containing only untyped constant operands are untyped.
    570 </p>
    571 
    572 <p>
    573 A constant may be given a type explicitly by a <a href="#Constant_declarations">constant declaration</a>
    574 or <a href="#Conversions">conversion</a>, or implicitly when used in a
    575 <a href="#Variable_declarations">variable declaration</a> or an
    576 <a href="#Assignments">assignment</a> or as an
    577 operand in an <a href="#Expressions">expression</a>.
    578 It is an error if the constant value
    579 cannot be represented as a value of the respective type.
    580 For instance, <code>3.0</code> can be given any integer or any
    581 floating-point type, while <code>2147483648.0</code> (equal to <code>1&lt;&lt;31</code>)
    582 can be given the types <code>float32</code>, <code>float64</code>, or <code>uint32</code> but
    583 not <code>int32</code> or <code>string</code>.
    584 </p>
    585 
    586 <p>
    587 An untyped constant has a <i>default type</i> which is the type to which the
    588 constant is implicitly converted in contexts where a typed value is required,
    589 for instance, in a <a href="#Short_variable_declarations">short variable declaration</a>
    590 such as <code>i := 0</code> where there is no explicit type.
    591 The default type of an untyped constant is <code>bool</code>, <code>rune</code>,
    592 <code>int</code>, <code>float64</code>, <code>complex128</code> or <code>string</code>
    593 respectively, depending on whether it is a boolean, rune, integer, floating-point,
    594 complex, or string constant.
    595 </p>
    596 
    597 <p>
    598 Implementation restriction: Although numeric constants have arbitrary
    599 precision in the language, a compiler may implement them using an
    600 internal representation with limited precision.  That said, every
    601 implementation must:
    602 </p>
    603 <ul>
    604 	<li>Represent integer constants with at least 256 bits.</li>
    605 
    606 	<li>Represent floating-point constants, including the parts of
    607 	    a complex constant, with a mantissa of at least 256 bits
    608 	    and a signed binary exponent of at least 16 bits.</li>
    609 
    610 	<li>Give an error if unable to represent an integer constant
    611 	    precisely.</li>
    612 
    613 	<li>Give an error if unable to represent a floating-point or
    614 	    complex constant due to overflow.</li>
    615 
    616 	<li>Round to the nearest representable constant if unable to
    617 	    represent a floating-point or complex constant due to limits
    618 	    on precision.</li>
    619 </ul>
    620 <p>
    621 These requirements apply both to literal constants and to the result
    622 of evaluating <a href="#Constant_expressions">constant
    623 expressions</a>.
    624 </p>
    625 
    626 <h2 id="Variables">Variables</h2>
    627 
    628 <p>
    629 A variable is a storage location for holding a <i>value</i>.
    630 The set of permissible values is determined by the
    631 variable's <i><a href="#Types">type</a></i>.
    632 </p>
    633 
    634 <p>
    635 A <a href="#Variable_declarations">variable declaration</a>
    636 or, for function parameters and results, the signature
    637 of a <a href="#Function_declarations">function declaration</a>
    638 or <a href="#Function_literals">function literal</a> reserves
    639 storage for a named variable.
    640 
    641 Calling the built-in function <a href="#Allocation"><code>new</code></a>
    642 or taking the address of a <a href="#Composite_literals">composite literal</a>
    643 allocates storage for a variable at run time.
    644 Such an anonymous variable is referred to via a (possibly implicit)
    645 <a href="#Address_operators">pointer indirection</a>.
    646 </p>
    647 
    648 <p>
    649 <i>Structured</i> variables of <a href="#Array_types">array</a>, <a href="#Slice_types">slice</a>,
    650 and <a href="#Struct_types">struct</a> types have elements and fields that may
    651 be <a href="#Address_operators">addressed</a> individually. Each such element
    652 acts like a variable.
    653 </p>
    654 
    655 <p>
    656 The <i>static type</i> (or just <i>type</i>) of a variable is the
    657 type given in its declaration, the type provided in the
    658 <code>new</code> call or composite literal, or the type of
    659 an element of a structured variable.
    660 Variables of interface type also have a distinct <i>dynamic type</i>,
    661 which is the concrete type of the value assigned to the variable at run time
    662 (unless the value is the predeclared identifier <code>nil</code>,
    663 which has no type).
    664 The dynamic type may vary during execution but values stored in interface
    665 variables are always <a href="#Assignability">assignable</a>
    666 to the static type of the variable.
    667 </p>
    668 
    669 <pre>
    670 var x interface{}  // x is nil and has static type interface{}
    671 var v *T           // v has value nil, static type *T
    672 x = 42             // x has value 42 and dynamic type int
    673 x = v              // x has value (*T)(nil) and dynamic type *T
    674 </pre>
    675 
    676 <p>
    677 A variable's value is retrieved by referring to the variable in an
    678 <a href="#Expressions">expression</a>; it is the most recent value
    679 <a href="#Assignments">assigned</a> to the variable.
    680 If a variable has not yet been assigned a value, its value is the
    681 <a href="#The_zero_value">zero value</a> for its type.
    682 </p>
    683 
    684 
    685 <h2 id="Types">Types</h2>
    686 
    687 <p>
    688 A type determines the set of values and operations specific to values of that
    689 type. Types may be <i>named</i> or <i>unnamed</i>. Named types are specified
    690 by a (possibly <a href="#Qualified_identifiers">qualified</a>)
    691 <a href="#Type_declarations"><i>type name</i></a>; unnamed types are specified
    692 using a <i>type literal</i>, which composes a new type from existing types.
    693 </p>
    694 
    695 <pre class="ebnf">
    696 Type      = TypeName | TypeLit | "(" Type ")" .
    697 TypeName  = identifier | QualifiedIdent .
    698 TypeLit   = ArrayType | StructType | PointerType | FunctionType | InterfaceType |
    699 	    SliceType | MapType | ChannelType .
    700 </pre>
    701 
    702 <p>
    703 Named instances of the boolean, numeric, and string types are
    704 <a href="#Predeclared_identifiers">predeclared</a>.
    705 <i>Composite types</i>&mdash;array, struct, pointer, function,
    706 interface, slice, map, and channel types&mdash;may be constructed using
    707 type literals.
    708 </p>
    709 
    710 <p>
    711 Each type <code>T</code> has an <i>underlying type</i>: If <code>T</code>
    712 is one of the predeclared boolean, numeric, or string types, or a type literal,
    713 the corresponding underlying
    714 type is <code>T</code> itself. Otherwise, <code>T</code>'s underlying type
    715 is the underlying type of the type to which <code>T</code> refers in its
    716 <a href="#Type_declarations">type declaration</a>.
    717 </p>
    718 
    719 <pre>
    720    type T1 string
    721    type T2 T1
    722    type T3 []T1
    723    type T4 T3
    724 </pre>
    725 
    726 <p>
    727 The underlying type of <code>string</code>, <code>T1</code>, and <code>T2</code>
    728 is <code>string</code>. The underlying type of <code>[]T1</code>, <code>T3</code>,
    729 and <code>T4</code> is <code>[]T1</code>.
    730 </p>
    731 
    732 <h3 id="Method_sets">Method sets</h3>
    733 <p>
    734 A type may have a <i>method set</i> associated with it.
    735 The method set of an <a href="#Interface_types">interface type</a> is its interface.
    736 The method set of any other type <code>T</code> consists of all
    737 <a href="#Method_declarations">methods</a> declared with receiver type <code>T</code>.
    738 The method set of the corresponding <a href="#Pointer_types">pointer type</a> <code>*T</code>
    739 is the set of all methods declared with receiver <code>*T</code> or <code>T</code>
    740 (that is, it also contains the method set of <code>T</code>).
    741 Further rules apply to structs containing anonymous fields, as described
    742 in the section on <a href="#Struct_types">struct types</a>.
    743 Any other type has an empty method set.
    744 In a method set, each method must have a
    745 <a href="#Uniqueness_of_identifiers">unique</a>
    746 non-<a href="#Blank_identifier">blank</a> <a href="#MethodName">method name</a>.
    747 </p>
    748 
    749 <p>
    750 The method set of a type determines the interfaces that the
    751 type <a href="#Interface_types">implements</a>
    752 and the methods that can be <a href="#Calls">called</a>
    753 using a receiver of that type.
    754 </p>
    755 
    756 <h3 id="Boolean_types">Boolean types</h3>
    757 
    758 <p>
    759 A <i>boolean type</i> represents the set of Boolean truth values
    760 denoted by the predeclared constants <code>true</code>
    761 and <code>false</code>. The predeclared boolean type is <code>bool</code>.
    762 </p>
    763 
    764 <h3 id="Numeric_types">Numeric types</h3>
    765 
    766 <p>
    767 A <i>numeric type</i> represents sets of integer or floating-point values.
    768 The predeclared architecture-independent numeric types are:
    769 </p>
    770 
    771 <pre class="grammar">
    772 uint8       the set of all unsigned  8-bit integers (0 to 255)
    773 uint16      the set of all unsigned 16-bit integers (0 to 65535)
    774 uint32      the set of all unsigned 32-bit integers (0 to 4294967295)
    775 uint64      the set of all unsigned 64-bit integers (0 to 18446744073709551615)
    776 
    777 int8        the set of all signed  8-bit integers (-128 to 127)
    778 int16       the set of all signed 16-bit integers (-32768 to 32767)
    779 int32       the set of all signed 32-bit integers (-2147483648 to 2147483647)
    780 int64       the set of all signed 64-bit integers (-9223372036854775808 to 9223372036854775807)
    781 
    782 float32     the set of all IEEE-754 32-bit floating-point numbers
    783 float64     the set of all IEEE-754 64-bit floating-point numbers
    784 
    785 complex64   the set of all complex numbers with float32 real and imaginary parts
    786 complex128  the set of all complex numbers with float64 real and imaginary parts
    787 
    788 byte        alias for uint8
    789 rune        alias for int32
    790 </pre>
    791 
    792 <p>
    793 The value of an <i>n</i>-bit integer is <i>n</i> bits wide and represented using
    794 <a href="http://en.wikipedia.org/wiki/Two's_complement">two's complement arithmetic</a>.
    795 </p>
    796 
    797 <p>
    798 There is also a set of predeclared numeric types with implementation-specific sizes:
    799 </p>
    800 
    801 <pre class="grammar">
    802 uint     either 32 or 64 bits
    803 int      same size as uint
    804 uintptr  an unsigned integer large enough to store the uninterpreted bits of a pointer value
    805 </pre>
    806 
    807 <p>
    808 To avoid portability issues all numeric types are distinct except
    809 <code>byte</code>, which is an alias for <code>uint8</code>, and
    810 <code>rune</code>, which is an alias for <code>int32</code>.
    811 Conversions
    812 are required when different numeric types are mixed in an expression
    813 or assignment. For instance, <code>int32</code> and <code>int</code>
    814 are not the same type even though they may have the same size on a
    815 particular architecture.
    816 
    817 
    818 <h3 id="String_types">String types</h3>
    819 
    820 <p>
    821 A <i>string type</i> represents the set of string values.
    822 A string value is a (possibly empty) sequence of bytes.
    823 Strings are immutable: once created,
    824 it is impossible to change the contents of a string.
    825 The predeclared string type is <code>string</code>.
    826 </p>
    827 
    828 <p>
    829 The length of a string <code>s</code> (its size in bytes) can be discovered using
    830 the built-in function <a href="#Length_and_capacity"><code>len</code></a>.
    831 The length is a compile-time constant if the string is a constant.
    832 A string's bytes can be accessed by integer <a href="#Index_expressions">indices</a>
    833 0 through <code>len(s)-1</code>.
    834 It is illegal to take the address of such an element; if
    835 <code>s[i]</code> is the <code>i</code>'th byte of a
    836 string, <code>&amp;s[i]</code> is invalid.
    837 </p>
    838 
    839 
    840 <h3 id="Array_types">Array types</h3>
    841 
    842 <p>
    843 An array is a numbered sequence of elements of a single
    844 type, called the element type.
    845 The number of elements is called the length and is never
    846 negative.
    847 </p>
    848 
    849 <pre class="ebnf">
    850 ArrayType   = "[" ArrayLength "]" ElementType .
    851 ArrayLength = Expression .
    852 ElementType = Type .
    853 </pre>
    854 
    855 <p>
    856 The length is part of the array's type; it must evaluate to a
    857 non-negative <a href="#Constants">constant</a> representable by a value
    858 of type <code>int</code>.
    859 The length of array <code>a</code> can be discovered
    860 using the built-in function <a href="#Length_and_capacity"><code>len</code></a>.
    861 The elements can be addressed by integer <a href="#Index_expressions">indices</a>
    862 0 through <code>len(a)-1</code>.
    863 Array types are always one-dimensional but may be composed to form
    864 multi-dimensional types.
    865 </p>
    866 
    867 <pre>
    868 [32]byte
    869 [2*N] struct { x, y int32 }
    870 [1000]*float64
    871 [3][5]int
    872 [2][2][2]float64  // same as [2]([2]([2]float64))
    873 </pre>
    874 
    875 <h3 id="Slice_types">Slice types</h3>
    876 
    877 <p>
    878 A slice is a descriptor for a contiguous segment of an <i>underlying array</i> and
    879 provides access to a numbered sequence of elements from that array.
    880 A slice type denotes the set of all slices of arrays of its element type.
    881 The value of an uninitialized slice is <code>nil</code>.
    882 </p>
    883 
    884 <pre class="ebnf">
    885 SliceType = "[" "]" ElementType .
    886 </pre>
    887 
    888 <p>
    889 Like arrays, slices are indexable and have a length.  The length of a
    890 slice <code>s</code> can be discovered by the built-in function
    891 <a href="#Length_and_capacity"><code>len</code></a>; unlike with arrays it may change during
    892 execution.  The elements can be addressed by integer <a href="#Index_expressions">indices</a>
    893 0 through <code>len(s)-1</code>.  The slice index of a
    894 given element may be less than the index of the same element in the
    895 underlying array.
    896 </p>
    897 <p>
    898 A slice, once initialized, is always associated with an underlying
    899 array that holds its elements.  A slice therefore shares storage
    900 with its array and with other slices of the same array; by contrast,
    901 distinct arrays always represent distinct storage.
    902 </p>
    903 <p>
    904 The array underlying a slice may extend past the end of the slice.
    905 The <i>capacity</i> is a measure of that extent: it is the sum of
    906 the length of the slice and the length of the array beyond the slice;
    907 a slice of length up to that capacity can be created by
    908 <a href="#Slice_expressions"><i>slicing</i></a> a new one from the original slice.
    909 The capacity of a slice <code>a</code> can be discovered using the
    910 built-in function <a href="#Length_and_capacity"><code>cap(a)</code></a>.
    911 </p>
    912 
    913 <p>
    914 A new, initialized slice value for a given element type <code>T</code> is
    915 made using the built-in function
    916 <a href="#Making_slices_maps_and_channels"><code>make</code></a>,
    917 which takes a slice type
    918 and parameters specifying the length and optionally the capacity.
    919 A slice created with <code>make</code> always allocates a new, hidden array
    920 to which the returned slice value refers. That is, executing
    921 </p>
    922 
    923 <pre>
    924 make([]T, length, capacity)
    925 </pre>
    926 
    927 <p>
    928 produces the same slice as allocating an array and <a href="#Slice_expressions">slicing</a>
    929 it, so these two expressions are equivalent:
    930 </p>
    931 
    932 <pre>
    933 make([]int, 50, 100)
    934 new([100]int)[0:50]
    935 </pre>
    936 
    937 <p>
    938 Like arrays, slices are always one-dimensional but may be composed to construct
    939 higher-dimensional objects.
    940 With arrays of arrays, the inner arrays are, by construction, always the same length;
    941 however with slices of slices (or arrays of slices), the inner lengths may vary dynamically.
    942 Moreover, the inner slices must be initialized individually.
    943 </p>
    944 
    945 <h3 id="Struct_types">Struct types</h3>
    946 
    947 <p>
    948 A struct is a sequence of named elements, called fields, each of which has a
    949 name and a type. Field names may be specified explicitly (IdentifierList) or
    950 implicitly (AnonymousField).
    951 Within a struct, non-<a href="#Blank_identifier">blank</a> field names must
    952 be <a href="#Uniqueness_of_identifiers">unique</a>.
    953 </p>
    954 
    955 <pre class="ebnf">
    956 StructType     = "struct" "{" { FieldDecl ";" } "}" .
    957 FieldDecl      = (IdentifierList Type | AnonymousField) [ Tag ] .
    958 AnonymousField = [ "*" ] TypeName .
    959 Tag            = string_lit .
    960 </pre>
    961 
    962 <pre>
    963 // An empty struct.
    964 struct {}
    965 
    966 // A struct with 6 fields.
    967 struct {
    968 	x, y int
    969 	u float32
    970 	_ float32  // padding
    971 	A *[]int
    972 	F func()
    973 }
    974 </pre>
    975 
    976 <p>
    977 A field declared with a type but no explicit field name is an <i>anonymous field</i>,
    978 also called an <i>embedded</i> field or an embedding of the type in the struct.
    979 An embedded type must be specified as
    980 a type name <code>T</code> or as a pointer to a non-interface type name <code>*T</code>,
    981 and <code>T</code> itself may not be
    982 a pointer type. The unqualified type name acts as the field name.
    983 </p>
    984 
    985 <pre>
    986 // A struct with four anonymous fields of type T1, *T2, P.T3 and *P.T4
    987 struct {
    988 	T1        // field name is T1
    989 	*T2       // field name is T2
    990 	P.T3      // field name is T3
    991 	*P.T4     // field name is T4
    992 	x, y int  // field names are x and y
    993 }
    994 </pre>
    995 
    996 <p>
    997 The following declaration is illegal because field names must be unique
    998 in a struct type:
    999 </p>
   1000 
   1001 <pre>
   1002 struct {
   1003 	T     // conflicts with anonymous field *T and *P.T
   1004 	*T    // conflicts with anonymous field T and *P.T
   1005 	*P.T  // conflicts with anonymous field T and *T
   1006 }
   1007 </pre>
   1008 
   1009 <p>
   1010 A field or <a href="#Method_declarations">method</a> <code>f</code> of an
   1011 anonymous field in a struct <code>x</code> is called <i>promoted</i> if
   1012 <code>x.f</code> is a legal <a href="#Selectors">selector</a> that denotes
   1013 that field or method <code>f</code>.
   1014 </p>
   1015 
   1016 <p>
   1017 Promoted fields act like ordinary fields
   1018 of a struct except that they cannot be used as field names in
   1019 <a href="#Composite_literals">composite literals</a> of the struct.
   1020 </p>
   1021 
   1022 <p>
   1023 Given a struct type <code>S</code> and a type named <code>T</code>,
   1024 promoted methods are included in the method set of the struct as follows:
   1025 </p>
   1026 <ul>
   1027 	<li>
   1028 	If <code>S</code> contains an anonymous field <code>T</code>,
   1029 	the <a href="#Method_sets">method sets</a> of <code>S</code>
   1030 	and <code>*S</code> both include promoted methods with receiver
   1031 	<code>T</code>. The method set of <code>*S</code> also
   1032 	includes promoted methods with receiver <code>*T</code>.
   1033 	</li>
   1034 
   1035 	<li>
   1036 	If <code>S</code> contains an anonymous field <code>*T</code>,
   1037 	the method sets of <code>S</code> and <code>*S</code> both
   1038 	include promoted methods with receiver <code>T</code> or
   1039 	<code>*T</code>.
   1040 	</li>
   1041 </ul>
   1042 
   1043 <p>
   1044 A field declaration may be followed by an optional string literal <i>tag</i>,
   1045 which becomes an attribute for all the fields in the corresponding
   1046 field declaration. An empty tag string is equivalent to an absent tag.
   1047 The tags are made visible through a <a href="/pkg/reflect/#StructTag">reflection interface</a>
   1048 and take part in <a href="#Type_identity">type identity</a> for structs
   1049 but are otherwise ignored.
   1050 </p>
   1051 
   1052 <pre>
   1053 struct {
   1054 	x, y float64 ""  // an empty tag string is like an absent tag
   1055 	name string  "any string is permitted as a tag"
   1056 	_    [4]byte "ceci n'est pas un champ de structure"
   1057 }
   1058 
   1059 // A struct corresponding to a TimeStamp protocol buffer.
   1060 // The tag strings define the protocol buffer field numbers;
   1061 // they follow the convention outlined by the reflect package.
   1062 struct {
   1063 	microsec  uint64 `protobuf:"1"`
   1064 	serverIP6 uint64 `protobuf:"2"`
   1065 }
   1066 </pre>
   1067 
   1068 <h3 id="Pointer_types">Pointer types</h3>
   1069 
   1070 <p>
   1071 A pointer type denotes the set of all pointers to <a href="#Variables">variables</a> of a given
   1072 type, called the <i>base type</i> of the pointer.
   1073 The value of an uninitialized pointer is <code>nil</code>.
   1074 </p>
   1075 
   1076 <pre class="ebnf">
   1077 PointerType = "*" BaseType .
   1078 BaseType    = Type .
   1079 </pre>
   1080 
   1081 <pre>
   1082 *Point
   1083 *[4]int
   1084 </pre>
   1085 
   1086 <h3 id="Function_types">Function types</h3>
   1087 
   1088 <p>
   1089 A function type denotes the set of all functions with the same parameter
   1090 and result types. The value of an uninitialized variable of function type
   1091 is <code>nil</code>.
   1092 </p>
   1093 
   1094 <pre class="ebnf">
   1095 FunctionType   = "func" Signature .
   1096 Signature      = Parameters [ Result ] .
   1097 Result         = Parameters | Type .
   1098 Parameters     = "(" [ ParameterList [ "," ] ] ")" .
   1099 ParameterList  = ParameterDecl { "," ParameterDecl } .
   1100 ParameterDecl  = [ IdentifierList ] [ "..." ] Type .
   1101 </pre>
   1102 
   1103 <p>
   1104 Within a list of parameters or results, the names (IdentifierList)
   1105 must either all be present or all be absent. If present, each name
   1106 stands for one item (parameter or result) of the specified type and
   1107 all non-<a href="#Blank_identifier">blank</a> names in the signature
   1108 must be <a href="#Uniqueness_of_identifiers">unique</a>.
   1109 If absent, each type stands for one item of that type.
   1110 Parameter and result
   1111 lists are always parenthesized except that if there is exactly
   1112 one unnamed result it may be written as an unparenthesized type.
   1113 </p>
   1114 
   1115 <p>
   1116 The final incoming parameter in a function signature may have
   1117 a type prefixed with <code>...</code>.
   1118 A function with such a parameter is called <i>variadic</i> and
   1119 may be invoked with zero or more arguments for that parameter.
   1120 </p>
   1121 
   1122 <pre>
   1123 func()
   1124 func(x int) int
   1125 func(a, _ int, z float32) bool
   1126 func(a, b int, z float32) (bool)
   1127 func(prefix string, values ...int)
   1128 func(a, b int, z float64, opt ...interface{}) (success bool)
   1129 func(int, int, float64) (float64, *[]int)
   1130 func(n int) func(p *T)
   1131 </pre>
   1132 
   1133 
   1134 <h3 id="Interface_types">Interface types</h3>
   1135 
   1136 <p>
   1137 An interface type specifies a <a href="#Method_sets">method set</a> called its <i>interface</i>.
   1138 A variable of interface type can store a value of any type with a method set
   1139 that is any superset of the interface. Such a type is said to
   1140 <i>implement the interface</i>.
   1141 The value of an uninitialized variable of interface type is <code>nil</code>.
   1142 </p>
   1143 
   1144 <pre class="ebnf">
   1145 InterfaceType      = "interface" "{" { MethodSpec ";" } "}" .
   1146 MethodSpec         = MethodName Signature | InterfaceTypeName .
   1147 MethodName         = identifier .
   1148 InterfaceTypeName  = TypeName .
   1149 </pre>
   1150 
   1151 <p>
   1152 As with all method sets, in an interface type, each method must have a
   1153 <a href="#Uniqueness_of_identifiers">unique</a>
   1154 non-<a href="#Blank_identifier">blank</a> name.
   1155 </p>
   1156 
   1157 <pre>
   1158 // A simple File interface
   1159 interface {
   1160 	Read(b Buffer) bool
   1161 	Write(b Buffer) bool
   1162 	Close()
   1163 }
   1164 </pre>
   1165 
   1166 <p>
   1167 More than one type may implement an interface.
   1168 For instance, if two types <code>S1</code> and <code>S2</code>
   1169 have the method set
   1170 </p>
   1171 
   1172 <pre>
   1173 func (p T) Read(b Buffer) bool { return  }
   1174 func (p T) Write(b Buffer) bool { return  }
   1175 func (p T) Close() {  }
   1176 </pre>
   1177 
   1178 <p>
   1179 (where <code>T</code> stands for either <code>S1</code> or <code>S2</code>)
   1180 then the <code>File</code> interface is implemented by both <code>S1</code> and
   1181 <code>S2</code>, regardless of what other methods
   1182 <code>S1</code> and <code>S2</code> may have or share.
   1183 </p>
   1184 
   1185 <p>
   1186 A type implements any interface comprising any subset of its methods
   1187 and may therefore implement several distinct interfaces. For
   1188 instance, all types implement the <i>empty interface</i>:
   1189 </p>
   1190 
   1191 <pre>
   1192 interface{}
   1193 </pre>
   1194 
   1195 <p>
   1196 Similarly, consider this interface specification,
   1197 which appears within a <a href="#Type_declarations">type declaration</a>
   1198 to define an interface called <code>Locker</code>:
   1199 </p>
   1200 
   1201 <pre>
   1202 type Locker interface {
   1203 	Lock()
   1204 	Unlock()
   1205 }
   1206 </pre>
   1207 
   1208 <p>
   1209 If <code>S1</code> and <code>S2</code> also implement
   1210 </p>
   1211 
   1212 <pre>
   1213 func (p T) Lock() {  }
   1214 func (p T) Unlock() {  }
   1215 </pre>
   1216 
   1217 <p>
   1218 they implement the <code>Locker</code> interface as well
   1219 as the <code>File</code> interface.
   1220 </p>
   1221 
   1222 <p>
   1223 An interface <code>T</code> may use a (possibly qualified) interface type
   1224 name <code>E</code> in place of a method specification. This is called
   1225 <i>embedding</i> interface <code>E</code> in <code>T</code>; it adds
   1226 all (exported and non-exported) methods of <code>E</code> to the interface
   1227 <code>T</code>.
   1228 </p>
   1229 
   1230 <pre>
   1231 type ReadWriter interface {
   1232 	Read(b Buffer) bool
   1233 	Write(b Buffer) bool
   1234 }
   1235 
   1236 type File interface {
   1237 	ReadWriter  // same as adding the methods of ReadWriter
   1238 	Locker      // same as adding the methods of Locker
   1239 	Close()
   1240 }
   1241 
   1242 type LockedFile interface {
   1243 	Locker
   1244 	File        // illegal: Lock, Unlock not unique
   1245 	Lock()      // illegal: Lock not unique
   1246 }
   1247 </pre>
   1248 
   1249 <p>
   1250 An interface type <code>T</code> may not embed itself
   1251 or any interface type that embeds <code>T</code>, recursively.
   1252 </p>
   1253 
   1254 <pre>
   1255 // illegal: Bad cannot embed itself
   1256 type Bad interface {
   1257 	Bad
   1258 }
   1259 
   1260 // illegal: Bad1 cannot embed itself using Bad2
   1261 type Bad1 interface {
   1262 	Bad2
   1263 }
   1264 type Bad2 interface {
   1265 	Bad1
   1266 }
   1267 </pre>
   1268 
   1269 <h3 id="Map_types">Map types</h3>
   1270 
   1271 <p>
   1272 A map is an unordered group of elements of one type, called the
   1273 element type, indexed by a set of unique <i>keys</i> of another type,
   1274 called the key type.
   1275 The value of an uninitialized map is <code>nil</code>.
   1276 </p>
   1277 
   1278 <pre class="ebnf">
   1279 MapType     = "map" "[" KeyType "]" ElementType .
   1280 KeyType     = Type .
   1281 </pre>
   1282 
   1283 <p>
   1284 The <a href="#Comparison_operators">comparison operators</a>
   1285 <code>==</code> and <code>!=</code> must be fully defined
   1286 for operands of the key type; thus the key type must not be a function, map, or
   1287 slice.
   1288 If the key type is an interface type, these
   1289 comparison operators must be defined for the dynamic key values;
   1290 failure will cause a <a href="#Run_time_panics">run-time panic</a>.
   1291 
   1292 </p>
   1293 
   1294 <pre>
   1295 map[string]int
   1296 map[*T]struct{ x, y float64 }
   1297 map[string]interface{}
   1298 </pre>
   1299 
   1300 <p>
   1301 The number of map elements is called its length.
   1302 For a map <code>m</code>, it can be discovered using the
   1303 built-in function <a href="#Length_and_capacity"><code>len</code></a>
   1304 and may change during execution. Elements may be added during execution
   1305 using <a href="#Assignments">assignments</a> and retrieved with
   1306 <a href="#Index_expressions">index expressions</a>; they may be removed with the
   1307 <a href="#Deletion_of_map_elements"><code>delete</code></a> built-in function.
   1308 </p>
   1309 <p>
   1310 A new, empty map value is made using the built-in
   1311 function <a href="#Making_slices_maps_and_channels"><code>make</code></a>,
   1312 which takes the map type and an optional capacity hint as arguments:
   1313 </p>
   1314 
   1315 <pre>
   1316 make(map[string]int)
   1317 make(map[string]int, 100)
   1318 </pre>
   1319 
   1320 <p>
   1321 The initial capacity does not bound its size:
   1322 maps grow to accommodate the number of items
   1323 stored in them, with the exception of <code>nil</code> maps.
   1324 A <code>nil</code> map is equivalent to an empty map except that no elements
   1325 may be added.
   1326 
   1327 <h3 id="Channel_types">Channel types</h3>
   1328 
   1329 <p>
   1330 A channel provides a mechanism for
   1331 <a href="#Go_statements">concurrently executing functions</a>
   1332 to communicate by
   1333 <a href="#Send_statements">sending</a> and
   1334 <a href="#Receive_operator">receiving</a>
   1335 values of a specified element type.
   1336 The value of an uninitialized channel is <code>nil</code>.
   1337 </p>
   1338 
   1339 <pre class="ebnf">
   1340 ChannelType = ( "chan" | "chan" "&lt;-" | "&lt;-" "chan" ) ElementType .
   1341 </pre>
   1342 
   1343 <p>
   1344 The optional <code>&lt;-</code> operator specifies the channel <i>direction</i>,
   1345 <i>send</i> or <i>receive</i>. If no direction is given, the channel is
   1346 <i>bidirectional</i>.
   1347 A channel may be constrained only to send or only to receive by
   1348 <a href="#Conversions">conversion</a> or <a href="#Assignments">assignment</a>.
   1349 </p>
   1350 
   1351 <pre>
   1352 chan T          // can be used to send and receive values of type T
   1353 chan&lt;- float64  // can only be used to send float64s
   1354 &lt;-chan int      // can only be used to receive ints
   1355 </pre>
   1356 
   1357 <p>
   1358 The <code>&lt;-</code> operator associates with the leftmost <code>chan</code>
   1359 possible:
   1360 </p>
   1361 
   1362 <pre>
   1363 chan&lt;- chan int    // same as chan&lt;- (chan int)
   1364 chan&lt;- &lt;-chan int  // same as chan&lt;- (&lt;-chan int)
   1365 &lt;-chan &lt;-chan int  // same as &lt;-chan (&lt;-chan int)
   1366 chan (&lt;-chan int)
   1367 </pre>
   1368 
   1369 <p>
   1370 A new, initialized channel
   1371 value can be made using the built-in function
   1372 <a href="#Making_slices_maps_and_channels"><code>make</code></a>,
   1373 which takes the channel type and an optional <i>capacity</i> as arguments:
   1374 </p>
   1375 
   1376 <pre>
   1377 make(chan int, 100)
   1378 </pre>
   1379 
   1380 <p>
   1381 The capacity, in number of elements, sets the size of the buffer in the channel.
   1382 If the capacity is zero or absent, the channel is unbuffered and communication
   1383 succeeds only when both a sender and receiver are ready. Otherwise, the channel
   1384 is buffered and communication succeeds without blocking if the buffer
   1385 is not full (sends) or not empty (receives).
   1386 A <code>nil</code> channel is never ready for communication.
   1387 </p>
   1388 
   1389 <p>
   1390 A channel may be closed with the built-in function
   1391 <a href="#Close"><code>close</code></a>.
   1392 The multi-valued assignment form of the
   1393 <a href="#Receive_operator">receive operator</a>
   1394 reports whether a received value was sent before
   1395 the channel was closed.
   1396 </p>
   1397 
   1398 <p>
   1399 A single channel may be used in
   1400 <a href="#Send_statements">send statements</a>,
   1401 <a href="#Receive_operator">receive operations</a>,
   1402 and calls to the built-in functions
   1403 <a href="#Length_and_capacity"><code>cap</code></a> and
   1404 <a href="#Length_and_capacity"><code>len</code></a>
   1405 by any number of goroutines without further synchronization.
   1406 Channels act as first-in-first-out queues.
   1407 For example, if one goroutine sends values on a channel
   1408 and a second goroutine receives them, the values are
   1409 received in the order sent.
   1410 </p>
   1411 
   1412 <h2 id="Properties_of_types_and_values">Properties of types and values</h2>
   1413 
   1414 <h3 id="Type_identity">Type identity</h3>
   1415 
   1416 <p>
   1417 Two types are either <i>identical</i> or <i>different</i>.
   1418 </p>
   1419 
   1420 <p>
   1421 Two <a href="#Types">named types</a> are identical if their type names originate in the same
   1422 <a href="#Type_declarations">TypeSpec</a>.
   1423 A named and an <a href="#Types">unnamed type</a> are always different. Two unnamed types are identical
   1424 if the corresponding type literals are identical, that is, if they have the same
   1425 literal structure and corresponding components have identical types. In detail:
   1426 </p>
   1427 
   1428 <ul>
   1429 	<li>Two array types are identical if they have identical element types and
   1430 	    the same array length.</li>
   1431 
   1432 	<li>Two slice types are identical if they have identical element types.</li>
   1433 
   1434 	<li>Two struct types are identical if they have the same sequence of fields,
   1435 	    and if corresponding fields have the same names, and identical types,
   1436 	    and identical tags.
   1437 	    Two anonymous fields are considered to have the same name. Lower-case field
   1438 	    names from different packages are always different.</li>
   1439 
   1440 	<li>Two pointer types are identical if they have identical base types.</li>
   1441 
   1442 	<li>Two function types are identical if they have the same number of parameters
   1443 	    and result values, corresponding parameter and result types are
   1444 	    identical, and either both functions are variadic or neither is.
   1445 	    Parameter and result names are not required to match.</li>
   1446 
   1447 	<li>Two interface types are identical if they have the same set of methods
   1448 	    with the same names and identical function types. Lower-case method names from
   1449 	    different packages are always different. The order of the methods is irrelevant.</li>
   1450 
   1451 	<li>Two map types are identical if they have identical key and value types.</li>
   1452 
   1453 	<li>Two channel types are identical if they have identical value types and
   1454 	    the same direction.</li>
   1455 </ul>
   1456 
   1457 <p>
   1458 Given the declarations
   1459 </p>
   1460 
   1461 <pre>
   1462 type (
   1463 	T0 []string
   1464 	T1 []string
   1465 	T2 struct{ a, b int }
   1466 	T3 struct{ a, c int }
   1467 	T4 func(int, float64) *T0
   1468 	T5 func(x int, y float64) *[]string
   1469 )
   1470 </pre>
   1471 
   1472 <p>
   1473 these types are identical:
   1474 </p>
   1475 
   1476 <pre>
   1477 T0 and T0
   1478 []int and []int
   1479 struct{ a, b *T5 } and struct{ a, b *T5 }
   1480 func(x int, y float64) *[]string and func(int, float64) (result *[]string)
   1481 </pre>
   1482 
   1483 <p>
   1484 <code>T0</code> and <code>T1</code> are different because they are named types
   1485 with distinct declarations; <code>func(int, float64) *T0</code> and
   1486 <code>func(x int, y float64) *[]string</code> are different because <code>T0</code>
   1487 is different from <code>[]string</code>.
   1488 </p>
   1489 
   1490 
   1491 <h3 id="Assignability">Assignability</h3>
   1492 
   1493 <p>
   1494 A value <code>x</code> is <i>assignable</i> to a <a href="#Variables">variable</a> of type <code>T</code>
   1495 ("<code>x</code> is assignable to <code>T</code>") in any of these cases:
   1496 </p>
   1497 
   1498 <ul>
   1499 <li>
   1500 <code>x</code>'s type is identical to <code>T</code>.
   1501 </li>
   1502 <li>
   1503 <code>x</code>'s type <code>V</code> and <code>T</code> have identical
   1504 <a href="#Types">underlying types</a> and at least one of <code>V</code>
   1505 or <code>T</code> is not a <a href="#Types">named type</a>.
   1506 </li>
   1507 <li>
   1508 <code>T</code> is an interface type and
   1509 <code>x</code> <a href="#Interface_types">implements</a> <code>T</code>.
   1510 </li>
   1511 <li>
   1512 <code>x</code> is a bidirectional channel value, <code>T</code> is a channel type,
   1513 <code>x</code>'s type <code>V</code> and <code>T</code> have identical element types,
   1514 and at least one of <code>V</code> or <code>T</code> is not a named type.
   1515 </li>
   1516 <li>
   1517 <code>x</code> is the predeclared identifier <code>nil</code> and <code>T</code>
   1518 is a pointer, function, slice, map, channel, or interface type.
   1519 </li>
   1520 <li>
   1521 <code>x</code> is an untyped <a href="#Constants">constant</a> representable
   1522 by a value of type <code>T</code>.
   1523 </li>
   1524 </ul>
   1525 
   1526 
   1527 <h2 id="Blocks">Blocks</h2>
   1528 
   1529 <p>
   1530 A <i>block</i> is a possibly empty sequence of declarations and statements
   1531 within matching brace brackets.
   1532 </p>
   1533 
   1534 <pre class="ebnf">
   1535 Block = "{" StatementList "}" .
   1536 StatementList = { Statement ";" } .
   1537 </pre>
   1538 
   1539 <p>
   1540 In addition to explicit blocks in the source code, there are implicit blocks:
   1541 </p>
   1542 
   1543 <ol>
   1544 	<li>The <i>universe block</i> encompasses all Go source text.</li>
   1545 
   1546 	<li>Each <a href="#Packages">package</a> has a <i>package block</i> containing all
   1547 	    Go source text for that package.</li>
   1548 
   1549 	<li>Each file has a <i>file block</i> containing all Go source text
   1550 	    in that file.</li>
   1551 
   1552 	<li>Each <a href="#If_statements">"if"</a>,
   1553 	    <a href="#For_statements">"for"</a>, and
   1554 	    <a href="#Switch_statements">"switch"</a>
   1555 	    statement is considered to be in its own implicit block.</li>
   1556 
   1557 	<li>Each clause in a <a href="#Switch_statements">"switch"</a>
   1558 	    or <a href="#Select_statements">"select"</a> statement
   1559 	    acts as an implicit block.</li>
   1560 </ol>
   1561 
   1562 <p>
   1563 Blocks nest and influence <a href="#Declarations_and_scope">scoping</a>.
   1564 </p>
   1565 
   1566 
   1567 <h2 id="Declarations_and_scope">Declarations and scope</h2>
   1568 
   1569 <p>
   1570 A <i>declaration</i> binds a non-<a href="#Blank_identifier">blank</a> identifier to a
   1571 <a href="#Constant_declarations">constant</a>,
   1572 <a href="#Type_declarations">type</a>,
   1573 <a href="#Variable_declarations">variable</a>,
   1574 <a href="#Function_declarations">function</a>,
   1575 <a href="#Labeled_statements">label</a>, or
   1576 <a href="#Import_declarations">package</a>.
   1577 Every identifier in a program must be declared.
   1578 No identifier may be declared twice in the same block, and
   1579 no identifier may be declared in both the file and package block.
   1580 </p>
   1581 
   1582 <p>
   1583 The <a href="#Blank_identifier">blank identifier</a> may be used like any other identifier
   1584 in a declaration, but it does not introduce a binding and thus is not declared.
   1585 In the package block, the identifier <code>init</code> may only be used for
   1586 <a href="#Package_initialization"><code>init</code> function</a> declarations,
   1587 and like the blank identifier it does not introduce a new binding.
   1588 </p>
   1589 
   1590 <pre class="ebnf">
   1591 Declaration   = ConstDecl | TypeDecl | VarDecl .
   1592 TopLevelDecl  = Declaration | FunctionDecl | MethodDecl .
   1593 </pre>
   1594 
   1595 <p>
   1596 The <i>scope</i> of a declared identifier is the extent of source text in which
   1597 the identifier denotes the specified constant, type, variable, function, label, or package.
   1598 </p>
   1599 
   1600 <p>
   1601 Go is lexically scoped using <a href="#Blocks">blocks</a>:
   1602 </p>
   1603 
   1604 <ol>
   1605 	<li>The scope of a <a href="#Predeclared_identifiers">predeclared identifier</a> is the universe block.</li>
   1606 
   1607 	<li>The scope of an identifier denoting a constant, type, variable,
   1608 	    or function (but not method) declared at top level (outside any
   1609 	    function) is the package block.</li>
   1610 
   1611 	<li>The scope of the package name of an imported package is the file block
   1612 	    of the file containing the import declaration.</li>
   1613 
   1614 	<li>The scope of an identifier denoting a method receiver, function parameter,
   1615 	    or result variable is the function body.</li>
   1616 
   1617 	<li>The scope of a constant or variable identifier declared
   1618 	    inside a function begins at the end of the ConstSpec or VarSpec
   1619 	    (ShortVarDecl for short variable declarations)
   1620 	    and ends at the end of the innermost containing block.</li>
   1621 
   1622 	<li>The scope of a type identifier declared inside a function
   1623 	    begins at the identifier in the TypeSpec
   1624 	    and ends at the end of the innermost containing block.</li>
   1625 </ol>
   1626 
   1627 <p>
   1628 An identifier declared in a block may be redeclared in an inner block.
   1629 While the identifier of the inner declaration is in scope, it denotes
   1630 the entity declared by the inner declaration.
   1631 </p>
   1632 
   1633 <p>
   1634 The <a href="#Package_clause">package clause</a> is not a declaration; the package name
   1635 does not appear in any scope. Its purpose is to identify the files belonging
   1636 to the same <a href="#Packages">package</a> and to specify the default package name for import
   1637 declarations.
   1638 </p>
   1639 
   1640 
   1641 <h3 id="Label_scopes">Label scopes</h3>
   1642 
   1643 <p>
   1644 Labels are declared by <a href="#Labeled_statements">labeled statements</a> and are
   1645 used in the <a href="#Break_statements">"break"</a>,
   1646 <a href="#Continue_statements">"continue"</a>, and
   1647 <a href="#Goto_statements">"goto"</a> statements.
   1648 It is illegal to define a label that is never used.
   1649 In contrast to other identifiers, labels are not block scoped and do
   1650 not conflict with identifiers that are not labels. The scope of a label
   1651 is the body of the function in which it is declared and excludes
   1652 the body of any nested function.
   1653 </p>
   1654 
   1655 
   1656 <h3 id="Blank_identifier">Blank identifier</h3>
   1657 
   1658 <p>
   1659 The <i>blank identifier</i> is represented by the underscore character <code>_</code>.
   1660 It serves as an anonymous placeholder instead of a regular (non-blank)
   1661 identifier and has special meaning in <a href="#Declarations_and_scope">declarations</a>,
   1662 as an <a href="#Operands">operand</a>, and in <a href="#Assignments">assignments</a>.
   1663 </p>
   1664 
   1665 
   1666 <h3 id="Predeclared_identifiers">Predeclared identifiers</h3>
   1667 
   1668 <p>
   1669 The following identifiers are implicitly declared in the
   1670 <a href="#Blocks">universe block</a>:
   1671 </p>
   1672 <pre class="grammar">
   1673 Types:
   1674 	bool byte complex64 complex128 error float32 float64
   1675 	int int8 int16 int32 int64 rune string
   1676 	uint uint8 uint16 uint32 uint64 uintptr
   1677 
   1678 Constants:
   1679 	true false iota
   1680 
   1681 Zero value:
   1682 	nil
   1683 
   1684 Functions:
   1685 	append cap close complex copy delete imag len
   1686 	make new panic print println real recover
   1687 </pre>
   1688 
   1689 
   1690 <h3 id="Exported_identifiers">Exported identifiers</h3>
   1691 
   1692 <p>
   1693 An identifier may be <i>exported</i> to permit access to it from another package.
   1694 An identifier is exported if both:
   1695 </p>
   1696 <ol>
   1697 	<li>the first character of the identifier's name is a Unicode upper case
   1698 	letter (Unicode class "Lu"); and</li>
   1699 	<li>the identifier is declared in the <a href="#Blocks">package block</a>
   1700 	or it is a <a href="#Struct_types">field name</a> or
   1701 	<a href="#MethodName">method name</a>.</li>
   1702 </ol>
   1703 <p>
   1704 All other identifiers are not exported.
   1705 </p>
   1706 
   1707 
   1708 <h3 id="Uniqueness_of_identifiers">Uniqueness of identifiers</h3>
   1709 
   1710 <p>
   1711 Given a set of identifiers, an identifier is called <i>unique</i> if it is
   1712 <i>different</i> from every other in the set.
   1713 Two identifiers are different if they are spelled differently, or if they
   1714 appear in different <a href="#Packages">packages</a> and are not
   1715 <a href="#Exported_identifiers">exported</a>. Otherwise, they are the same.
   1716 </p>
   1717 
   1718 <h3 id="Constant_declarations">Constant declarations</h3>
   1719 
   1720 <p>
   1721 A constant declaration binds a list of identifiers (the names of
   1722 the constants) to the values of a list of <a href="#Constant_expressions">constant expressions</a>.
   1723 The number of identifiers must be equal
   1724 to the number of expressions, and the <i>n</i>th identifier on
   1725 the left is bound to the value of the <i>n</i>th expression on the
   1726 right.
   1727 </p>
   1728 
   1729 <pre class="ebnf">
   1730 ConstDecl      = "const" ( ConstSpec | "(" { ConstSpec ";" } ")" ) .
   1731 ConstSpec      = IdentifierList [ [ Type ] "=" ExpressionList ] .
   1732 
   1733 IdentifierList = identifier { "," identifier } .
   1734 ExpressionList = Expression { "," Expression } .
   1735 </pre>
   1736 
   1737 <p>
   1738 If the type is present, all constants take the type specified, and
   1739 the expressions must be <a href="#Assignability">assignable</a> to that type.
   1740 If the type is omitted, the constants take the
   1741 individual types of the corresponding expressions.
   1742 If the expression values are untyped <a href="#Constants">constants</a>,
   1743 the declared constants remain untyped and the constant identifiers
   1744 denote the constant values. For instance, if the expression is a
   1745 floating-point literal, the constant identifier denotes a floating-point
   1746 constant, even if the literal's fractional part is zero.
   1747 </p>
   1748 
   1749 <pre>
   1750 const Pi float64 = 3.14159265358979323846
   1751 const zero = 0.0         // untyped floating-point constant
   1752 const (
   1753 	size int64 = 1024
   1754 	eof        = -1  // untyped integer constant
   1755 )
   1756 const a, b, c = 3, 4, "foo"  // a = 3, b = 4, c = "foo", untyped integer and string constants
   1757 const u, v float32 = 0, 3    // u = 0.0, v = 3.0
   1758 </pre>
   1759 
   1760 <p>
   1761 Within a parenthesized <code>const</code> declaration list the
   1762 expression list may be omitted from any but the first declaration.
   1763 Such an empty list is equivalent to the textual substitution of the
   1764 first preceding non-empty expression list and its type if any.
   1765 Omitting the list of expressions is therefore equivalent to
   1766 repeating the previous list.  The number of identifiers must be equal
   1767 to the number of expressions in the previous list.
   1768 Together with the <a href="#Iota"><code>iota</code> constant generator</a>
   1769 this mechanism permits light-weight declaration of sequential values:
   1770 </p>
   1771 
   1772 <pre>
   1773 const (
   1774 	Sunday = iota
   1775 	Monday
   1776 	Tuesday
   1777 	Wednesday
   1778 	Thursday
   1779 	Friday
   1780 	Partyday
   1781 	numberOfDays  // this constant is not exported
   1782 )
   1783 </pre>
   1784 
   1785 
   1786 <h3 id="Iota">Iota</h3>
   1787 
   1788 <p>
   1789 Within a <a href="#Constant_declarations">constant declaration</a>, the predeclared identifier
   1790 <code>iota</code> represents successive untyped integer <a href="#Constants">
   1791 constants</a>. It is reset to 0 whenever the reserved word <code>const</code>
   1792 appears in the source and increments after each <a href="#ConstSpec">ConstSpec</a>.
   1793 It can be used to construct a set of related constants:
   1794 </p>
   1795 
   1796 <pre>
   1797 const ( // iota is reset to 0
   1798 	c0 = iota  // c0 == 0
   1799 	c1 = iota  // c1 == 1
   1800 	c2 = iota  // c2 == 2
   1801 )
   1802 
   1803 const ( // iota is reset to 0
   1804 	a = 1 &lt;&lt; iota  // a == 1
   1805 	b = 1 &lt;&lt; iota  // b == 2
   1806 	c = 3          // c == 3  (iota is not used but still incremented)
   1807 	d = 1 &lt;&lt; iota  // d == 8
   1808 )
   1809 
   1810 const ( // iota is reset to 0
   1811 	u         = iota * 42  // u == 0     (untyped integer constant)
   1812 	v float64 = iota * 42  // v == 42.0  (float64 constant)
   1813 	w         = iota * 42  // w == 84    (untyped integer constant)
   1814 )
   1815 
   1816 const x = iota  // x == 0  (iota has been reset)
   1817 const y = iota  // y == 0  (iota has been reset)
   1818 </pre>
   1819 
   1820 <p>
   1821 Within an ExpressionList, the value of each <code>iota</code> is the same because
   1822 it is only incremented after each ConstSpec:
   1823 </p>
   1824 
   1825 <pre>
   1826 const (
   1827 	bit0, mask0 = 1 &lt;&lt; iota, 1&lt;&lt;iota - 1  // bit0 == 1, mask0 == 0
   1828 	bit1, mask1                           // bit1 == 2, mask1 == 1
   1829 	_, _                                  // skips iota == 2
   1830 	bit3, mask3                           // bit3 == 8, mask3 == 7
   1831 )
   1832 </pre>
   1833 
   1834 <p>
   1835 This last example exploits the implicit repetition of the
   1836 last non-empty expression list.
   1837 </p>
   1838 
   1839 
   1840 <h3 id="Type_declarations">Type declarations</h3>
   1841 
   1842 <p>
   1843 A type declaration binds an identifier, the <i>type name</i>, to a new type
   1844 that has the same <a href="#Types">underlying type</a> as an existing type,
   1845 and operations defined for the existing type are also defined for the new type.
   1846 The new type is <a href="#Type_identity">different</a> from the existing type.
   1847 </p>
   1848 
   1849 <pre class="ebnf">
   1850 TypeDecl     = "type" ( TypeSpec | "(" { TypeSpec ";" } ")" ) .
   1851 TypeSpec     = identifier Type .
   1852 </pre>
   1853 
   1854 <pre>
   1855 type IntArray [16]int
   1856 
   1857 type (
   1858 	Point struct{ x, y float64 }
   1859 	Polar Point
   1860 )
   1861 
   1862 type TreeNode struct {
   1863 	left, right *TreeNode
   1864 	value *Comparable
   1865 }
   1866 
   1867 type Block interface {
   1868 	BlockSize() int
   1869 	Encrypt(src, dst []byte)
   1870 	Decrypt(src, dst []byte)
   1871 }
   1872 </pre>
   1873 
   1874 <p>
   1875 The declared type does not inherit any <a href="#Method_declarations">methods</a>
   1876 bound to the existing type, but the <a href="#Method_sets">method set</a>
   1877 of an interface type or of elements of a composite type remains unchanged:
   1878 </p>
   1879 
   1880 <pre>
   1881 // A Mutex is a data type with two methods, Lock and Unlock.
   1882 type Mutex struct         { /* Mutex fields */ }
   1883 func (m *Mutex) Lock()    { /* Lock implementation */ }
   1884 func (m *Mutex) Unlock()  { /* Unlock implementation */ }
   1885 
   1886 // NewMutex has the same composition as Mutex but its method set is empty.
   1887 type NewMutex Mutex
   1888 
   1889 // The method set of the <a href="#Pointer_types">base type</a> of PtrMutex remains unchanged,
   1890 // but the method set of PtrMutex is empty.
   1891 type PtrMutex *Mutex
   1892 
   1893 // The method set of *PrintableMutex contains the methods
   1894 // Lock and Unlock bound to its anonymous field Mutex.
   1895 type PrintableMutex struct {
   1896 	Mutex
   1897 }
   1898 
   1899 // MyBlock is an interface type that has the same method set as Block.
   1900 type MyBlock Block
   1901 </pre>
   1902 
   1903 <p>
   1904 A type declaration may be used to define a different boolean, numeric, or string
   1905 type and attach methods to it:
   1906 </p>
   1907 
   1908 <pre>
   1909 type TimeZone int
   1910 
   1911 const (
   1912 	EST TimeZone = -(5 + iota)
   1913 	CST
   1914 	MST
   1915 	PST
   1916 )
   1917 
   1918 func (tz TimeZone) String() string {
   1919 	return fmt.Sprintf("GMT%+dh", tz)
   1920 }
   1921 </pre>
   1922 
   1923 
   1924 <h3 id="Variable_declarations">Variable declarations</h3>
   1925 
   1926 <p>
   1927 A variable declaration creates one or more variables, binds corresponding
   1928 identifiers to them, and gives each a type and an initial value.
   1929 </p>
   1930 
   1931 <pre class="ebnf">
   1932 VarDecl     = "var" ( VarSpec | "(" { VarSpec ";" } ")" ) .
   1933 VarSpec     = IdentifierList ( Type [ "=" ExpressionList ] | "=" ExpressionList ) .
   1934 </pre>
   1935 
   1936 <pre>
   1937 var i int
   1938 var U, V, W float64
   1939 var k = 0
   1940 var x, y float32 = -1, -2
   1941 var (
   1942 	i       int
   1943 	u, v, s = 2.0, 3.0, "bar"
   1944 )
   1945 var re, im = complexSqrt(-1)
   1946 var _, found = entries[name]  // map lookup; only interested in "found"
   1947 </pre>
   1948 
   1949 <p>
   1950 If a list of expressions is given, the variables are initialized
   1951 with the expressions following the rules for <a href="#Assignments">assignments</a>.
   1952 Otherwise, each variable is initialized to its <a href="#The_zero_value">zero value</a>.
   1953 </p>
   1954 
   1955 <p>
   1956 If a type is present, each variable is given that type.
   1957 Otherwise, each variable is given the type of the corresponding
   1958 initialization value in the assignment.
   1959 If that value is an untyped constant, it is first
   1960 <a href="#Conversions">converted</a> to its <a href="#Constants">default type</a>;
   1961 if it is an untyped boolean value, it is first converted to type <code>bool</code>.
   1962 The predeclared value <code>nil</code> cannot be used to initialize a variable
   1963 with no explicit type.
   1964 </p>
   1965 
   1966 <pre>
   1967 var d = math.Sin(0.5)  // d is float64
   1968 var i = 42             // i is int
   1969 var t, ok = x.(T)      // t is T, ok is bool
   1970 var n = nil            // illegal
   1971 </pre>
   1972 
   1973 <p>
   1974 Implementation restriction: A compiler may make it illegal to declare a variable
   1975 inside a <a href="#Function_declarations">function body</a> if the variable is
   1976 never used.
   1977 </p>
   1978 
   1979 <h3 id="Short_variable_declarations">Short variable declarations</h3>
   1980 
   1981 <p>
   1982 A <i>short variable declaration</i> uses the syntax:
   1983 </p>
   1984 
   1985 <pre class="ebnf">
   1986 ShortVarDecl = IdentifierList ":=" ExpressionList .
   1987 </pre>
   1988 
   1989 <p>
   1990 It is shorthand for a regular <a href="#Variable_declarations">variable declaration</a>
   1991 with initializer expressions but no types:
   1992 </p>
   1993 
   1994 <pre class="grammar">
   1995 "var" IdentifierList = ExpressionList .
   1996 </pre>
   1997 
   1998 <pre>
   1999 i, j := 0, 10
   2000 f := func() int { return 7 }
   2001 ch := make(chan int)
   2002 r, w := os.Pipe(fd)  // os.Pipe() returns two values
   2003 _, y, _ := coord(p)  // coord() returns three values; only interested in y coordinate
   2004 </pre>
   2005 
   2006 <p>
   2007 Unlike regular variable declarations, a short variable declaration may <i>redeclare</i>
   2008 variables provided they were originally declared earlier in the same block
   2009 (or the parameter lists if the block is the function body) with the same type,
   2010 and at least one of the non-<a href="#Blank_identifier">blank</a> variables is new.
   2011 As a consequence, redeclaration can only appear in a multi-variable short declaration.
   2012 Redeclaration does not introduce a new variable; it just assigns a new value to the original.
   2013 </p>
   2014 
   2015 <pre>
   2016 field1, offset := nextField(str, 0)
   2017 field2, offset := nextField(str, offset)  // redeclares offset
   2018 a, a := 1, 2                              // illegal: double declaration of a or no new variable if a was declared elsewhere
   2019 </pre>
   2020 
   2021 <p>
   2022 Short variable declarations may appear only inside functions.
   2023 In some contexts such as the initializers for
   2024 <a href="#If_statements">"if"</a>,
   2025 <a href="#For_statements">"for"</a>, or
   2026 <a href="#Switch_statements">"switch"</a> statements,
   2027 they can be used to declare local temporary variables.
   2028 </p>
   2029 
   2030 <h3 id="Function_declarations">Function declarations</h3>
   2031 
   2032 <p>
   2033 A function declaration binds an identifier, the <i>function name</i>,
   2034 to a function.
   2035 </p>
   2036 
   2037 <pre class="ebnf">
   2038 FunctionDecl = "func" FunctionName ( Function | Signature ) .
   2039 FunctionName = identifier .
   2040 Function     = Signature FunctionBody .
   2041 FunctionBody = Block .
   2042 </pre>
   2043 
   2044 <p>
   2045 If the function's <a href="#Function_types">signature</a> declares
   2046 result parameters, the function body's statement list must end in
   2047 a <a href="#Terminating_statements">terminating statement</a>.
   2048 </p>
   2049 
   2050 <pre>
   2051 func IndexRune(s string, r rune) int {
   2052 	for i, c := range s {
   2053 		if c == r {
   2054 			return i
   2055 		}
   2056 	}
   2057 	// invalid: missing return statement
   2058 }
   2059 </pre>
   2060 
   2061 <p>
   2062 A function declaration may omit the body. Such a declaration provides the
   2063 signature for a function implemented outside Go, such as an assembly routine.
   2064 </p>
   2065 
   2066 <pre>
   2067 func min(x int, y int) int {
   2068 	if x &lt; y {
   2069 		return x
   2070 	}
   2071 	return y
   2072 }
   2073 
   2074 func flushICache(begin, end uintptr)  // implemented externally
   2075 </pre>
   2076 
   2077 <h3 id="Method_declarations">Method declarations</h3>
   2078 
   2079 <p>
   2080 A method is a <a href="#Function_declarations">function</a> with a <i>receiver</i>.
   2081 A method declaration binds an identifier, the <i>method name</i>, to a method,
   2082 and associates the method with the receiver's <i>base type</i>.
   2083 </p>
   2084 
   2085 <pre class="ebnf">
   2086 MethodDecl   = "func" Receiver MethodName ( Function | Signature ) .
   2087 Receiver     = Parameters .
   2088 </pre>
   2089 
   2090 <p>
   2091 The receiver is specified via an extra parameter section preceding the method
   2092 name. That parameter section must declare a single non-variadic parameter, the receiver.
   2093 Its type must be of the form <code>T</code> or <code>*T</code> (possibly using
   2094 parentheses) where <code>T</code> is a type name. The type denoted by <code>T</code> is called
   2095 the receiver <i>base type</i>; it must not be a pointer or interface type and
   2096 it must be declared in the same package as the method.
   2097 The method is said to be <i>bound</i> to the base type and the method name
   2098 is visible only within <a href="#Selectors">selectors</a> for type <code>T</code>
   2099 or <code>*T</code>.
   2100 </p>
   2101 
   2102 <p>
   2103 A non-<a href="#Blank_identifier">blank</a> receiver identifier must be
   2104 <a href="#Uniqueness_of_identifiers">unique</a> in the method signature.
   2105 If the receiver's value is not referenced inside the body of the method,
   2106 its identifier may be omitted in the declaration. The same applies in
   2107 general to parameters of functions and methods.
   2108 </p>
   2109 
   2110 <p>
   2111 For a base type, the non-blank names of methods bound to it must be unique.
   2112 If the base type is a <a href="#Struct_types">struct type</a>,
   2113 the non-blank method and field names must be distinct.
   2114 </p>
   2115 
   2116 <p>
   2117 Given type <code>Point</code>, the declarations
   2118 </p>
   2119 
   2120 <pre>
   2121 func (p *Point) Length() float64 {
   2122 	return math.Sqrt(p.x * p.x + p.y * p.y)
   2123 }
   2124 
   2125 func (p *Point) Scale(factor float64) {
   2126 	p.x *= factor
   2127 	p.y *= factor
   2128 }
   2129 </pre>
   2130 
   2131 <p>
   2132 bind the methods <code>Length</code> and <code>Scale</code>,
   2133 with receiver type <code>*Point</code>,
   2134 to the base type <code>Point</code>.
   2135 </p>
   2136 
   2137 <p>
   2138 The type of a method is the type of a function with the receiver as first
   2139 argument.  For instance, the method <code>Scale</code> has type
   2140 </p>
   2141 
   2142 <pre>
   2143 func(p *Point, factor float64)
   2144 </pre>
   2145 
   2146 <p>
   2147 However, a function declared this way is not a method.
   2148 </p>
   2149 
   2150 
   2151 <h2 id="Expressions">Expressions</h2>
   2152 
   2153 <p>
   2154 An expression specifies the computation of a value by applying
   2155 operators and functions to operands.
   2156 </p>
   2157 
   2158 <h3 id="Operands">Operands</h3>
   2159 
   2160 <p>
   2161 Operands denote the elementary values in an expression. An operand may be a
   2162 literal, a (possibly <a href="#Qualified_identifiers">qualified</a>)
   2163 non-<a href="#Blank_identifier">blank</a> identifier denoting a
   2164 <a href="#Constant_declarations">constant</a>,
   2165 <a href="#Variable_declarations">variable</a>, or
   2166 <a href="#Function_declarations">function</a>,
   2167 a <a href="#Method_expressions">method expression</a> yielding a function,
   2168 or a parenthesized expression.
   2169 </p>
   2170 
   2171 <p>
   2172 The <a href="#Blank_identifier">blank identifier</a> may appear as an
   2173 operand only on the left-hand side of an <a href="#Assignments">assignment</a>.
   2174 </p>
   2175 
   2176 <pre class="ebnf">
   2177 Operand     = Literal | OperandName | MethodExpr | "(" Expression ")" .
   2178 Literal     = BasicLit | CompositeLit | FunctionLit .
   2179 BasicLit    = int_lit | float_lit | imaginary_lit | rune_lit | string_lit .
   2180 OperandName = identifier | QualifiedIdent.
   2181 </pre>
   2182 
   2183 <h3 id="Qualified_identifiers">Qualified identifiers</h3>
   2184 
   2185 <p>
   2186 A qualified identifier is an identifier qualified with a package name prefix.
   2187 Both the package name and the identifier must not be
   2188 <a href="#Blank_identifier">blank</a>.
   2189 </p>
   2190 
   2191 <pre class="ebnf">
   2192 QualifiedIdent = PackageName "." identifier .
   2193 </pre>
   2194 
   2195 <p>
   2196 A qualified identifier accesses an identifier in a different package, which
   2197 must be <a href="#Import_declarations">imported</a>.
   2198 The identifier must be <a href="#Exported_identifiers">exported</a> and
   2199 declared in the <a href="#Blocks">package block</a> of that package.
   2200 </p>
   2201 
   2202 <pre>
   2203 math.Sin	// denotes the Sin function in package math
   2204 </pre>
   2205 
   2206 <h3 id="Composite_literals">Composite literals</h3>
   2207 
   2208 <p>
   2209 Composite literals construct values for structs, arrays, slices, and maps
   2210 and create a new value each time they are evaluated.
   2211 They consist of the type of the literal followed by a brace-bound list of elements.
   2212 Each element may optionally be preceded by a corresponding key.
   2213 </p>
   2214 
   2215 <pre class="ebnf">
   2216 CompositeLit  = LiteralType LiteralValue .
   2217 LiteralType   = StructType | ArrayType | "[" "..." "]" ElementType |
   2218                 SliceType | MapType | TypeName .
   2219 LiteralValue  = "{" [ ElementList [ "," ] ] "}" .
   2220 ElementList   = KeyedElement { "," KeyedElement } .
   2221 KeyedElement  = [ Key ":" ] Element .
   2222 Key           = FieldName | Expression | LiteralValue .
   2223 FieldName     = identifier .
   2224 Element       = Expression | LiteralValue .
   2225 </pre>
   2226 
   2227 <p>
   2228 The LiteralType's underlying type must be a struct, array, slice, or map type
   2229 (the grammar enforces this constraint except when the type is given
   2230 as a TypeName).
   2231 The types of the elements and keys must be <a href="#Assignability">assignable</a>
   2232 to the respective field, element, and key types of the literal type;
   2233 there is no additional conversion.
   2234 The key is interpreted as a field name for struct literals,
   2235 an index for array and slice literals, and a key for map literals.
   2236 For map literals, all elements must have a key. It is an error
   2237 to specify multiple elements with the same field name or
   2238 constant key value.
   2239 </p>
   2240 
   2241 <p>
   2242 For struct literals the following rules apply:
   2243 </p>
   2244 <ul>
   2245 	<li>A key must be a field name declared in the struct type.
   2246 	</li>
   2247 	<li>An element list that does not contain any keys must
   2248 	    list an element for each struct field in the
   2249 	    order in which the fields are declared.
   2250 	</li>
   2251 	<li>If any element has a key, every element must have a key.
   2252 	</li>
   2253 	<li>An element list that contains keys does not need to
   2254 	    have an element for each struct field. Omitted fields
   2255 	    get the zero value for that field.
   2256 	</li>
   2257 	<li>A literal may omit the element list; such a literal evaluates
   2258 	    to the zero value for its type.
   2259 	</li>
   2260 	<li>It is an error to specify an element for a non-exported
   2261 	    field of a struct belonging to a different package.
   2262 	</li>
   2263 </ul>
   2264 
   2265 <p>
   2266 Given the declarations
   2267 </p>
   2268 <pre>
   2269 type Point3D struct { x, y, z float64 }
   2270 type Line struct { p, q Point3D }
   2271 </pre>
   2272 
   2273 <p>
   2274 one may write
   2275 </p>
   2276 
   2277 <pre>
   2278 origin := Point3D{}                            // zero value for Point3D
   2279 line := Line{origin, Point3D{y: -4, z: 12.3}}  // zero value for line.q.x
   2280 </pre>
   2281 
   2282 <p>
   2283 For array and slice literals the following rules apply:
   2284 </p>
   2285 <ul>
   2286 	<li>Each element has an associated integer index marking
   2287 	    its position in the array.
   2288 	</li>
   2289 	<li>An element with a key uses the key as its index. The
   2290 	    key must be a non-negative constant representable by
   2291 	    a value of type <code>int</code>; and if it is typed
   2292 	    it must be of integer type.
   2293 	</li>
   2294 	<li>An element without a key uses the previous element's index plus one.
   2295 	    If the first element has no key, its index is zero.
   2296 	</li>
   2297 </ul>
   2298 
   2299 <p>
   2300 <a href="#Address_operators">Taking the address</a> of a composite literal
   2301 generates a pointer to a unique <a href="#Variables">variable</a> initialized
   2302 with the literal's value.
   2303 </p>
   2304 <pre>
   2305 var pointer *Point3D = &amp;Point3D{y: 1000}
   2306 </pre>
   2307 
   2308 <p>
   2309 The length of an array literal is the length specified in the literal type.
   2310 If fewer elements than the length are provided in the literal, the missing
   2311 elements are set to the zero value for the array element type.
   2312 It is an error to provide elements with index values outside the index range
   2313 of the array. The notation <code>...</code> specifies an array length equal
   2314 to the maximum element index plus one.
   2315 </p>
   2316 
   2317 <pre>
   2318 buffer := [10]string{}             // len(buffer) == 10
   2319 intSet := [6]int{1, 2, 3, 5}       // len(intSet) == 6
   2320 days := [...]string{"Sat", "Sun"}  // len(days) == 2
   2321 </pre>
   2322 
   2323 <p>
   2324 A slice literal describes the entire underlying array literal.
   2325 Thus the length and capacity of a slice literal are the maximum
   2326 element index plus one. A slice literal has the form
   2327 </p>
   2328 
   2329 <pre>
   2330 []T{x1, x2,  xn}
   2331 </pre>
   2332 
   2333 <p>
   2334 and is shorthand for a slice operation applied to an array:
   2335 </p>
   2336 
   2337 <pre>
   2338 tmp := [n]T{x1, x2,  xn}
   2339 tmp[0 : n]
   2340 </pre>
   2341 
   2342 <p>
   2343 Within a composite literal of array, slice, or map type <code>T</code>,
   2344 elements or map keys that are themselves composite literals may elide the respective
   2345 literal type if it is identical to the element or key type of <code>T</code>.
   2346 Similarly, elements or keys that are addresses of composite literals may elide
   2347 the <code>&amp;T</code> when the element or key type is <code>*T</code>.
   2348 </p>
   2349 
   2350 <pre>
   2351 [...]Point{{1.5, -3.5}, {0, 0}}     // same as [...]Point{Point{1.5, -3.5}, Point{0, 0}}
   2352 [][]int{{1, 2, 3}, {4, 5}}          // same as [][]int{[]int{1, 2, 3}, []int{4, 5}}
   2353 [][]Point{{{0, 1}, {1, 2}}}         // same as [][]Point{[]Point{Point{0, 1}, Point{1, 2}}}
   2354 map[string]Point{"orig": {0, 0}}    // same as map[string]Point{"orig": Point{0, 0}}
   2355 map[Point]string{{0, 0}: "orig"}    // same as map[Point]string{Point{0, 0}: "orig"}
   2356 
   2357 type PPoint *Point
   2358 [2]*Point{{1.5, -3.5}, {}}          // same as [2]*Point{&amp;Point{1.5, -3.5}, &amp;Point{}}
   2359 [2]PPoint{{1.5, -3.5}, {}}          // same as [2]PPoint{PPoint(&amp;Point{1.5, -3.5}), PPoint(&amp;Point{})}
   2360 </pre>
   2361 
   2362 <p>
   2363 A parsing ambiguity arises when a composite literal using the
   2364 TypeName form of the LiteralType appears as an operand between the
   2365 <a href="#Keywords">keyword</a> and the opening brace of the block
   2366 of an "if", "for", or "switch" statement, and the composite literal
   2367 is not enclosed in parentheses, square brackets, or curly braces.
   2368 In this rare case, the opening brace of the literal is erroneously parsed
   2369 as the one introducing the block of statements. To resolve the ambiguity,
   2370 the composite literal must appear within parentheses.
   2371 </p>
   2372 
   2373 <pre>
   2374 if x == (T{a,b,c}[i]) {  }
   2375 if (x == T{a,b,c}[i]) {  }
   2376 </pre>
   2377 
   2378 <p>
   2379 Examples of valid array, slice, and map literals:
   2380 </p>
   2381 
   2382 <pre>
   2383 // list of prime numbers
   2384 primes := []int{2, 3, 5, 7, 9, 2147483647}
   2385 
   2386 // vowels[ch] is true if ch is a vowel
   2387 vowels := [128]bool{'a': true, 'e': true, 'i': true, 'o': true, 'u': true, 'y': true}
   2388 
   2389 // the array [10]float32{-1, 0, 0, 0, -0.1, -0.1, 0, 0, 0, -1}
   2390 filter := [10]float32{-1, 4: -0.1, -0.1, 9: -1}
   2391 
   2392 // frequencies in Hz for equal-tempered scale (A4 = 440Hz)
   2393 noteFrequency := map[string]float32{
   2394 	"C0": 16.35, "D0": 18.35, "E0": 20.60, "F0": 21.83,
   2395 	"G0": 24.50, "A0": 27.50, "B0": 30.87,
   2396 }
   2397 </pre>
   2398 
   2399 
   2400 <h3 id="Function_literals">Function literals</h3>
   2401 
   2402 <p>
   2403 A function literal represents an anonymous <a href="#Function_declarations">function</a>.
   2404 </p>
   2405 
   2406 <pre class="ebnf">
   2407 FunctionLit = "func" Function .
   2408 </pre>
   2409 
   2410 <pre>
   2411 func(a, b int, z float64) bool { return a*b &lt; int(z) }
   2412 </pre>
   2413 
   2414 <p>
   2415 A function literal can be assigned to a variable or invoked directly.
   2416 </p>
   2417 
   2418 <pre>
   2419 f := func(x, y int) int { return x + y }
   2420 func(ch chan int) { ch &lt;- ACK }(replyChan)
   2421 </pre>
   2422 
   2423 <p>
   2424 Function literals are <i>closures</i>: they may refer to variables
   2425 defined in a surrounding function. Those variables are then shared between
   2426 the surrounding function and the function literal, and they survive as long
   2427 as they are accessible.
   2428 </p>
   2429 
   2430 
   2431 <h3 id="Primary_expressions">Primary expressions</h3>
   2432 
   2433 <p>
   2434 Primary expressions are the operands for unary and binary expressions.
   2435 </p>
   2436 
   2437 <pre class="ebnf">
   2438 PrimaryExpr =
   2439 	Operand |
   2440 	Conversion |
   2441 	PrimaryExpr Selector |
   2442 	PrimaryExpr Index |
   2443 	PrimaryExpr Slice |
   2444 	PrimaryExpr TypeAssertion |
   2445 	PrimaryExpr Arguments .
   2446 
   2447 Selector       = "." identifier .
   2448 Index          = "[" Expression "]" .
   2449 Slice          = "[" [ Expression ] ":" [ Expression ] "]" |
   2450                  "[" [ Expression ] ":" Expression ":" Expression "]" .
   2451 TypeAssertion  = "." "(" Type ")" .
   2452 Arguments      = "(" [ ( ExpressionList | Type [ "," ExpressionList ] ) [ "..." ] [ "," ] ] ")" .
   2453 </pre>
   2454 
   2455 
   2456 <pre>
   2457 x
   2458 2
   2459 (s + ".txt")
   2460 f(3.1415, true)
   2461 Point{1, 2}
   2462 m["foo"]
   2463 s[i : j + 1]
   2464 obj.color
   2465 f.p[i].x()
   2466 </pre>
   2467 
   2468 
   2469 <h3 id="Selectors">Selectors</h3>
   2470 
   2471 <p>
   2472 For a <a href="#Primary_expressions">primary expression</a> <code>x</code>
   2473 that is not a <a href="#Package_clause">package name</a>, the
   2474 <i>selector expression</i>
   2475 </p>
   2476 
   2477 <pre>
   2478 x.f
   2479 </pre>
   2480 
   2481 <p>
   2482 denotes the field or method <code>f</code> of the value <code>x</code>
   2483 (or sometimes <code>*x</code>; see below).
   2484 The identifier <code>f</code> is called the (field or method) <i>selector</i>;
   2485 it must not be the <a href="#Blank_identifier">blank identifier</a>.
   2486 The type of the selector expression is the type of <code>f</code>.
   2487 If <code>x</code> is a package name, see the section on
   2488 <a href="#Qualified_identifiers">qualified identifiers</a>.
   2489 </p>
   2490 
   2491 <p>
   2492 A selector <code>f</code> may denote a field or method <code>f</code> of
   2493 a type <code>T</code>, or it may refer
   2494 to a field or method <code>f</code> of a nested
   2495 <a href="#Struct_types">anonymous field</a> of <code>T</code>.
   2496 The number of anonymous fields traversed
   2497 to reach <code>f</code> is called its <i>depth</i> in <code>T</code>.
   2498 The depth of a field or method <code>f</code>
   2499 declared in <code>T</code> is zero.
   2500 The depth of a field or method <code>f</code> declared in
   2501 an anonymous field <code>A</code> in <code>T</code> is the
   2502 depth of <code>f</code> in <code>A</code> plus one.
   2503 </p>
   2504 
   2505 <p>
   2506 The following rules apply to selectors:
   2507 </p>
   2508 
   2509 <ol>
   2510 <li>
   2511 For a value <code>x</code> of type <code>T</code> or <code>*T</code>
   2512 where <code>T</code> is not a pointer or interface type,
   2513 <code>x.f</code> denotes the field or method at the shallowest depth
   2514 in <code>T</code> where there
   2515 is such an <code>f</code>.
   2516 If there is not exactly <a href="#Uniqueness_of_identifiers">one <code>f</code></a>
   2517 with shallowest depth, the selector expression is illegal.
   2518 </li>
   2519 
   2520 <li>
   2521 For a value <code>x</code> of type <code>I</code> where <code>I</code>
   2522 is an interface type, <code>x.f</code> denotes the actual method with name
   2523 <code>f</code> of the dynamic value of <code>x</code>.
   2524 If there is no method with name <code>f</code> in the
   2525 <a href="#Method_sets">method set</a> of <code>I</code>, the selector
   2526 expression is illegal.
   2527 </li>
   2528 
   2529 <li>
   2530 As an exception, if the type of <code>x</code> is a named pointer type
   2531 and <code>(*x).f</code> is a valid selector expression denoting a field
   2532 (but not a method), <code>x.f</code> is shorthand for <code>(*x).f</code>.
   2533 </li>
   2534 
   2535 <li>
   2536 In all other cases, <code>x.f</code> is illegal.
   2537 </li>
   2538 
   2539 <li>
   2540 If <code>x</code> is of pointer type and has the value
   2541 <code>nil</code> and <code>x.f</code> denotes a struct field,
   2542 assigning to or evaluating <code>x.f</code>
   2543 causes a <a href="#Run_time_panics">run-time panic</a>.
   2544 </li>
   2545 
   2546 <li>
   2547 If <code>x</code> is of interface type and has the value
   2548 <code>nil</code>, <a href="#Calls">calling</a> or
   2549 <a href="#Method_values">evaluating</a> the method <code>x.f</code>
   2550 causes a <a href="#Run_time_panics">run-time panic</a>.
   2551 </li>
   2552 </ol>
   2553 
   2554 <p>
   2555 For example, given the declarations:
   2556 </p>
   2557 
   2558 <pre>
   2559 type T0 struct {
   2560 	x int
   2561 }
   2562 
   2563 func (*T0) M0()
   2564 
   2565 type T1 struct {
   2566 	y int
   2567 }
   2568 
   2569 func (T1) M1()
   2570 
   2571 type T2 struct {
   2572 	z int
   2573 	T1
   2574 	*T0
   2575 }
   2576 
   2577 func (*T2) M2()
   2578 
   2579 type Q *T2
   2580 
   2581 var t T2     // with t.T0 != nil
   2582 var p *T2    // with p != nil and (*p).T0 != nil
   2583 var q Q = p
   2584 </pre>
   2585 
   2586 <p>
   2587 one may write:
   2588 </p>
   2589 
   2590 <pre>
   2591 t.z          // t.z
   2592 t.y          // t.T1.y
   2593 t.x          // (*t.T0).x
   2594 
   2595 p.z          // (*p).z
   2596 p.y          // (*p).T1.y
   2597 p.x          // (*(*p).T0).x
   2598 
   2599 q.x          // (*(*q).T0).x        (*q).x is a valid field selector
   2600 
   2601 p.M0()       // ((*p).T0).M0()      M0 expects *T0 receiver
   2602 p.M1()       // ((*p).T1).M1()      M1 expects T1 receiver
   2603 p.M2()       // p.M2()              M2 expects *T2 receiver
   2604 t.M2()       // (&amp;t).M2()           M2 expects *T2 receiver, see section on Calls
   2605 </pre>
   2606 
   2607 <p>
   2608 but the following is invalid:
   2609 </p>
   2610 
   2611 <pre>
   2612 q.M0()       // (*q).M0 is valid but not a field selector
   2613 </pre>
   2614 
   2615 
   2616 <h3 id="Method_expressions">Method expressions</h3>
   2617 
   2618 <p>
   2619 If <code>M</code> is in the <a href="#Method_sets">method set</a> of type <code>T</code>,
   2620 <code>T.M</code> is a function that is callable as a regular function
   2621 with the same arguments as <code>M</code> prefixed by an additional
   2622 argument that is the receiver of the method.
   2623 </p>
   2624 
   2625 <pre class="ebnf">
   2626 MethodExpr    = ReceiverType "." MethodName .
   2627 ReceiverType  = TypeName | "(" "*" TypeName ")" | "(" ReceiverType ")" .
   2628 </pre>
   2629 
   2630 <p>
   2631 Consider a struct type <code>T</code> with two methods,
   2632 <code>Mv</code>, whose receiver is of type <code>T</code>, and
   2633 <code>Mp</code>, whose receiver is of type <code>*T</code>.
   2634 </p>
   2635 
   2636 <pre>
   2637 type T struct {
   2638 	a int
   2639 }
   2640 func (tv  T) Mv(a int) int         { return 0 }  // value receiver
   2641 func (tp *T) Mp(f float32) float32 { return 1 }  // pointer receiver
   2642 
   2643 var t T
   2644 </pre>
   2645 
   2646 <p>
   2647 The expression
   2648 </p>
   2649 
   2650 <pre>
   2651 T.Mv
   2652 </pre>
   2653 
   2654 <p>
   2655 yields a function equivalent to <code>Mv</code> but
   2656 with an explicit receiver as its first argument; it has signature
   2657 </p>
   2658 
   2659 <pre>
   2660 func(tv T, a int) int
   2661 </pre>
   2662 
   2663 <p>
   2664 That function may be called normally with an explicit receiver, so
   2665 these five invocations are equivalent:
   2666 </p>
   2667 
   2668 <pre>
   2669 t.Mv(7)
   2670 T.Mv(t, 7)
   2671 (T).Mv(t, 7)
   2672 f1 := T.Mv; f1(t, 7)
   2673 f2 := (T).Mv; f2(t, 7)
   2674 </pre>
   2675 
   2676 <p>
   2677 Similarly, the expression
   2678 </p>
   2679 
   2680 <pre>
   2681 (*T).Mp
   2682 </pre>
   2683 
   2684 <p>
   2685 yields a function value representing <code>Mp</code> with signature
   2686 </p>
   2687 
   2688 <pre>
   2689 func(tp *T, f float32) float32
   2690 </pre>
   2691 
   2692 <p>
   2693 For a method with a value receiver, one can derive a function
   2694 with an explicit pointer receiver, so
   2695 </p>
   2696 
   2697 <pre>
   2698 (*T).Mv
   2699 </pre>
   2700 
   2701 <p>
   2702 yields a function value representing <code>Mv</code> with signature
   2703 </p>
   2704 
   2705 <pre>
   2706 func(tv *T, a int) int
   2707 </pre>
   2708 
   2709 <p>
   2710 Such a function indirects through the receiver to create a value
   2711 to pass as the receiver to the underlying method;
   2712 the method does not overwrite the value whose address is passed in
   2713 the function call.
   2714 </p>
   2715 
   2716 <p>
   2717 The final case, a value-receiver function for a pointer-receiver method,
   2718 is illegal because pointer-receiver methods are not in the method set
   2719 of the value type.
   2720 </p>
   2721 
   2722 <p>
   2723 Function values derived from methods are called with function call syntax;
   2724 the receiver is provided as the first argument to the call.
   2725 That is, given <code>f := T.Mv</code>, <code>f</code> is invoked
   2726 as <code>f(t, 7)</code> not <code>t.f(7)</code>.
   2727 To construct a function that binds the receiver, use a
   2728 <a href="#Function_literals">function literal</a> or
   2729 <a href="#Method_values">method value</a>.
   2730 </p>
   2731 
   2732 <p>
   2733 It is legal to derive a function value from a method of an interface type.
   2734 The resulting function takes an explicit receiver of that interface type.
   2735 </p>
   2736 
   2737 <h3 id="Method_values">Method values</h3>
   2738 
   2739 <p>
   2740 If the expression <code>x</code> has static type <code>T</code> and
   2741 <code>M</code> is in the <a href="#Method_sets">method set</a> of type <code>T</code>,
   2742 <code>x.M</code> is called a <i>method value</i>.
   2743 The method value <code>x.M</code> is a function value that is callable
   2744 with the same arguments as a method call of <code>x.M</code>.
   2745 The expression <code>x</code> is evaluated and saved during the evaluation of the
   2746 method value; the saved copy is then used as the receiver in any calls,
   2747 which may be executed later.
   2748 </p>
   2749 
   2750 <p>
   2751 The type <code>T</code> may be an interface or non-interface type.
   2752 </p>
   2753 
   2754 <p>
   2755 As in the discussion of <a href="#Method_expressions">method expressions</a> above,
   2756 consider a struct type <code>T</code> with two methods,
   2757 <code>Mv</code>, whose receiver is of type <code>T</code>, and
   2758 <code>Mp</code>, whose receiver is of type <code>*T</code>.
   2759 </p>
   2760 
   2761 <pre>
   2762 type T struct {
   2763 	a int
   2764 }
   2765 func (tv  T) Mv(a int) int         { return 0 }  // value receiver
   2766 func (tp *T) Mp(f float32) float32 { return 1 }  // pointer receiver
   2767 
   2768 var t T
   2769 var pt *T
   2770 func makeT() T
   2771 </pre>
   2772 
   2773 <p>
   2774 The expression
   2775 </p>
   2776 
   2777 <pre>
   2778 t.Mv
   2779 </pre>
   2780 
   2781 <p>
   2782 yields a function value of type
   2783 </p>
   2784 
   2785 <pre>
   2786 func(int) int
   2787 </pre>
   2788 
   2789 <p>
   2790 These two invocations are equivalent:
   2791 </p>
   2792 
   2793 <pre>
   2794 t.Mv(7)
   2795 f := t.Mv; f(7)
   2796 </pre>
   2797 
   2798 <p>
   2799 Similarly, the expression
   2800 </p>
   2801 
   2802 <pre>
   2803 pt.Mp
   2804 </pre>
   2805 
   2806 <p>
   2807 yields a function value of type
   2808 </p>
   2809 
   2810 <pre>
   2811 func(float32) float32
   2812 </pre>
   2813 
   2814 <p>
   2815 As with <a href="#Selectors">selectors</a>, a reference to a non-interface method with a value receiver
   2816 using a pointer will automatically dereference that pointer: <code>pt.Mv</code> is equivalent to <code>(*pt).Mv</code>.
   2817 </p>
   2818 
   2819 <p>
   2820 As with <a href="#Calls">method calls</a>, a reference to a non-interface method with a pointer receiver
   2821 using an addressable value will automatically take the address of that value: <code>t.Mp</code> is equivalent to <code>(&amp;t).Mp</code>.
   2822 </p>
   2823 
   2824 <pre>
   2825 f := t.Mv; f(7)   // like t.Mv(7)
   2826 f := pt.Mp; f(7)  // like pt.Mp(7)
   2827 f := pt.Mv; f(7)  // like (*pt).Mv(7)
   2828 f := t.Mp; f(7)   // like (&amp;t).Mp(7)
   2829 f := makeT().Mp   // invalid: result of makeT() is not addressable
   2830 </pre>
   2831 
   2832 <p>
   2833 Although the examples above use non-interface types, it is also legal to create a method value
   2834 from a value of interface type.
   2835 </p>
   2836 
   2837 <pre>
   2838 var i interface { M(int) } = myVal
   2839 f := i.M; f(7)  // like i.M(7)
   2840 </pre>
   2841 
   2842 
   2843 <h3 id="Index_expressions">Index expressions</h3>
   2844 
   2845 <p>
   2846 A primary expression of the form
   2847 </p>
   2848 
   2849 <pre>
   2850 a[x]
   2851 </pre>
   2852 
   2853 <p>
   2854 denotes the element of the array, pointer to array, slice, string or map <code>a</code> indexed by <code>x</code>.
   2855 The value <code>x</code> is called the <i>index</i> or <i>map key</i>, respectively.
   2856 The following rules apply:
   2857 </p>
   2858 
   2859 <p>
   2860 If <code>a</code> is not a map:
   2861 </p>
   2862 <ul>
   2863 	<li>the index <code>x</code> must be of integer type or untyped;
   2864 	    it is <i>in range</i> if <code>0 &lt;= x &lt; len(a)</code>,
   2865 	    otherwise it is <i>out of range</i></li>
   2866 	<li>a <a href="#Constants">constant</a> index must be non-negative
   2867 	    and representable by a value of type <code>int</code>
   2868 </ul>
   2869 
   2870 <p>
   2871 For <code>a</code> of <a href="#Array_types">array type</a> <code>A</code>:
   2872 </p>
   2873 <ul>
   2874 	<li>a <a href="#Constants">constant</a> index must be in range</li>
   2875 	<li>if <code>x</code> is out of range at run time,
   2876 	    a <a href="#Run_time_panics">run-time panic</a> occurs</li>
   2877 	<li><code>a[x]</code> is the array element at index <code>x</code> and the type of
   2878 	    <code>a[x]</code> is the element type of <code>A</code></li>
   2879 </ul>
   2880 
   2881 <p>
   2882 For <code>a</code> of <a href="#Pointer_types">pointer</a> to array type:
   2883 </p>
   2884 <ul>
   2885 	<li><code>a[x]</code> is shorthand for <code>(*a)[x]</code></li>
   2886 </ul>
   2887 
   2888 <p>
   2889 For <code>a</code> of <a href="#Slice_types">slice type</a> <code>S</code>:
   2890 </p>
   2891 <ul>
   2892 	<li>if <code>x</code> is out of range at run time,
   2893 	    a <a href="#Run_time_panics">run-time panic</a> occurs</li>
   2894 	<li><code>a[x]</code> is the slice element at index <code>x</code> and the type of
   2895 	    <code>a[x]</code> is the element type of <code>S</code></li>
   2896 </ul>
   2897 
   2898 <p>
   2899 For <code>a</code> of <a href="#String_types">string type</a>:
   2900 </p>
   2901 <ul>
   2902 	<li>a <a href="#Constants">constant</a> index must be in range
   2903 	    if the string <code>a</code> is also constant</li>
   2904 	<li>if <code>x</code> is out of range at run time,
   2905 	    a <a href="#Run_time_panics">run-time panic</a> occurs</li>
   2906 	<li><code>a[x]</code> is the non-constant byte value at index <code>x</code> and the type of
   2907 	    <code>a[x]</code> is <code>byte</code></li>
   2908 	<li><code>a[x]</code> may not be assigned to</li>
   2909 </ul>
   2910 
   2911 <p>
   2912 For <code>a</code> of <a href="#Map_types">map type</a> <code>M</code>:
   2913 </p>
   2914 <ul>
   2915 	<li><code>x</code>'s type must be
   2916 	    <a href="#Assignability">assignable</a>
   2917 	    to the key type of <code>M</code></li>
   2918 	<li>if the map contains an entry with key <code>x</code>,
   2919 	    <code>a[x]</code> is the map value with key <code>x</code>
   2920 	    and the type of <code>a[x]</code> is the value type of <code>M</code></li>
   2921 	<li>if the map is <code>nil</code> or does not contain such an entry,
   2922 	    <code>a[x]</code> is the <a href="#The_zero_value">zero value</a>
   2923 	    for the value type of <code>M</code></li>
   2924 </ul>
   2925 
   2926 <p>
   2927 Otherwise <code>a[x]</code> is illegal.
   2928 </p>
   2929 
   2930 <p>
   2931 An index expression on a map <code>a</code> of type <code>map[K]V</code>
   2932 used in an <a href="#Assignments">assignment</a> or initialization of the special form
   2933 </p>
   2934 
   2935 <pre>
   2936 v, ok = a[x]
   2937 v, ok := a[x]
   2938 var v, ok = a[x]
   2939 var v, ok T = a[x]
   2940 </pre>
   2941 
   2942 <p>
   2943 yields an additional untyped boolean value. The value of <code>ok</code> is
   2944 <code>true</code> if the key <code>x</code> is present in the map, and
   2945 <code>false</code> otherwise.
   2946 </p>
   2947 
   2948 <p>
   2949 Assigning to an element of a <code>nil</code> map causes a
   2950 <a href="#Run_time_panics">run-time panic</a>.
   2951 </p>
   2952 
   2953 
   2954 <h3 id="Slice_expressions">Slice expressions</h3>
   2955 
   2956 <p>
   2957 Slice expressions construct a substring or slice from a string, array, pointer
   2958 to array, or slice. There are two variants: a simple form that specifies a low
   2959 and high bound, and a full form that also specifies a bound on the capacity.
   2960 </p>
   2961 
   2962 <h4>Simple slice expressions</h4>
   2963 
   2964 <p>
   2965 For a string, array, pointer to array, or slice <code>a</code>, the primary expression
   2966 </p>
   2967 
   2968 <pre>
   2969 a[low : high]
   2970 </pre>
   2971 
   2972 <p>
   2973 constructs a substring or slice. The <i>indices</i> <code>low</code> and
   2974 <code>high</code> select which elements of operand <code>a</code> appear
   2975 in the result. The result has indices starting at 0 and length equal to
   2976 <code>high</code>&nbsp;-&nbsp;<code>low</code>.
   2977 After slicing the array <code>a</code>
   2978 </p>
   2979 
   2980 <pre>
   2981 a := [5]int{1, 2, 3, 4, 5}
   2982 s := a[1:4]
   2983 </pre>
   2984 
   2985 <p>
   2986 the slice <code>s</code> has type <code>[]int</code>, length 3, capacity 4, and elements
   2987 </p>
   2988 
   2989 <pre>
   2990 s[0] == 2
   2991 s[1] == 3
   2992 s[2] == 4
   2993 </pre>
   2994 
   2995 <p>
   2996 For convenience, any of the indices may be omitted. A missing <code>low</code>
   2997 index defaults to zero; a missing <code>high</code> index defaults to the length of the
   2998 sliced operand:
   2999 </p>
   3000 
   3001 <pre>
   3002 a[2:]  // same as a[2 : len(a)]
   3003 a[:3]  // same as a[0 : 3]
   3004 a[:]   // same as a[0 : len(a)]
   3005 </pre>
   3006 
   3007 <p>
   3008 If <code>a</code> is a pointer to an array, <code>a[low : high]</code> is shorthand for
   3009 <code>(*a)[low : high]</code>.
   3010 </p>
   3011 
   3012 <p>
   3013 For arrays or strings, the indices are <i>in range</i> if
   3014 <code>0</code> &lt;= <code>low</code> &lt;= <code>high</code> &lt;= <code>len(a)</code>,
   3015 otherwise they are <i>out of range</i>.
   3016 For slices, the upper index bound is the slice capacity <code>cap(a)</code> rather than the length.
   3017 A <a href="#Constants">constant</a> index must be non-negative and representable by a value of type
   3018 <code>int</code>; for arrays or constant strings, constant indices must also be in range.
   3019 If both indices are constant, they must satisfy <code>low &lt;= high</code>.
   3020 If the indices are out of range at run time, a <a href="#Run_time_panics">run-time panic</a> occurs.
   3021 </p>
   3022 
   3023 <p>
   3024 Except for <a href="#Constants">untyped strings</a>, if the sliced operand is a string or slice,
   3025 the result of the slice operation is a non-constant value of the same type as the operand.
   3026 For untyped string operands the result is a non-constant value of type <code>string</code>.
   3027 If the sliced operand is an array, it must be <a href="#Address_operators">addressable</a>
   3028 and the result of the slice operation is a slice with the same element type as the array.
   3029 </p>
   3030 
   3031 <p>
   3032 If the sliced operand of a valid slice expression is a <code>nil</code> slice, the result
   3033 is a <code>nil</code> slice. Otherwise, the result shares its underlying array with the
   3034 operand.
   3035 </p>
   3036 
   3037 <h4>Full slice expressions</h4>
   3038 
   3039 <p>
   3040 For an array, pointer to array, or slice <code>a</code> (but not a string), the primary expression
   3041 </p>
   3042 
   3043 <pre>
   3044 a[low : high : max]
   3045 </pre>
   3046 
   3047 <p>
   3048 constructs a slice of the same type, and with the same length and elements as the simple slice
   3049 expression <code>a[low : high]</code>. Additionally, it controls the resulting slice's capacity
   3050 by setting it to <code>max - low</code>. Only the first index may be omitted; it defaults to 0.
   3051 After slicing the array <code>a</code>
   3052 </p>
   3053 
   3054 <pre>
   3055 a := [5]int{1, 2, 3, 4, 5}
   3056 t := a[1:3:5]
   3057 </pre>
   3058 
   3059 <p>
   3060 the slice <code>t</code> has type <code>[]int</code>, length 2, capacity 4, and elements
   3061 </p>
   3062 
   3063 <pre>
   3064 t[0] == 2
   3065 t[1] == 3
   3066 </pre>
   3067 
   3068 <p>
   3069 As for simple slice expressions, if <code>a</code> is a pointer to an array,
   3070 <code>a[low : high : max]</code> is shorthand for <code>(*a)[low : high : max]</code>.
   3071 If the sliced operand is an array, it must be <a href="#Address_operators">addressable</a>.
   3072 </p>
   3073 
   3074 <p>
   3075 The indices are <i>in range</i> if <code>0 &lt;= low &lt;= high &lt;= max &lt;= cap(a)</code>,
   3076 otherwise they are <i>out of range</i>.
   3077 A <a href="#Constants">constant</a> index must be non-negative and representable by a value of type
   3078 <code>int</code>; for arrays, constant indices must also be in range.
   3079 If multiple indices are constant, the constants that are present must be in range relative to each
   3080 other.
   3081 If the indices are out of range at run time, a <a href="#Run_time_panics">run-time panic</a> occurs.
   3082 </p>
   3083 
   3084 <h3 id="Type_assertions">Type assertions</h3>
   3085 
   3086 <p>
   3087 For an expression <code>x</code> of <a href="#Interface_types">interface type</a>
   3088 and a type <code>T</code>, the primary expression
   3089 </p>
   3090 
   3091 <pre>
   3092 x.(T)
   3093 </pre>
   3094 
   3095 <p>
   3096 asserts that <code>x</code> is not <code>nil</code>
   3097 and that the value stored in <code>x</code> is of type <code>T</code>.
   3098 The notation <code>x.(T)</code> is called a <i>type assertion</i>.
   3099 </p>
   3100 <p>
   3101 More precisely, if <code>T</code> is not an interface type, <code>x.(T)</code> asserts
   3102 that the dynamic type of <code>x</code> is <a href="#Type_identity">identical</a>
   3103 to the type <code>T</code>.
   3104 In this case, <code>T</code> must <a href="#Method_sets">implement</a> the (interface) type of <code>x</code>;
   3105 otherwise the type assertion is invalid since it is not possible for <code>x</code>
   3106 to store a value of type <code>T</code>.
   3107 If <code>T</code> is an interface type, <code>x.(T)</code> asserts that the dynamic type
   3108 of <code>x</code> implements the interface <code>T</code>.
   3109 </p>
   3110 <p>
   3111 If the type assertion holds, the value of the expression is the value
   3112 stored in <code>x</code> and its type is <code>T</code>. If the type assertion is false,
   3113 a <a href="#Run_time_panics">run-time panic</a> occurs.
   3114 In other words, even though the dynamic type of <code>x</code>
   3115 is known only at run time, the type of <code>x.(T)</code> is
   3116 known to be <code>T</code> in a correct program.
   3117 </p>
   3118 
   3119 <pre>
   3120 var x interface{} = 7          // x has dynamic type int and value 7
   3121 i := x.(int)                   // i has type int and value 7
   3122 
   3123 type I interface { m() }
   3124 
   3125 func f(y I) {
   3126 	s := y.(string)        // illegal: string does not implement I (missing method m)
   3127 	r := y.(io.Reader)     // r has type io.Reader and the dynamic type of y must implement both I and io.Reader
   3128 	
   3129 }
   3130 </pre>
   3131 
   3132 <p>
   3133 A type assertion used in an <a href="#Assignments">assignment</a> or initialization of the special form
   3134 </p>
   3135 
   3136 <pre>
   3137 v, ok = x.(T)
   3138 v, ok := x.(T)
   3139 var v, ok = x.(T)
   3140 var v, ok T1 = x.(T)
   3141 </pre>
   3142 
   3143 <p>
   3144 yields an additional untyped boolean value. The value of <code>ok</code> is <code>true</code>
   3145 if the assertion holds. Otherwise it is <code>false</code> and the value of <code>v</code> is
   3146 the <a href="#The_zero_value">zero value</a> for type <code>T</code>.
   3147 No run-time panic occurs in this case.
   3148 </p>
   3149 
   3150 
   3151 <h3 id="Calls">Calls</h3>
   3152 
   3153 <p>
   3154 Given an expression <code>f</code> of function type
   3155 <code>F</code>,
   3156 </p>
   3157 
   3158 <pre>
   3159 f(a1, a2,  an)
   3160 </pre>
   3161 
   3162 <p>
   3163 calls <code>f</code> with arguments <code>a1, a2,  an</code>.
   3164 Except for one special case, arguments must be single-valued expressions
   3165 <a href="#Assignability">assignable</a> to the parameter types of
   3166 <code>F</code> and are evaluated before the function is called.
   3167 The type of the expression is the result type
   3168 of <code>F</code>.
   3169 A method invocation is similar but the method itself
   3170 is specified as a selector upon a value of the receiver type for
   3171 the method.
   3172 </p>
   3173 
   3174 <pre>
   3175 math.Atan2(x, y)  // function call
   3176 var pt *Point
   3177 pt.Scale(3.5)     // method call with receiver pt
   3178 </pre>
   3179 
   3180 <p>
   3181 In a function call, the function value and arguments are evaluated in
   3182 <a href="#Order_of_evaluation">the usual order</a>.
   3183 After they are evaluated, the parameters of the call are passed by value to the function
   3184 and the called function begins execution.
   3185 The return parameters of the function are passed by value
   3186 back to the calling function when the function returns.
   3187 </p>
   3188 
   3189 <p>
   3190 Calling a <code>nil</code> function value
   3191 causes a <a href="#Run_time_panics">run-time panic</a>.
   3192 </p>
   3193 
   3194 <p>
   3195 As a special case, if the return values of a function or method
   3196 <code>g</code> are equal in number and individually
   3197 assignable to the parameters of another function or method
   3198 <code>f</code>, then the call <code>f(g(<i>parameters_of_g</i>))</code>
   3199 will invoke <code>f</code> after binding the return values of
   3200 <code>g</code> to the parameters of <code>f</code> in order.  The call
   3201 of <code>f</code> must contain no parameters other than the call of <code>g</code>,
   3202 and <code>g</code> must have at least one return value.
   3203 If <code>f</code> has a final <code>...</code> parameter, it is
   3204 assigned the return values of <code>g</code> that remain after
   3205 assignment of regular parameters.
   3206 </p>
   3207 
   3208 <pre>
   3209 func Split(s string, pos int) (string, string) {
   3210 	return s[0:pos], s[pos:]
   3211 }
   3212 
   3213 func Join(s, t string) string {
   3214 	return s + t
   3215 }
   3216 
   3217 if Join(Split(value, len(value)/2)) != value {
   3218 	log.Panic("test fails")
   3219 }
   3220 </pre>
   3221 
   3222 <p>
   3223 A method call <code>x.m()</code> is valid if the <a href="#Method_sets">method set</a>
   3224 of (the type of) <code>x</code> contains <code>m</code> and the
   3225 argument list can be assigned to the parameter list of <code>m</code>.
   3226 If <code>x</code> is <a href="#Address_operators">addressable</a> and <code>&amp;x</code>'s method
   3227 set contains <code>m</code>, <code>x.m()</code> is shorthand
   3228 for <code>(&amp;x).m()</code>:
   3229 </p>
   3230 
   3231 <pre>
   3232 var p Point
   3233 p.Scale(3.5)
   3234 </pre>
   3235 
   3236 <p>
   3237 There is no distinct method type and there are no method literals.
   3238 </p>
   3239 
   3240 <h3 id="Passing_arguments_to_..._parameters">Passing arguments to <code>...</code> parameters</h3>
   3241 
   3242 <p>
   3243 If <code>f</code> is <a href="#Function_types">variadic</a> with a final
   3244 parameter <code>p</code> of type <code>...T</code>, then within <code>f</code>
   3245 the type of <code>p</code> is equivalent to type <code>[]T</code>.
   3246 If <code>f</code> is invoked with no actual arguments for <code>p</code>,
   3247 the value passed to <code>p</code> is <code>nil</code>.
   3248 Otherwise, the value passed is a new slice
   3249 of type <code>[]T</code> with a new underlying array whose successive elements
   3250 are the actual arguments, which all must be <a href="#Assignability">assignable</a>
   3251 to <code>T</code>. The length and capacity of the slice is therefore
   3252 the number of arguments bound to <code>p</code> and may differ for each
   3253 call site.
   3254 </p>
   3255 
   3256 <p>
   3257 Given the function and calls
   3258 </p>
   3259 <pre>
   3260 func Greeting(prefix string, who ...string)
   3261 Greeting("nobody")
   3262 Greeting("hello:", "Joe", "Anna", "Eileen")
   3263 </pre>
   3264 
   3265 <p>
   3266 within <code>Greeting</code>, <code>who</code> will have the value
   3267 <code>nil</code> in the first call, and
   3268 <code>[]string{"Joe", "Anna", "Eileen"}</code> in the second.
   3269 </p>
   3270 
   3271 <p>
   3272 If the final argument is assignable to a slice type <code>[]T</code>, it may be
   3273 passed unchanged as the value for a <code>...T</code> parameter if the argument
   3274 is followed by <code>...</code>. In this case no new slice is created.
   3275 </p>
   3276 
   3277 <p>
   3278 Given the slice <code>s</code> and call
   3279 </p>
   3280 
   3281 <pre>
   3282 s := []string{"James", "Jasmine"}
   3283 Greeting("goodbye:", s...)
   3284 </pre>
   3285 
   3286 <p>
   3287 within <code>Greeting</code>, <code>who</code> will have the same value as <code>s</code>
   3288 with the same underlying array.
   3289 </p>
   3290 
   3291 
   3292 <h3 id="Operators">Operators</h3>
   3293 
   3294 <p>
   3295 Operators combine operands into expressions.
   3296 </p>
   3297 
   3298 <pre class="ebnf">
   3299 Expression = UnaryExpr | Expression binary_op Expression .
   3300 UnaryExpr  = PrimaryExpr | unary_op UnaryExpr .
   3301 
   3302 binary_op  = "||" | "&amp;&amp;" | rel_op | add_op | mul_op .
   3303 rel_op     = "==" | "!=" | "&lt;" | "&lt;=" | ">" | ">=" .
   3304 add_op     = "+" | "-" | "|" | "^" .
   3305 mul_op     = "*" | "/" | "%" | "&lt;&lt;" | "&gt;&gt;" | "&amp;" | "&amp;^" .
   3306 
   3307 unary_op   = "+" | "-" | "!" | "^" | "*" | "&amp;" | "&lt;-" .
   3308 </pre>
   3309 
   3310 <p>
   3311 Comparisons are discussed <a href="#Comparison_operators">elsewhere</a>.
   3312 For other binary operators, the operand types must be <a href="#Type_identity">identical</a>
   3313 unless the operation involves shifts or untyped <a href="#Constants">constants</a>.
   3314 For operations involving constants only, see the section on
   3315 <a href="#Constant_expressions">constant expressions</a>.
   3316 </p>
   3317 
   3318 <p>
   3319 Except for shift operations, if one operand is an untyped <a href="#Constants">constant</a>
   3320 and the other operand is not, the constant is <a href="#Conversions">converted</a>
   3321 to the type of the other operand.
   3322 </p>
   3323 
   3324 <p>
   3325 The right operand in a shift expression must have unsigned integer type
   3326 or be an untyped constant that can be converted to unsigned integer type.
   3327 If the left operand of a non-constant shift expression is an untyped constant,
   3328 it is first converted to the type it would assume if the shift expression were
   3329 replaced by its left operand alone.
   3330 </p>
   3331 
   3332 <pre>
   3333 var s uint = 33
   3334 var i = 1&lt;&lt;s           // 1 has type int
   3335 var j int32 = 1&lt;&lt;s     // 1 has type int32; j == 0
   3336 var k = uint64(1&lt;&lt;s)   // 1 has type uint64; k == 1&lt;&lt;33
   3337 var m int = 1.0&lt;&lt;s     // 1.0 has type int; m == 0 if ints are 32bits in size
   3338 var n = 1.0&lt;&lt;s == j    // 1.0 has type int32; n == true
   3339 var o = 1&lt;&lt;s == 2&lt;&lt;s   // 1 and 2 have type int; o == true if ints are 32bits in size
   3340 var p = 1&lt;&lt;s == 1&lt;&lt;33  // illegal if ints are 32bits in size: 1 has type int, but 1&lt;&lt;33 overflows int
   3341 var u = 1.0&lt;&lt;s         // illegal: 1.0 has type float64, cannot shift
   3342 var u1 = 1.0&lt;&lt;s != 0   // illegal: 1.0 has type float64, cannot shift
   3343 var u2 = 1&lt;&lt;s != 1.0   // illegal: 1 has type float64, cannot shift
   3344 var v float32 = 1&lt;&lt;s   // illegal: 1 has type float32, cannot shift
   3345 var w int64 = 1.0&lt;&lt;33  // 1.0&lt;&lt;33 is a constant shift expression
   3346 </pre>
   3347 
   3348 
   3349 <h4 id="Operator_precedence">Operator precedence</h4>
   3350 <p>
   3351 Unary operators have the highest precedence.
   3352 As the  <code>++</code> and <code>--</code> operators form
   3353 statements, not expressions, they fall
   3354 outside the operator hierarchy.
   3355 As a consequence, statement <code>*p++</code> is the same as <code>(*p)++</code>.
   3356 <p>
   3357 There are five precedence levels for binary operators.
   3358 Multiplication operators bind strongest, followed by addition
   3359 operators, comparison operators, <code>&amp;&amp;</code> (logical AND),
   3360 and finally <code>||</code> (logical OR):
   3361 </p>
   3362 
   3363 <pre class="grammar">
   3364 Precedence    Operator
   3365     5             *  /  %  &lt;&lt;  &gt;&gt;  &amp;  &amp;^
   3366     4             +  -  |  ^
   3367     3             ==  !=  &lt;  &lt;=  &gt;  &gt;=
   3368     2             &amp;&amp;
   3369     1             ||
   3370 </pre>
   3371 
   3372 <p>
   3373 Binary operators of the same precedence associate from left to right.
   3374 For instance, <code>x / y * z</code> is the same as <code>(x / y) * z</code>.
   3375 </p>
   3376 
   3377 <pre>
   3378 +x
   3379 23 + 3*x[i]
   3380 x &lt;= f()
   3381 ^a &gt;&gt; b
   3382 f() || g()
   3383 x == y+1 &amp;&amp; &lt;-chanPtr &gt; 0
   3384 </pre>
   3385 
   3386 
   3387 <h3 id="Arithmetic_operators">Arithmetic operators</h3>
   3388 <p>
   3389 Arithmetic operators apply to numeric values and yield a result of the same
   3390 type as the first operand. The four standard arithmetic operators (<code>+</code>,
   3391 <code>-</code>, <code>*</code>, <code>/</code>) apply to integer,
   3392 floating-point, and complex types; <code>+</code> also applies to strings.
   3393 The bitwise logical and shift operators apply to integers only.
   3394 </p>
   3395 
   3396 <pre class="grammar">
   3397 +    sum                    integers, floats, complex values, strings
   3398 -    difference             integers, floats, complex values
   3399 *    product                integers, floats, complex values
   3400 /    quotient               integers, floats, complex values
   3401 %    remainder              integers
   3402 
   3403 &amp;    bitwise AND            integers
   3404 |    bitwise OR             integers
   3405 ^    bitwise XOR            integers
   3406 &amp;^   bit clear (AND NOT)    integers
   3407 
   3408 &lt;&lt;   left shift             integer &lt;&lt; unsigned integer
   3409 &gt;&gt;   right shift            integer &gt;&gt; unsigned integer
   3410 </pre>
   3411 
   3412 
   3413 <h4 id="Integer_operators">Integer operators</h4>
   3414 
   3415 <p>
   3416 For two integer values <code>x</code> and <code>y</code>, the integer quotient
   3417 <code>q = x / y</code> and remainder <code>r = x % y</code> satisfy the following
   3418 relationships:
   3419 </p>
   3420 
   3421 <pre>
   3422 x = q*y + r  and  |r| &lt; |y|
   3423 </pre>
   3424 
   3425 <p>
   3426 with <code>x / y</code> truncated towards zero
   3427 (<a href="http://en.wikipedia.org/wiki/Modulo_operation">"truncated division"</a>).
   3428 </p>
   3429 
   3430 <pre>
   3431  x     y     x / y     x % y
   3432  5     3       1         2
   3433 -5     3      -1        -2
   3434  5    -3      -1         2
   3435 -5    -3       1        -2
   3436 </pre>
   3437 
   3438 <p>
   3439 As an exception to this rule, if the dividend <code>x</code> is the most
   3440 negative value for the int type of <code>x</code>, the quotient
   3441 <code>q = x / -1</code> is equal to <code>x</code> (and <code>r = 0</code>).
   3442 </p>
   3443 
   3444 <pre>
   3445 			 x, q
   3446 int8                     -128
   3447 int16                  -32768
   3448 int32             -2147483648
   3449 int64    -9223372036854775808
   3450 </pre>
   3451 
   3452 <p>
   3453 If the divisor is a <a href="#Constants">constant</a>, it must not be zero.
   3454 If the divisor is zero at run time, a <a href="#Run_time_panics">run-time panic</a> occurs.
   3455 If the dividend is non-negative and the divisor is a constant power of 2,
   3456 the division may be replaced by a right shift, and computing the remainder may
   3457 be replaced by a bitwise AND operation:
   3458 </p>
   3459 
   3460 <pre>
   3461  x     x / 4     x % 4     x &gt;&gt; 2     x &amp; 3
   3462  11      2         3         2          3
   3463 -11     -2        -3        -3          1
   3464 </pre>
   3465 
   3466 <p>
   3467 The shift operators shift the left operand by the shift count specified by the
   3468 right operand. They implement arithmetic shifts if the left operand is a signed
   3469 integer and logical shifts if it is an unsigned integer.
   3470 There is no upper limit on the shift count. Shifts behave
   3471 as if the left operand is shifted <code>n</code> times by 1 for a shift
   3472 count of <code>n</code>.
   3473 As a result, <code>x &lt;&lt; 1</code> is the same as <code>x*2</code>
   3474 and <code>x &gt;&gt; 1</code> is the same as
   3475 <code>x/2</code> but truncated towards negative infinity.
   3476 </p>
   3477 
   3478 <p>
   3479 For integer operands, the unary operators
   3480 <code>+</code>, <code>-</code>, and <code>^</code> are defined as
   3481 follows:
   3482 </p>
   3483 
   3484 <pre class="grammar">
   3485 +x                          is 0 + x
   3486 -x    negation              is 0 - x
   3487 ^x    bitwise complement    is m ^ x  with m = "all bits set to 1" for unsigned x
   3488                                       and  m = -1 for signed x
   3489 </pre>
   3490 
   3491 
   3492 <h4 id="Integer_overflow">Integer overflow</h4>
   3493 
   3494 <p>
   3495 For unsigned integer values, the operations <code>+</code>,
   3496 <code>-</code>, <code>*</code>, and <code>&lt;&lt;</code> are
   3497 computed modulo 2<sup><i>n</i></sup>, where <i>n</i> is the bit width of
   3498 the <a href="#Numeric_types">unsigned integer</a>'s type.
   3499 Loosely speaking, these unsigned integer operations
   3500 discard high bits upon overflow, and programs may rely on ``wrap around''.
   3501 </p>
   3502 <p>
   3503 For signed integers, the operations <code>+</code>,
   3504 <code>-</code>, <code>*</code>, and <code>&lt;&lt;</code> may legally
   3505 overflow and the resulting value exists and is deterministically defined
   3506 by the signed integer representation, the operation, and its operands.
   3507 No exception is raised as a result of overflow. A
   3508 compiler may not optimize code under the assumption that overflow does
   3509 not occur. For instance, it may not assume that <code>x &lt; x + 1</code> is always true.
   3510 </p>
   3511 
   3512 
   3513 <h4 id="Floating_point_operators">Floating-point operators</h4>
   3514 
   3515 <p>
   3516 For floating-point and complex numbers,
   3517 <code>+x</code> is the same as <code>x</code>,
   3518 while <code>-x</code> is the negation of <code>x</code>.
   3519 The result of a floating-point or complex division by zero is not specified beyond the
   3520 IEEE-754 standard; whether a <a href="#Run_time_panics">run-time panic</a>
   3521 occurs is implementation-specific.
   3522 </p>
   3523 
   3524 
   3525 <h4 id="String_concatenation">String concatenation</h4>
   3526 
   3527 <p>
   3528 Strings can be concatenated using the <code>+</code> operator
   3529 or the <code>+=</code> assignment operator:
   3530 </p>
   3531 
   3532 <pre>
   3533 s := "hi" + string(c)
   3534 s += " and good bye"
   3535 </pre>
   3536 
   3537 <p>
   3538 String addition creates a new string by concatenating the operands.
   3539 </p>
   3540 
   3541 
   3542 <h3 id="Comparison_operators">Comparison operators</h3>
   3543 
   3544 <p>
   3545 Comparison operators compare two operands and yield an untyped boolean value.
   3546 </p>
   3547 
   3548 <pre class="grammar">
   3549 ==    equal
   3550 !=    not equal
   3551 &lt;     less
   3552 &lt;=    less or equal
   3553 &gt;     greater
   3554 &gt;=    greater or equal
   3555 </pre>
   3556 
   3557 <p>
   3558 In any comparison, the first operand
   3559 must be <a href="#Assignability">assignable</a>
   3560 to the type of the second operand, or vice versa.
   3561 </p>
   3562 <p>
   3563 The equality operators <code>==</code> and <code>!=</code> apply
   3564 to operands that are <i>comparable</i>.
   3565 The ordering operators <code>&lt;</code>, <code>&lt;=</code>, <code>&gt;</code>, and <code>&gt;=</code>
   3566 apply to operands that are <i>ordered</i>.
   3567 These terms and the result of the comparisons are defined as follows:
   3568 </p>
   3569 
   3570 <ul>
   3571 	<li>
   3572 	Boolean values are comparable.
   3573 	Two boolean values are equal if they are either both
   3574 	<code>true</code> or both <code>false</code>.
   3575 	</li>
   3576 
   3577 	<li>
   3578 	Integer values are comparable and ordered, in the usual way.
   3579 	</li>
   3580 
   3581 	<li>
   3582 	Floating point values are comparable and ordered,
   3583 	as defined by the IEEE-754 standard.
   3584 	</li>
   3585 
   3586 	<li>
   3587 	Complex values are comparable.
   3588 	Two complex values <code>u</code> and <code>v</code> are
   3589 	equal if both <code>real(u) == real(v)</code> and
   3590 	<code>imag(u) == imag(v)</code>.
   3591 	</li>
   3592 
   3593 	<li>
   3594 	String values are comparable and ordered, lexically byte-wise.
   3595 	</li>
   3596 
   3597 	<li>
   3598 	Pointer values are comparable.
   3599 	Two pointer values are equal if they point to the same variable or if both have value <code>nil</code>.
   3600 	Pointers to distinct <a href="#Size_and_alignment_guarantees">zero-size</a> variables may or may not be equal.
   3601 	</li>
   3602 
   3603 	<li>
   3604 	Channel values are comparable.
   3605 	Two channel values are equal if they were created by the same call to
   3606 	<a href="#Making_slices_maps_and_channels"><code>make</code></a>
   3607 	or if both have value <code>nil</code>.
   3608 	</li>
   3609 
   3610 	<li>
   3611 	Interface values are comparable.
   3612 	Two interface values are equal if they have <a href="#Type_identity">identical</a> dynamic types
   3613 	and equal dynamic values or if both have value <code>nil</code>.
   3614 	</li>
   3615 
   3616 	<li>
   3617 	A value <code>x</code> of non-interface type <code>X</code> and
   3618 	a value <code>t</code> of interface type <code>T</code> are comparable when values
   3619 	of type <code>X</code> are comparable and
   3620 	<code>X</code> implements <code>T</code>.
   3621 	They are equal if <code>t</code>'s dynamic type is identical to <code>X</code>
   3622 	and <code>t</code>'s dynamic value is equal to <code>x</code>.
   3623 	</li>
   3624 
   3625 	<li>
   3626 	Struct values are comparable if all their fields are comparable.
   3627 	Two struct values are equal if their corresponding
   3628 	non-<a href="#Blank_identifier">blank</a> fields are equal.
   3629 	</li>
   3630 
   3631 	<li>
   3632 	Array values are comparable if values of the array element type are comparable.
   3633 	Two array values are equal if their corresponding elements are equal.
   3634 	</li>
   3635 </ul>
   3636 
   3637 <p>
   3638 A comparison of two interface values with identical dynamic types
   3639 causes a <a href="#Run_time_panics">run-time panic</a> if values
   3640 of that type are not comparable.  This behavior applies not only to direct interface
   3641 value comparisons but also when comparing arrays of interface values
   3642 or structs with interface-valued fields.
   3643 </p>
   3644 
   3645 <p>
   3646 Slice, map, and function values are not comparable.
   3647 However, as a special case, a slice, map, or function value may
   3648 be compared to the predeclared identifier <code>nil</code>.
   3649 Comparison of pointer, channel, and interface values to <code>nil</code>
   3650 is also allowed and follows from the general rules above.
   3651 </p>
   3652 
   3653 <pre>
   3654 const c = 3 &lt; 4            // c is the untyped boolean constant true
   3655 
   3656 type MyBool bool
   3657 var x, y int
   3658 var (
   3659 	// The result of a comparison is an untyped boolean.
   3660 	// The usual assignment rules apply.
   3661 	b3        = x == y // b3 has type bool
   3662 	b4 bool   = x == y // b4 has type bool
   3663 	b5 MyBool = x == y // b5 has type MyBool
   3664 )
   3665 </pre>
   3666 
   3667 <h3 id="Logical_operators">Logical operators</h3>
   3668 
   3669 <p>
   3670 Logical operators apply to <a href="#Boolean_types">boolean</a> values
   3671 and yield a result of the same type as the operands.
   3672 The right operand is evaluated conditionally.
   3673 </p>
   3674 
   3675 <pre class="grammar">
   3676 &amp;&amp;    conditional AND    p &amp;&amp; q  is  "if p then q else false"
   3677 ||    conditional OR     p || q  is  "if p then true else q"
   3678 !     NOT                !p      is  "not p"
   3679 </pre>
   3680 
   3681 
   3682 <h3 id="Address_operators">Address operators</h3>
   3683 
   3684 <p>
   3685 For an operand <code>x</code> of type <code>T</code>, the address operation
   3686 <code>&amp;x</code> generates a pointer of type <code>*T</code> to <code>x</code>.
   3687 The operand must be <i>addressable</i>,
   3688 that is, either a variable, pointer indirection, or slice indexing
   3689 operation; or a field selector of an addressable struct operand;
   3690 or an array indexing operation of an addressable array.
   3691 As an exception to the addressability requirement, <code>x</code> may also be a
   3692 (possibly parenthesized)
   3693 <a href="#Composite_literals">composite literal</a>.
   3694 If the evaluation of <code>x</code> would cause a <a href="#Run_time_panics">run-time panic</a>,
   3695 then the evaluation of <code>&amp;x</code> does too.
   3696 </p>
   3697 
   3698 <p>
   3699 For an operand <code>x</code> of pointer type <code>*T</code>, the pointer
   3700 indirection <code>*x</code> denotes the <a href="#Variables">variable</a> of type <code>T</code> pointed
   3701 to by <code>x</code>.
   3702 If <code>x</code> is <code>nil</code>, an attempt to evaluate <code>*x</code>
   3703 will cause a <a href="#Run_time_panics">run-time panic</a>.
   3704 </p>
   3705 
   3706 <pre>
   3707 &amp;x
   3708 &amp;a[f(2)]
   3709 &amp;Point{2, 3}
   3710 *p
   3711 *pf(x)
   3712 
   3713 var x *int = nil
   3714 *x   // causes a run-time panic
   3715 &amp;*x  // causes a run-time panic
   3716 </pre>
   3717 
   3718 
   3719 <h3 id="Receive_operator">Receive operator</h3>
   3720 
   3721 <p>
   3722 For an operand <code>ch</code> of <a href="#Channel_types">channel type</a>,
   3723 the value of the receive operation <code>&lt;-ch</code> is the value received
   3724 from the channel <code>ch</code>. The channel direction must permit receive operations,
   3725 and the type of the receive operation is the element type of the channel.
   3726 The expression blocks until a value is available.
   3727 Receiving from a <code>nil</code> channel blocks forever.
   3728 A receive operation on a <a href="#Close">closed</a> channel can always proceed
   3729 immediately, yielding the element type's <a href="#The_zero_value">zero value</a>
   3730 after any previously sent values have been received.
   3731 </p>
   3732 
   3733 <pre>
   3734 v1 := &lt;-ch
   3735 v2 = &lt;-ch
   3736 f(&lt;-ch)
   3737 &lt;-strobe  // wait until clock pulse and discard received value
   3738 </pre>
   3739 
   3740 <p>
   3741 A receive expression used in an <a href="#Assignments">assignment</a> or initialization of the special form
   3742 </p>
   3743 
   3744 <pre>
   3745 x, ok = &lt;-ch
   3746 x, ok := &lt;-ch
   3747 var x, ok = &lt;-ch
   3748 var x, ok T = &lt;-ch
   3749 </pre>
   3750 
   3751 <p>
   3752 yields an additional untyped boolean result reporting whether the
   3753 communication succeeded. The value of <code>ok</code> is <code>true</code>
   3754 if the value received was delivered by a successful send operation to the
   3755 channel, or <code>false</code> if it is a zero value generated because the
   3756 channel is closed and empty.
   3757 </p>
   3758 
   3759 
   3760 <h3 id="Conversions">Conversions</h3>
   3761 
   3762 <p>
   3763 Conversions are expressions of the form <code>T(x)</code>
   3764 where <code>T</code> is a type and <code>x</code> is an expression
   3765 that can be converted to type <code>T</code>.
   3766 </p>
   3767 
   3768 <pre class="ebnf">
   3769 Conversion = Type "(" Expression [ "," ] ")" .
   3770 </pre>
   3771 
   3772 <p>
   3773 If the type starts with the operator <code>*</code> or <code>&lt;-</code>,
   3774 or if the type starts with the keyword <code>func</code>
   3775 and has no result list, it must be parenthesized when
   3776 necessary to avoid ambiguity:
   3777 </p>
   3778 
   3779 <pre>
   3780 *Point(p)        // same as *(Point(p))
   3781 (*Point)(p)      // p is converted to *Point
   3782 &lt;-chan int(c)    // same as &lt;-(chan int(c))
   3783 (&lt;-chan int)(c)  // c is converted to &lt;-chan int
   3784 func()(x)        // function signature func() x
   3785 (func())(x)      // x is converted to func()
   3786 (func() int)(x)  // x is converted to func() int
   3787 func() int(x)    // x is converted to func() int (unambiguous)
   3788 </pre>
   3789 
   3790 <p>
   3791 A <a href="#Constants">constant</a> value <code>x</code> can be converted to
   3792 type <code>T</code> in any of these cases:
   3793 </p>
   3794 
   3795 <ul>
   3796 	<li>
   3797 	<code>x</code> is representable by a value of type <code>T</code>.
   3798 	</li>
   3799 	<li>
   3800 	<code>x</code> is a floating-point constant,
   3801 	<code>T</code> is a floating-point type,
   3802 	and <code>x</code> is representable by a value
   3803 	of type <code>T</code> after rounding using
   3804 	IEEE 754 round-to-even rules, but with an IEEE <code>-0.0</code>
   3805 	further rounded to an unsigned <code>0.0</code>.
   3806 	The constant <code>T(x)</code> is the rounded value.
   3807 	</li>
   3808 	<li>
   3809 	<code>x</code> is an integer constant and <code>T</code> is a
   3810 	<a href="#String_types">string type</a>.
   3811 	The <a href="#Conversions_to_and_from_a_string_type">same rule</a>
   3812 	as for non-constant <code>x</code> applies in this case.
   3813 	</li>
   3814 </ul>
   3815 
   3816 <p>
   3817 Converting a constant yields a typed constant as result.
   3818 </p>
   3819 
   3820 <pre>
   3821 uint(iota)               // iota value of type uint
   3822 float32(2.718281828)     // 2.718281828 of type float32
   3823 complex128(1)            // 1.0 + 0.0i of type complex128
   3824 float32(0.49999999)      // 0.5 of type float32
   3825 float64(-1e-1000)        // 0.0 of type float64
   3826 string('x')              // "x" of type string
   3827 string(0x266c)           // "" of type string
   3828 MyString("foo" + "bar")  // "foobar" of type MyString
   3829 string([]byte{'a'})      // not a constant: []byte{'a'} is not a constant
   3830 (*int)(nil)              // not a constant: nil is not a constant, *int is not a boolean, numeric, or string type
   3831 int(1.2)                 // illegal: 1.2 cannot be represented as an int
   3832 string(65.0)             // illegal: 65.0 is not an integer constant
   3833 </pre>
   3834 
   3835 <p>
   3836 A non-constant value <code>x</code> can be converted to type <code>T</code>
   3837 in any of these cases:
   3838 </p>
   3839 
   3840 <ul>
   3841 	<li>
   3842 	<code>x</code> is <a href="#Assignability">assignable</a>
   3843 	to <code>T</code>.
   3844 	</li>
   3845 	<li>
   3846 	ignoring struct tags (see below),
   3847 	<code>x</code>'s type and <code>T</code> have <a href="#Type_identity">identical</a>
   3848 	<a href="#Types">underlying types</a>.
   3849 	</li>
   3850 	<li>
   3851 	ignoring struct tags (see below),
   3852 	<code>x</code>'s type and <code>T</code> are unnamed pointer types
   3853 	and their pointer base types have identical underlying types.
   3854 	</li>
   3855 	<li>
   3856 	<code>x</code>'s type and <code>T</code> are both integer or floating
   3857 	point types.
   3858 	</li>
   3859 	<li>
   3860 	<code>x</code>'s type and <code>T</code> are both complex types.
   3861 	</li>
   3862 	<li>
   3863 	<code>x</code> is an integer or a slice of bytes or runes
   3864 	and <code>T</code> is a string type.
   3865 	</li>
   3866 	<li>
   3867 	<code>x</code> is a string and <code>T</code> is a slice of bytes or runes.
   3868 	</li>
   3869 </ul>
   3870 
   3871 <p>
   3872 <a href="#Struct_types">Struct tags</a> are ignored when comparing struct types
   3873 for identity for the purpose of conversion:
   3874 </p>
   3875 
   3876 <pre>
   3877 type Person struct {
   3878 	Name    string
   3879 	Address *struct {
   3880 		Street string
   3881 		City   string
   3882 	}
   3883 }
   3884 
   3885 var data *struct {
   3886 	Name    string `json:"name"`
   3887 	Address *struct {
   3888 		Street string `json:"street"`
   3889 		City   string `json:"city"`
   3890 	} `json:"address"`
   3891 }
   3892 
   3893 var person = (*Person)(data)  // ignoring tags, the underlying types are identical
   3894 </pre>
   3895 
   3896 <p>
   3897 Specific rules apply to (non-constant) conversions between numeric types or
   3898 to and from a string type.
   3899 These conversions may change the representation of <code>x</code>
   3900 and incur a run-time cost.
   3901 All other conversions only change the type but not the representation
   3902 of <code>x</code>.
   3903 </p>
   3904 
   3905 <p>
   3906 There is no linguistic mechanism to convert between pointers and integers.
   3907 The package <a href="#Package_unsafe"><code>unsafe</code></a>
   3908 implements this functionality under
   3909 restricted circumstances.
   3910 </p>
   3911 
   3912 <h4>Conversions between numeric types</h4>
   3913 
   3914 <p>
   3915 For the conversion of non-constant numeric values, the following rules apply:
   3916 </p>
   3917 
   3918 <ol>
   3919 <li>
   3920 When converting between integer types, if the value is a signed integer, it is
   3921 sign extended to implicit infinite precision; otherwise it is zero extended.
   3922 It is then truncated to fit in the result type's size.
   3923 For example, if <code>v := uint16(0x10F0)</code>, then <code>uint32(int8(v)) == 0xFFFFFFF0</code>.
   3924 The conversion always yields a valid value; there is no indication of overflow.
   3925 </li>
   3926 <li>
   3927 When converting a floating-point number to an integer, the fraction is discarded
   3928 (truncation towards zero).
   3929 </li>
   3930 <li>
   3931 When converting an integer or floating-point number to a floating-point type,
   3932 or a complex number to another complex type, the result value is rounded
   3933 to the precision specified by the destination type.
   3934 For instance, the value of a variable <code>x</code> of type <code>float32</code>
   3935 may be stored using additional precision beyond that of an IEEE-754 32-bit number,
   3936 but float32(x) represents the result of rounding <code>x</code>'s value to
   3937 32-bit precision. Similarly, <code>x + 0.1</code> may use more than 32 bits
   3938 of precision, but <code>float32(x + 0.1)</code> does not.
   3939 </li>
   3940 </ol>
   3941 
   3942 <p>
   3943 In all non-constant conversions involving floating-point or complex values,
   3944 if the result type cannot represent the value the conversion
   3945 succeeds but the result value is implementation-dependent.
   3946 </p>
   3947 
   3948 <h4 id="Conversions_to_and_from_a_string_type">Conversions to and from a string type</h4>
   3949 
   3950 <ol>
   3951 <li>
   3952 Converting a signed or unsigned integer value to a string type yields a
   3953 string containing the UTF-8 representation of the integer. Values outside
   3954 the range of valid Unicode code points are converted to <code>"\uFFFD"</code>.
   3955 
   3956 <pre>
   3957 string('a')       // "a"
   3958 string(-1)        // "\ufffd" == "\xef\xbf\xbd"
   3959 string(0xf8)      // "\u00f8" == "" == "\xc3\xb8"
   3960 type MyString string
   3961 MyString(0x65e5)  // "\u65e5" == "" == "\xe6\x97\xa5"
   3962 </pre>
   3963 </li>
   3964 
   3965 <li>
   3966 Converting a slice of bytes to a string type yields
   3967 a string whose successive bytes are the elements of the slice.
   3968 
   3969 <pre>
   3970 string([]byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'})   // "hell"
   3971 string([]byte{})                                     // ""
   3972 string([]byte(nil))                                  // ""
   3973 
   3974 type MyBytes []byte
   3975 string(MyBytes{'h', 'e', 'l', 'l', '\xc3', '\xb8'})  // "hell"
   3976 </pre>
   3977 </li>
   3978 
   3979 <li>
   3980 Converting a slice of runes to a string type yields
   3981 a string that is the concatenation of the individual rune values
   3982 converted to strings.
   3983 
   3984 <pre>
   3985 string([]rune{0x767d, 0x9d6c, 0x7fd4})   // "\u767d\u9d6c\u7fd4" == ""
   3986 string([]rune{})                         // ""
   3987 string([]rune(nil))                      // ""
   3988 
   3989 type MyRunes []rune
   3990 string(MyRunes{0x767d, 0x9d6c, 0x7fd4})  // "\u767d\u9d6c\u7fd4" == ""
   3991 </pre>
   3992 </li>
   3993 
   3994 <li>
   3995 Converting a value of a string type to a slice of bytes type
   3996 yields a slice whose successive elements are the bytes of the string.
   3997 
   3998 <pre>
   3999 []byte("hell")   // []byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'}
   4000 []byte("")        // []byte{}
   4001 
   4002 MyBytes("hell")  // []byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'}
   4003 </pre>
   4004 </li>
   4005 
   4006 <li>
   4007 Converting a value of a string type to a slice of runes type
   4008 yields a slice containing the individual Unicode code points of the string.
   4009 
   4010 <pre>
   4011 []rune(MyString(""))  // []rune{0x767d, 0x9d6c, 0x7fd4}
   4012 []rune("")                 // []rune{}
   4013 
   4014 MyRunes("")           // []rune{0x767d, 0x9d6c, 0x7fd4}
   4015 </pre>
   4016 </li>
   4017 </ol>
   4018 
   4019 
   4020 <h3 id="Constant_expressions">Constant expressions</h3>
   4021 
   4022 <p>
   4023 Constant expressions may contain only <a href="#Constants">constant</a>
   4024 operands and are evaluated at compile time.
   4025 </p>
   4026 
   4027 <p>
   4028 Untyped boolean, numeric, and string constants may be used as operands
   4029 wherever it is legal to use an operand of boolean, numeric, or string type,
   4030 respectively.
   4031 Except for shift operations, if the operands of a binary operation are
   4032 different kinds of untyped constants, the operation and, for non-boolean operations, the result use
   4033 the kind that appears later in this list: integer, rune, floating-point, complex.
   4034 For example, an untyped integer constant divided by an
   4035 untyped complex constant yields an untyped complex constant.
   4036 </p>
   4037 
   4038 <p>
   4039 A constant <a href="#Comparison_operators">comparison</a> always yields
   4040 an untyped boolean constant.  If the left operand of a constant
   4041 <a href="#Operators">shift expression</a> is an untyped constant, the
   4042 result is an integer constant; otherwise it is a constant of the same
   4043 type as the left operand, which must be of
   4044 <a href="#Numeric_types">integer type</a>.
   4045 Applying all other operators to untyped constants results in an untyped
   4046 constant of the same kind (that is, a boolean, integer, floating-point,
   4047 complex, or string constant).
   4048 </p>
   4049 
   4050 <pre>
   4051 const a = 2 + 3.0          // a == 5.0   (untyped floating-point constant)
   4052 const b = 15 / 4           // b == 3     (untyped integer constant)
   4053 const c = 15 / 4.0         // c == 3.75  (untyped floating-point constant)
   4054 const  float64 = 3/2      //  == 1.0   (type float64, 3/2 is integer division)
   4055 const  float64 = 3/2.     //  == 1.5   (type float64, 3/2. is float division)
   4056 const d = 1 &lt;&lt; 3.0         // d == 8     (untyped integer constant)
   4057 const e = 1.0 &lt;&lt; 3         // e == 8     (untyped integer constant)
   4058 const f = int32(1) &lt;&lt; 33   // illegal    (constant 8589934592 overflows int32)
   4059 const g = float64(2) &gt;&gt; 1  // illegal    (float64(2) is a typed floating-point constant)
   4060 const h = "foo" &gt; "bar"    // h == true  (untyped boolean constant)
   4061 const j = true             // j == true  (untyped boolean constant)
   4062 const k = 'w' + 1          // k == 'x'   (untyped rune constant)
   4063 const l = "hi"             // l == "hi"  (untyped string constant)
   4064 const m = string(k)        // m == "x"   (type string)
   4065 const  = 1 - 0.707i       //            (untyped complex constant)
   4066 const  =  + 2.0e-4       //            (untyped complex constant)
   4067 const  = iota*1i - 1/1i   //            (untyped complex constant)
   4068 </pre>
   4069 
   4070 <p>
   4071 Applying the built-in function <code>complex</code> to untyped
   4072 integer, rune, or floating-point constants yields
   4073 an untyped complex constant.
   4074 </p>
   4075 
   4076 <pre>
   4077 const ic = complex(0, c)   // ic == 3.75i  (untyped complex constant)
   4078 const i = complex(0, )   // i == 1i     (type complex128)
   4079 </pre>
   4080 
   4081 <p>
   4082 Constant expressions are always evaluated exactly; intermediate values and the
   4083 constants themselves may require precision significantly larger than supported
   4084 by any predeclared type in the language. The following are legal declarations:
   4085 </p>
   4086 
   4087 <pre>
   4088 const Huge = 1 &lt;&lt; 100         // Huge == 1267650600228229401496703205376  (untyped integer constant)
   4089 const Four int8 = Huge &gt;&gt; 98  // Four == 4                                (type int8)
   4090 </pre>
   4091 
   4092 <p>
   4093 The divisor of a constant division or remainder operation must not be zero:
   4094 </p>
   4095 
   4096 <pre>
   4097 3.14 / 0.0   // illegal: division by zero
   4098 </pre>
   4099 
   4100 <p>
   4101 The values of <i>typed</i> constants must always be accurately representable as values
   4102 of the constant type. The following constant expressions are illegal:
   4103 </p>
   4104 
   4105 <pre>
   4106 uint(-1)     // -1 cannot be represented as a uint
   4107 int(3.14)    // 3.14 cannot be represented as an int
   4108 int64(Huge)  // 1267650600228229401496703205376 cannot be represented as an int64
   4109 Four * 300   // operand 300 cannot be represented as an int8 (type of Four)
   4110 Four * 100   // product 400 cannot be represented as an int8 (type of Four)
   4111 </pre>
   4112 
   4113 <p>
   4114 The mask used by the unary bitwise complement operator <code>^</code> matches
   4115 the rule for non-constants: the mask is all 1s for unsigned constants
   4116 and -1 for signed and untyped constants.
   4117 </p>
   4118 
   4119 <pre>
   4120 ^1         // untyped integer constant, equal to -2
   4121 uint8(^1)  // illegal: same as uint8(-2), -2 cannot be represented as a uint8
   4122 ^uint8(1)  // typed uint8 constant, same as 0xFF ^ uint8(1) = uint8(0xFE)
   4123 int8(^1)   // same as int8(-2)
   4124 ^int8(1)   // same as -1 ^ int8(1) = -2
   4125 </pre>
   4126 
   4127 <p>
   4128 Implementation restriction: A compiler may use rounding while
   4129 computing untyped floating-point or complex constant expressions; see
   4130 the implementation restriction in the section
   4131 on <a href="#Constants">constants</a>.  This rounding may cause a
   4132 floating-point constant expression to be invalid in an integer
   4133 context, even if it would be integral when calculated using infinite
   4134 precision, and vice versa.
   4135 </p>
   4136 
   4137 
   4138 <h3 id="Order_of_evaluation">Order of evaluation</h3>
   4139 
   4140 <p>
   4141 At package level, <a href="#Package_initialization">initialization dependencies</a>
   4142 determine the evaluation order of individual initialization expressions in
   4143 <a href="#Variable_declarations">variable declarations</a>.
   4144 Otherwise, when evaluating the <a href="#Operands">operands</a> of an
   4145 expression, assignment, or
   4146 <a href="#Return_statements">return statement</a>,
   4147 all function calls, method calls, and
   4148 communication operations are evaluated in lexical left-to-right
   4149 order.
   4150 </p>
   4151 
   4152 <p>
   4153 For example, in the (function-local) assignment
   4154 </p>
   4155 <pre>
   4156 y[f()], ok = g(h(), i()+x[j()], &lt;-c), k()
   4157 </pre>
   4158 <p>
   4159 the function calls and communication happen in the order
   4160 <code>f()</code>, <code>h()</code>, <code>i()</code>, <code>j()</code>,
   4161 <code>&lt;-c</code>, <code>g()</code>, and <code>k()</code>.
   4162 However, the order of those events compared to the evaluation
   4163 and indexing of <code>x</code> and the evaluation
   4164 of <code>y</code> is not specified.
   4165 </p>
   4166 
   4167 <pre>
   4168 a := 1
   4169 f := func() int { a++; return a }
   4170 x := []int{a, f()}            // x may be [1, 2] or [2, 2]: evaluation order between a and f() is not specified
   4171 m := map[int]int{a: 1, a: 2}  // m may be {2: 1} or {2: 2}: evaluation order between the two map assignments is not specified
   4172 n := map[int]int{a: f()}      // n may be {2: 3} or {3: 3}: evaluation order between the key and the value is not specified
   4173 </pre>
   4174 
   4175 <p>
   4176 At package level, initialization dependencies override the left-to-right rule
   4177 for individual initialization expressions, but not for operands within each
   4178 expression:
   4179 </p>
   4180 
   4181 <pre>
   4182 var a, b, c = f() + v(), g(), sqr(u()) + v()
   4183 
   4184 func f() int        { return c }
   4185 func g() int        { return a }
   4186 func sqr(x int) int { return x*x }
   4187 
   4188 // functions u and v are independent of all other variables and functions
   4189 </pre>
   4190 
   4191 <p>
   4192 The function calls happen in the order
   4193 <code>u()</code>, <code>sqr()</code>, <code>v()</code>,
   4194 <code>f()</code>, <code>v()</code>, and <code>g()</code>.
   4195 </p>
   4196 
   4197 <p>
   4198 Floating-point operations within a single expression are evaluated according to
   4199 the associativity of the operators.  Explicit parentheses affect the evaluation
   4200 by overriding the default associativity.
   4201 In the expression <code>x + (y + z)</code> the addition <code>y + z</code>
   4202 is performed before adding <code>x</code>.
   4203 </p>
   4204 
   4205 <h2 id="Statements">Statements</h2>
   4206 
   4207 <p>
   4208 Statements control execution.
   4209 </p>
   4210 
   4211 <pre class="ebnf">
   4212 Statement =
   4213 	Declaration | LabeledStmt | SimpleStmt |
   4214 	GoStmt | ReturnStmt | BreakStmt | ContinueStmt | GotoStmt |
   4215 	FallthroughStmt | Block | IfStmt | SwitchStmt | SelectStmt | ForStmt |
   4216 	DeferStmt .
   4217 
   4218 SimpleStmt = EmptyStmt | ExpressionStmt | SendStmt | IncDecStmt | Assignment | ShortVarDecl .
   4219 </pre>
   4220 
   4221 <h3 id="Terminating_statements">Terminating statements</h3>
   4222 
   4223 <p>
   4224 A terminating statement is one of the following:
   4225 </p>
   4226 
   4227 <ol>
   4228 <li>
   4229 	A <a href="#Return_statements">"return"</a> or
   4230     	<a href="#Goto_statements">"goto"</a> statement.
   4231 	<!-- ul below only for regular layout -->
   4232 	<ul> </ul>
   4233 </li>
   4234 
   4235 <li>
   4236 	A call to the built-in function
   4237 	<a href="#Handling_panics"><code>panic</code></a>.
   4238 	<!-- ul below only for regular layout -->
   4239 	<ul> </ul>
   4240 </li>
   4241 
   4242 <li>
   4243 	A <a href="#Blocks">block</a> in which the statement list ends in a terminating statement.
   4244 	<!-- ul below only for regular layout -->
   4245 	<ul> </ul>
   4246 </li>
   4247 
   4248 <li>
   4249 	An <a href="#If_statements">"if" statement</a> in which:
   4250 	<ul>
   4251 	<li>the "else" branch is present, and</li>
   4252 	<li>both branches are terminating statements.</li>
   4253 	</ul>
   4254 </li>
   4255 
   4256 <li>
   4257 	A <a href="#For_statements">"for" statement</a> in which:
   4258 	<ul>
   4259 	<li>there are no "break" statements referring to the "for" statement, and</li>
   4260 	<li>the loop condition is absent.</li>
   4261 	</ul>
   4262 </li>
   4263 
   4264 <li>
   4265 	A <a href="#Switch_statements">"switch" statement</a> in which:
   4266 	<ul>
   4267 	<li>there are no "break" statements referring to the "switch" statement,</li>
   4268 	<li>there is a default case, and</li>
   4269 	<li>the statement lists in each case, including the default, end in a terminating
   4270 	    statement, or a possibly labeled <a href="#Fallthrough_statements">"fallthrough"
   4271 	    statement</a>.</li>
   4272 	</ul>
   4273 </li>
   4274 
   4275 <li>
   4276 	A <a href="#Select_statements">"select" statement</a> in which:
   4277 	<ul>
   4278 	<li>there are no "break" statements referring to the "select" statement, and</li>
   4279 	<li>the statement lists in each case, including the default if present,
   4280 	    end in a terminating statement.</li>
   4281 	</ul>
   4282 </li>
   4283 
   4284 <li>
   4285 	A <a href="#Labeled_statements">labeled statement</a> labeling
   4286 	a terminating statement.
   4287 </li>
   4288 </ol>
   4289 
   4290 <p>
   4291 All other statements are not terminating.
   4292 </p>
   4293 
   4294 <p>
   4295 A <a href="#Blocks">statement list</a> ends in a terminating statement if the list
   4296 is not empty and its final non-empty statement is terminating.
   4297 </p>
   4298 
   4299 
   4300 <h3 id="Empty_statements">Empty statements</h3>
   4301 
   4302 <p>
   4303 The empty statement does nothing.
   4304 </p>
   4305 
   4306 <pre class="ebnf">
   4307 EmptyStmt = .
   4308 </pre>
   4309 
   4310 
   4311 <h3 id="Labeled_statements">Labeled statements</h3>
   4312 
   4313 <p>
   4314 A labeled statement may be the target of a <code>goto</code>,
   4315 <code>break</code> or <code>continue</code> statement.
   4316 </p>
   4317 
   4318 <pre class="ebnf">
   4319 LabeledStmt = Label ":" Statement .
   4320 Label       = identifier .
   4321 </pre>
   4322 
   4323 <pre>
   4324 Error: log.Panic("error encountered")
   4325 </pre>
   4326 
   4327 
   4328 <h3 id="Expression_statements">Expression statements</h3>
   4329 
   4330 <p>
   4331 With the exception of specific built-in functions,
   4332 function and method <a href="#Calls">calls</a> and
   4333 <a href="#Receive_operator">receive operations</a>
   4334 can appear in statement context. Such statements may be parenthesized.
   4335 </p>
   4336 
   4337 <pre class="ebnf">
   4338 ExpressionStmt = Expression .
   4339 </pre>
   4340 
   4341 <p>
   4342 The following built-in functions are not permitted in statement context:
   4343 </p>
   4344 
   4345 <pre>
   4346 append cap complex imag len make new real
   4347 unsafe.Alignof unsafe.Offsetof unsafe.Sizeof
   4348 </pre>
   4349 
   4350 <pre>
   4351 h(x+y)
   4352 f.Close()
   4353 &lt;-ch
   4354 (&lt;-ch)
   4355 len("foo")  // illegal if len is the built-in function
   4356 </pre>
   4357 
   4358 
   4359 <h3 id="Send_statements">Send statements</h3>
   4360 
   4361 <p>
   4362 A send statement sends a value on a channel.
   4363 The channel expression must be of <a href="#Channel_types">channel type</a>,
   4364 the channel direction must permit send operations,
   4365 and the type of the value to be sent must be <a href="#Assignability">assignable</a>
   4366 to the channel's element type.
   4367 </p>
   4368 
   4369 <pre class="ebnf">
   4370 SendStmt = Channel "&lt;-" Expression .
   4371 Channel  = Expression .
   4372 </pre>
   4373 
   4374 <p>
   4375 Both the channel and the value expression are evaluated before communication
   4376 begins. Communication blocks until the send can proceed.
   4377 A send on an unbuffered channel can proceed if a receiver is ready.
   4378 A send on a buffered channel can proceed if there is room in the buffer.
   4379 A send on a closed channel proceeds by causing a <a href="#Run_time_panics">run-time panic</a>.
   4380 A send on a <code>nil</code> channel blocks forever.
   4381 </p>
   4382 
   4383 <pre>
   4384 ch &lt;- 3  // send value 3 to channel ch
   4385 </pre>
   4386 
   4387 
   4388 <h3 id="IncDec_statements">IncDec statements</h3>
   4389 
   4390 <p>
   4391 The "++" and "--" statements increment or decrement their operands
   4392 by the untyped <a href="#Constants">constant</a> <code>1</code>.
   4393 As with an assignment, the operand must be <a href="#Address_operators">addressable</a>
   4394 or a map index expression.
   4395 </p>
   4396 
   4397 <pre class="ebnf">
   4398 IncDecStmt = Expression ( "++" | "--" ) .
   4399 </pre>
   4400 
   4401 <p>
   4402 The following <a href="#Assignments">assignment statements</a> are semantically
   4403 equivalent:
   4404 </p>
   4405 
   4406 <pre class="grammar">
   4407 IncDec statement    Assignment
   4408 x++                 x += 1
   4409 x--                 x -= 1
   4410 </pre>
   4411 
   4412 
   4413 <h3 id="Assignments">Assignments</h3>
   4414 
   4415 <pre class="ebnf">
   4416 Assignment = ExpressionList assign_op ExpressionList .
   4417 
   4418 assign_op = [ add_op | mul_op ] "=" .
   4419 </pre>
   4420 
   4421 <p>
   4422 Each left-hand side operand must be <a href="#Address_operators">addressable</a>,
   4423 a map index expression, or (for <code>=</code> assignments only) the
   4424 <a href="#Blank_identifier">blank identifier</a>.
   4425 Operands may be parenthesized.
   4426 </p>
   4427 
   4428 <pre>
   4429 x = 1
   4430 *p = f()
   4431 a[i] = 23
   4432 (k) = &lt;-ch  // same as: k = &lt;-ch
   4433 </pre>
   4434 
   4435 <p>
   4436 An <i>assignment operation</i> <code>x</code> <i>op</i><code>=</code>
   4437 <code>y</code> where <i>op</i> is a binary arithmetic operation is equivalent
   4438 to <code>x</code> <code>=</code> <code>x</code> <i>op</i>
   4439 <code>(y)</code> but evaluates <code>x</code>
   4440 only once.  The <i>op</i><code>=</code> construct is a single token.
   4441 In assignment operations, both the left- and right-hand expression lists
   4442 must contain exactly one single-valued expression, and the left-hand
   4443 expression must not be the blank identifier.
   4444 </p>
   4445 
   4446 <pre>
   4447 a[i] &lt;&lt;= 2
   4448 i &amp;^= 1&lt;&lt;n
   4449 </pre>
   4450 
   4451 <p>
   4452 A tuple assignment assigns the individual elements of a multi-valued
   4453 operation to a list of variables.  There are two forms.  In the
   4454 first, the right hand operand is a single multi-valued expression
   4455 such as a function call, a <a href="#Channel_types">channel</a> or
   4456 <a href="#Map_types">map</a> operation, or a <a href="#Type_assertions">type assertion</a>.
   4457 The number of operands on the left
   4458 hand side must match the number of values.  For instance, if
   4459 <code>f</code> is a function returning two values,
   4460 </p>
   4461 
   4462 <pre>
   4463 x, y = f()
   4464 </pre>
   4465 
   4466 <p>
   4467 assigns the first value to <code>x</code> and the second to <code>y</code>.
   4468 In the second form, the number of operands on the left must equal the number
   4469 of expressions on the right, each of which must be single-valued, and the
   4470 <i>n</i>th expression on the right is assigned to the <i>n</i>th
   4471 operand on the left:
   4472 </p>
   4473 
   4474 <pre>
   4475 one, two, three = '', '', ''
   4476 </pre>
   4477 
   4478 <p>
   4479 The <a href="#Blank_identifier">blank identifier</a> provides a way to
   4480 ignore right-hand side values in an assignment:
   4481 </p>
   4482 
   4483 <pre>
   4484 _ = x       // evaluate x but ignore it
   4485 x, _ = f()  // evaluate f() but ignore second result value
   4486 </pre>
   4487 
   4488 <p>
   4489 The assignment proceeds in two phases.
   4490 First, the operands of <a href="#Index_expressions">index expressions</a>
   4491 and <a href="#Address_operators">pointer indirections</a>
   4492 (including implicit pointer indirections in <a href="#Selectors">selectors</a>)
   4493 on the left and the expressions on the right are all
   4494 <a href="#Order_of_evaluation">evaluated in the usual order</a>.
   4495 Second, the assignments are carried out in left-to-right order.
   4496 </p>
   4497 
   4498 <pre>
   4499 a, b = b, a  // exchange a and b
   4500 
   4501 x := []int{1, 2, 3}
   4502 i := 0
   4503 i, x[i] = 1, 2  // set i = 1, x[0] = 2
   4504 
   4505 i = 0
   4506 x[i], i = 2, 1  // set x[0] = 2, i = 1
   4507 
   4508 x[0], x[0] = 1, 2  // set x[0] = 1, then x[0] = 2 (so x[0] == 2 at end)
   4509 
   4510 x[1], x[3] = 4, 5  // set x[1] = 4, then panic setting x[3] = 5.
   4511 
   4512 type Point struct { x, y int }
   4513 var p *Point
   4514 x[2], p.x = 6, 7  // set x[2] = 6, then panic setting p.x = 7
   4515 
   4516 i = 2
   4517 x = []int{3, 5, 7}
   4518 for i, x[i] = range x {  // set i, x[2] = 0, x[0]
   4519 	break
   4520 }
   4521 // after this loop, i == 0 and x == []int{3, 5, 3}
   4522 </pre>
   4523 
   4524 <p>
   4525 In assignments, each value must be <a href="#Assignability">assignable</a>
   4526 to the type of the operand to which it is assigned, with the following special cases:
   4527 </p>
   4528 
   4529 <ol>
   4530 <li>
   4531 	Any typed value may be assigned to the blank identifier.
   4532 </li>
   4533 
   4534 <li>
   4535 	If an untyped constant
   4536 	is assigned to a variable of interface type or the blank identifier,
   4537 	the constant is first <a href="#Conversions">converted</a> to its
   4538 	 <a href="#Constants">default type</a>.
   4539 </li>
   4540 
   4541 <li>
   4542 	If an untyped boolean value is assigned to a variable of interface type or
   4543 	the blank identifier, it is first converted to type <code>bool</code>.
   4544 </li>
   4545 </ol>
   4546 
   4547 <h3 id="If_statements">If statements</h3>
   4548 
   4549 <p>
   4550 "If" statements specify the conditional execution of two branches
   4551 according to the value of a boolean expression.  If the expression
   4552 evaluates to true, the "if" branch is executed, otherwise, if
   4553 present, the "else" branch is executed.
   4554 </p>
   4555 
   4556 <pre class="ebnf">
   4557 IfStmt = "if" [ SimpleStmt ";" ] Expression Block [ "else" ( IfStmt | Block ) ] .
   4558 </pre>
   4559 
   4560 <pre>
   4561 if x &gt; max {
   4562 	x = max
   4563 }
   4564 </pre>
   4565 
   4566 <p>
   4567 The expression may be preceded by a simple statement, which
   4568 executes before the expression is evaluated.
   4569 </p>
   4570 
   4571 <pre>
   4572 if x := f(); x &lt; y {
   4573 	return x
   4574 } else if x &gt; z {
   4575 	return z
   4576 } else {
   4577 	return y
   4578 }
   4579 </pre>
   4580 
   4581 
   4582 <h3 id="Switch_statements">Switch statements</h3>
   4583 
   4584 <p>
   4585 "Switch" statements provide multi-way execution.
   4586 An expression or type specifier is compared to the "cases"
   4587 inside the "switch" to determine which branch
   4588 to execute.
   4589 </p>
   4590 
   4591 <pre class="ebnf">
   4592 SwitchStmt = ExprSwitchStmt | TypeSwitchStmt .
   4593 </pre>
   4594 
   4595 <p>
   4596 There are two forms: expression switches and type switches.
   4597 In an expression switch, the cases contain expressions that are compared
   4598 against the value of the switch expression.
   4599 In a type switch, the cases contain types that are compared against the
   4600 type of a specially annotated switch expression.
   4601 The switch expression is evaluated exactly once in a switch statement.
   4602 </p>
   4603 
   4604 <h4 id="Expression_switches">Expression switches</h4>
   4605 
   4606 <p>
   4607 In an expression switch,
   4608 the switch expression is evaluated and
   4609 the case expressions, which need not be constants,
   4610 are evaluated left-to-right and top-to-bottom; the first one that equals the
   4611 switch expression
   4612 triggers execution of the statements of the associated case;
   4613 the other cases are skipped.
   4614 If no case matches and there is a "default" case,
   4615 its statements are executed.
   4616 There can be at most one default case and it may appear anywhere in the
   4617 "switch" statement.
   4618 A missing switch expression is equivalent to the boolean value
   4619 <code>true</code>.
   4620 </p>
   4621 
   4622 <pre class="ebnf">
   4623 ExprSwitchStmt = "switch" [ SimpleStmt ";" ] [ Expression ] "{" { ExprCaseClause } "}" .
   4624 ExprCaseClause = ExprSwitchCase ":" StatementList .
   4625 ExprSwitchCase = "case" ExpressionList | "default" .
   4626 </pre>
   4627 
   4628 <p>
   4629 If the switch expression evaluates to an untyped constant, it is first
   4630 <a href="#Conversions">converted</a> to its <a href="#Constants">default type</a>;
   4631 if it is an untyped boolean value, it is first converted to type <code>bool</code>.
   4632 The predeclared untyped value <code>nil</code> cannot be used as a switch expression.
   4633 </p>
   4634 
   4635 <p>
   4636 If a case expression is untyped, it is first <a href="#Conversions">converted</a>
   4637 to the type of the switch expression.
   4638 For each (possibly converted) case expression <code>x</code> and the value <code>t</code>
   4639 of the switch expression, <code>x == t</code> must be a valid <a href="#Comparison_operators">comparison</a>.
   4640 </p>
   4641 
   4642 <p>
   4643 In other words, the switch expression is treated as if it were used to declare and
   4644 initialize a temporary variable <code>t</code> without explicit type; it is that
   4645 value of <code>t</code> against which each case expression <code>x</code> is tested
   4646 for equality.
   4647 </p>
   4648 
   4649 <p>
   4650 In a case or default clause, the last non-empty statement
   4651 may be a (possibly <a href="#Labeled_statements">labeled</a>)
   4652 <a href="#Fallthrough_statements">"fallthrough" statement</a> to
   4653 indicate that control should flow from the end of this clause to
   4654 the first statement of the next clause.
   4655 Otherwise control flows to the end of the "switch" statement.
   4656 A "fallthrough" statement may appear as the last statement of all
   4657 but the last clause of an expression switch.
   4658 </p>
   4659 
   4660 <p>
   4661 The switch expression may be preceded by a simple statement, which
   4662 executes before the expression is evaluated.
   4663 </p>
   4664 
   4665 <pre>
   4666 switch tag {
   4667 default: s3()
   4668 case 0, 1, 2, 3: s1()
   4669 case 4, 5, 6, 7: s2()
   4670 }
   4671 
   4672 switch x := f(); {  // missing switch expression means "true"
   4673 case x &lt; 0: return -x
   4674 default: return x
   4675 }
   4676 
   4677 switch {
   4678 case x &lt; y: f1()
   4679 case x &lt; z: f2()
   4680 case x == 4: f3()
   4681 }
   4682 </pre>
   4683 
   4684 <p>
   4685 Implementation restriction: A compiler may disallow multiple case
   4686 expressions evaluating to the same constant.
   4687 For instance, the current compilers disallow duplicate integer,
   4688 floating point, or string constants in case expressions.
   4689 </p>
   4690 
   4691 <h4 id="Type_switches">Type switches</h4>
   4692 
   4693 <p>
   4694 A type switch compares types rather than values. It is otherwise similar
   4695 to an expression switch. It is marked by a special switch expression that
   4696 has the form of a <a href="#Type_assertions">type assertion</a>
   4697 using the reserved word <code>type</code> rather than an actual type:
   4698 </p>
   4699 
   4700 <pre>
   4701 switch x.(type) {
   4702 // cases
   4703 }
   4704 </pre>
   4705 
   4706 <p>
   4707 Cases then match actual types <code>T</code> against the dynamic type of the
   4708 expression <code>x</code>. As with type assertions, <code>x</code> must be of
   4709 <a href="#Interface_types">interface type</a>, and each non-interface type
   4710 <code>T</code> listed in a case must implement the type of <code>x</code>.
   4711 The types listed in the cases of a type switch must all be
   4712 <a href="#Type_identity">different</a>.
   4713 </p>
   4714 
   4715 <pre class="ebnf">
   4716 TypeSwitchStmt  = "switch" [ SimpleStmt ";" ] TypeSwitchGuard "{" { TypeCaseClause } "}" .
   4717 TypeSwitchGuard = [ identifier ":=" ] PrimaryExpr "." "(" "type" ")" .
   4718 TypeCaseClause  = TypeSwitchCase ":" StatementList .
   4719 TypeSwitchCase  = "case" TypeList | "default" .
   4720 TypeList        = Type { "," Type } .
   4721 </pre>
   4722 
   4723 <p>
   4724 The TypeSwitchGuard may include a
   4725 <a href="#Short_variable_declarations">short variable declaration</a>.
   4726 When that form is used, the variable is declared at the end of the
   4727 TypeSwitchCase in the <a href="#Blocks">implicit block</a> of each clause.
   4728 In clauses with a case listing exactly one type, the variable
   4729 has that type; otherwise, the variable has the type of the expression
   4730 in the TypeSwitchGuard.
   4731 </p>
   4732 
   4733 <p>
   4734 The type in a case may be <a href="#Predeclared_identifiers"><code>nil</code></a>;
   4735 that case is used when the expression in the TypeSwitchGuard
   4736 is a <code>nil</code> interface value.
   4737 There may be at most one <code>nil</code> case.
   4738 </p>
   4739 
   4740 <p>
   4741 Given an expression <code>x</code> of type <code>interface{}</code>,
   4742 the following type switch:
   4743 </p>
   4744 
   4745 <pre>
   4746 switch i := x.(type) {
   4747 case nil:
   4748 	printString("x is nil")                // type of i is type of x (interface{})
   4749 case int:
   4750 	printInt(i)                            // type of i is int
   4751 case float64:
   4752 	printFloat64(i)                        // type of i is float64
   4753 case func(int) float64:
   4754 	printFunction(i)                       // type of i is func(int) float64
   4755 case bool, string:
   4756 	printString("type is bool or string")  // type of i is type of x (interface{})
   4757 default:
   4758 	printString("don't know the type")     // type of i is type of x (interface{})
   4759 }
   4760 </pre>
   4761 
   4762 <p>
   4763 could be rewritten:
   4764 </p>
   4765 
   4766 <pre>
   4767 v := x  // x is evaluated exactly once
   4768 if v == nil {
   4769 	i := v                                 // type of i is type of x (interface{})
   4770 	printString("x is nil")
   4771 } else if i, isInt := v.(int); isInt {
   4772 	printInt(i)                            // type of i is int
   4773 } else if i, isFloat64 := v.(float64); isFloat64 {
   4774 	printFloat64(i)                        // type of i is float64
   4775 } else if i, isFunc := v.(func(int) float64); isFunc {
   4776 	printFunction(i)                       // type of i is func(int) float64
   4777 } else {
   4778 	_, isBool := v.(bool)
   4779 	_, isString := v.(string)
   4780 	if isBool || isString {
   4781 		i := v                         // type of i is type of x (interface{})
   4782 		printString("type is bool or string")
   4783 	} else {
   4784 		i := v                         // type of i is type of x (interface{})
   4785 		printString("don't know the type")
   4786 	}
   4787 }
   4788 </pre>
   4789 
   4790 <p>
   4791 The type switch guard may be preceded by a simple statement, which
   4792 executes before the guard is evaluated.
   4793 </p>
   4794 
   4795 <p>
   4796 The "fallthrough" statement is not permitted in a type switch.
   4797 </p>
   4798 
   4799 <h3 id="For_statements">For statements</h3>
   4800 
   4801 <p>
   4802 A "for" statement specifies repeated execution of a block. There are three forms:
   4803 The iteration may be controlled by a single condition, a "for" clause, or a "range" clause.
   4804 </p>
   4805 
   4806 <pre class="ebnf">
   4807 ForStmt = "for" [ Condition | ForClause | RangeClause ] Block .
   4808 Condition = Expression .
   4809 </pre>
   4810 
   4811 <h4 id="For_condition">For statements with single condition</h4>
   4812 
   4813 <p>
   4814 In its simplest form, a "for" statement specifies the repeated execution of
   4815 a block as long as a boolean condition evaluates to true.
   4816 The condition is evaluated before each iteration.
   4817 If the condition is absent, it is equivalent to the boolean value
   4818 <code>true</code>.
   4819 </p>
   4820 
   4821 <pre>
   4822 for a &lt; b {
   4823 	a *= 2
   4824 }
   4825 </pre>
   4826 
   4827 <h4 id="For_clause">For statements with <code>for</code> clause</h4>
   4828 
   4829 <p>
   4830 A "for" statement with a ForClause is also controlled by its condition, but
   4831 additionally it may specify an <i>init</i>
   4832 and a <i>post</i> statement, such as an assignment,
   4833 an increment or decrement statement. The init statement may be a
   4834 <a href="#Short_variable_declarations">short variable declaration</a>, but the post statement must not.
   4835 Variables declared by the init statement are re-used in each iteration.
   4836 </p>
   4837 
   4838 <pre class="ebnf">
   4839 ForClause = [ InitStmt ] ";" [ Condition ] ";" [ PostStmt ] .
   4840 InitStmt = SimpleStmt .
   4841 PostStmt = SimpleStmt .
   4842 </pre>
   4843 
   4844 <pre>
   4845 for i := 0; i &lt; 10; i++ {
   4846 	f(i)
   4847 }
   4848 </pre>
   4849 
   4850 <p>
   4851 If non-empty, the init statement is executed once before evaluating the
   4852 condition for the first iteration;
   4853 the post statement is executed after each execution of the block (and
   4854 only if the block was executed).
   4855 Any element of the ForClause may be empty but the
   4856 <a href="#Semicolons">semicolons</a> are
   4857 required unless there is only a condition.
   4858 If the condition is absent, it is equivalent to the boolean value
   4859 <code>true</code>.
   4860 </p>
   4861 
   4862 <pre>
   4863 for cond { S() }    is the same as    for ; cond ; { S() }
   4864 for      { S() }    is the same as    for true     { S() }
   4865 </pre>
   4866 
   4867 <h4 id="For_range">For statements with <code>range</code> clause</h4>
   4868 
   4869 <p>
   4870 A "for" statement with a "range" clause
   4871 iterates through all entries of an array, slice, string or map,
   4872 or values received on a channel. For each entry it assigns <i>iteration values</i>
   4873 to corresponding <i>iteration variables</i> if present and then executes the block.
   4874 </p>
   4875 
   4876 <pre class="ebnf">
   4877 RangeClause = [ ExpressionList "=" | IdentifierList ":=" ] "range" Expression .
   4878 </pre>
   4879 
   4880 <p>
   4881 The expression on the right in the "range" clause is called the <i>range expression</i>,
   4882 which may be an array, pointer to an array, slice, string, map, or channel permitting
   4883 <a href="#Receive_operator">receive operations</a>.
   4884 As with an assignment, if present the operands on the left must be
   4885 <a href="#Address_operators">addressable</a> or map index expressions; they
   4886 denote the iteration variables. If the range expression is a channel, at most
   4887 one iteration variable is permitted, otherwise there may be up to two.
   4888 If the last iteration variable is the <a href="#Blank_identifier">blank identifier</a>,
   4889 the range clause is equivalent to the same clause without that identifier.
   4890 </p>
   4891 
   4892 <p>
   4893 The range expression is evaluated once before beginning the loop,
   4894 with one exception: if the range expression is an array or a pointer to an array
   4895 and at most one iteration variable is present, only the range expression's
   4896 length is evaluated; if that length is constant,
   4897 <a href="#Length_and_capacity">by definition</a>
   4898 the range expression itself will not be evaluated.
   4899 </p>
   4900 
   4901 <p>
   4902 Function calls on the left are evaluated once per iteration.
   4903 For each iteration, iteration values are produced as follows
   4904 if the respective iteration variables are present:
   4905 </p>
   4906 
   4907 <pre class="grammar">
   4908 Range expression                          1st value          2nd value
   4909 
   4910 array or slice  a  [n]E, *[n]E, or []E    index    i  int    a[i]       E
   4911 string          s  string type            index    i  int    see below  rune
   4912 map             m  map[K]V                key      k  K      m[k]       V
   4913 channel         c  chan E, &lt;-chan E       element  e  E
   4914 </pre>
   4915 
   4916 <ol>
   4917 <li>
   4918 For an array, pointer to array, or slice value <code>a</code>, the index iteration
   4919 values are produced in increasing order, starting at element index 0.
   4920 If at most one iteration variable is present, the range loop produces
   4921 iteration values from 0 up to <code>len(a)-1</code> and does not index into the array
   4922 or slice itself. For a <code>nil</code> slice, the number of iterations is 0.
   4923 </li>
   4924 
   4925 <li>
   4926 For a string value, the "range" clause iterates over the Unicode code points
   4927 in the string starting at byte index 0.  On successive iterations, the index value will be the
   4928 index of the first byte of successive UTF-8-encoded code points in the string,
   4929 and the second value, of type <code>rune</code>, will be the value of
   4930 the corresponding code point.  If the iteration encounters an invalid
   4931 UTF-8 sequence, the second value will be <code>0xFFFD</code>,
   4932 the Unicode replacement character, and the next iteration will advance
   4933 a single byte in the string.
   4934 </li>
   4935 
   4936 <li>
   4937 The iteration order over maps is not specified
   4938 and is not guaranteed to be the same from one iteration to the next.
   4939 If map entries that have not yet been reached are removed during iteration,
   4940 the corresponding iteration values will not be produced. If map entries are
   4941 created during iteration, that entry may be produced during the iteration or
   4942 may be skipped. The choice may vary for each entry created and from one
   4943 iteration to the next.
   4944 If the map is <code>nil</code>, the number of iterations is 0.
   4945 </li>
   4946 
   4947 <li>
   4948 For channels, the iteration values produced are the successive values sent on
   4949 the channel until the channel is <a href="#Close">closed</a>. If the channel
   4950 is <code>nil</code>, the range expression blocks forever.
   4951 </li>
   4952 </ol>
   4953 
   4954 <p>
   4955 The iteration values are assigned to the respective
   4956 iteration variables as in an <a href="#Assignments">assignment statement</a>.
   4957 </p>
   4958 
   4959 <p>
   4960 The iteration variables may be declared by the "range" clause using a form of
   4961 <a href="#Short_variable_declarations">short variable declaration</a>
   4962 (<code>:=</code>).
   4963 In this case their types are set to the types of the respective iteration values
   4964 and their <a href="#Declarations_and_scope">scope</a> is the block of the "for"
   4965 statement; they are re-used in each iteration.
   4966 If the iteration variables are declared outside the "for" statement,
   4967 after execution their values will be those of the last iteration.
   4968 </p>
   4969 
   4970 <pre>
   4971 var testdata *struct {
   4972 	a *[7]int
   4973 }
   4974 for i, _ := range testdata.a {
   4975 	// testdata.a is never evaluated; len(testdata.a) is constant
   4976 	// i ranges from 0 to 6
   4977 	f(i)
   4978 }
   4979 
   4980 var a [10]string
   4981 for i, s := range a {
   4982 	// type of i is int
   4983 	// type of s is string
   4984 	// s == a[i]
   4985 	g(i, s)
   4986 }
   4987 
   4988 var key string
   4989 var val interface {}  // value type of m is assignable to val
   4990 m := map[string]int{"mon":0, "tue":1, "wed":2, "thu":3, "fri":4, "sat":5, "sun":6}
   4991 for key, val = range m {
   4992 	h(key, val)
   4993 }
   4994 // key == last map key encountered in iteration
   4995 // val == map[key]
   4996 
   4997 var ch chan Work = producer()
   4998 for w := range ch {
   4999 	doWork(w)
   5000 }
   5001 
   5002 // empty a channel
   5003 for range ch {}
   5004 </pre>
   5005 
   5006 
   5007 <h3 id="Go_statements">Go statements</h3>
   5008 
   5009 <p>
   5010 A "go" statement starts the execution of a function call
   5011 as an independent concurrent thread of control, or <i>goroutine</i>,
   5012 within the same address space.
   5013 </p>
   5014 
   5015 <pre class="ebnf">
   5016 GoStmt = "go" Expression .
   5017 </pre>
   5018 
   5019 <p>
   5020 The expression must be a function or method call; it cannot be parenthesized.
   5021 Calls of built-in functions are restricted as for
   5022 <a href="#Expression_statements">expression statements</a>.
   5023 </p>
   5024 
   5025 <p>
   5026 The function value and parameters are
   5027 <a href="#Calls">evaluated as usual</a>
   5028 in the calling goroutine, but
   5029 unlike with a regular call, program execution does not wait
   5030 for the invoked function to complete.
   5031 Instead, the function begins executing independently
   5032 in a new goroutine.
   5033 When the function terminates, its goroutine also terminates.
   5034 If the function has any return values, they are discarded when the
   5035 function completes.
   5036 </p>
   5037 
   5038 <pre>
   5039 go Server()
   5040 go func(ch chan&lt;- bool) { for { sleep(10); ch &lt;- true; }} (c)
   5041 </pre>
   5042 
   5043 
   5044 <h3 id="Select_statements">Select statements</h3>
   5045 
   5046 <p>
   5047 A "select" statement chooses which of a set of possible
   5048 <a href="#Send_statements">send</a> or
   5049 <a href="#Receive_operator">receive</a>
   5050 operations will proceed.
   5051 It looks similar to a
   5052 <a href="#Switch_statements">"switch"</a> statement but with the
   5053 cases all referring to communication operations.
   5054 </p>
   5055 
   5056 <pre class="ebnf">
   5057 SelectStmt = "select" "{" { CommClause } "}" .
   5058 CommClause = CommCase ":" StatementList .
   5059 CommCase   = "case" ( SendStmt | RecvStmt ) | "default" .
   5060 RecvStmt   = [ ExpressionList "=" | IdentifierList ":=" ] RecvExpr .
   5061 RecvExpr   = Expression .
   5062 </pre>
   5063 
   5064 <p>
   5065 A case with a RecvStmt may assign the result of a RecvExpr to one or
   5066 two variables, which may be declared using a
   5067 <a href="#Short_variable_declarations">short variable declaration</a>.
   5068 The RecvExpr must be a (possibly parenthesized) receive operation.
   5069 There can be at most one default case and it may appear anywhere
   5070 in the list of cases.
   5071 </p>
   5072 
   5073 <p>
   5074 Execution of a "select" statement proceeds in several steps:
   5075 </p>
   5076 
   5077 <ol>
   5078 <li>
   5079 For all the cases in the statement, the channel operands of receive operations
   5080 and the channel and right-hand-side expressions of send statements are
   5081 evaluated exactly once, in source order, upon entering the "select" statement.
   5082 The result is a set of channels to receive from or send to,
   5083 and the corresponding values to send.
   5084 Any side effects in that evaluation will occur irrespective of which (if any)
   5085 communication operation is selected to proceed.
   5086 Expressions on the left-hand side of a RecvStmt with a short variable declaration
   5087 or assignment are not yet evaluated.
   5088 </li>
   5089 
   5090 <li>
   5091 If one or more of the communications can proceed,
   5092 a single one that can proceed is chosen via a uniform pseudo-random selection.
   5093 Otherwise, if there is a default case, that case is chosen.
   5094 If there is no default case, the "select" statement blocks until
   5095 at least one of the communications can proceed.
   5096 </li>
   5097 
   5098 <li>
   5099 Unless the selected case is the default case, the respective communication
   5100 operation is executed.
   5101 </li>
   5102 
   5103 <li>
   5104 If the selected case is a RecvStmt with a short variable declaration or
   5105 an assignment, the left-hand side expressions are evaluated and the
   5106 received value (or values) are assigned.
   5107 </li>
   5108 
   5109 <li>
   5110 The statement list of the selected case is executed.
   5111 </li>
   5112 </ol>
   5113 
   5114 <p>
   5115 Since communication on <code>nil</code> channels can never proceed,
   5116 a select with only <code>nil</code> channels and no default case blocks forever.
   5117 </p>
   5118 
   5119 <pre>
   5120 var a []int
   5121 var c, c1, c2, c3, c4 chan int
   5122 var i1, i2 int
   5123 select {
   5124 case i1 = &lt;-c1:
   5125 	print("received ", i1, " from c1\n")
   5126 case c2 &lt;- i2:
   5127 	print("sent ", i2, " to c2\n")
   5128 case i3, ok := (&lt;-c3):  // same as: i3, ok := &lt;-c3
   5129 	if ok {
   5130 		print("received ", i3, " from c3\n")
   5131 	} else {
   5132 		print("c3 is closed\n")
   5133 	}
   5134 case a[f()] = &lt;-c4:
   5135 	// same as:
   5136 	// case t := &lt;-c4
   5137 	//	a[f()] = t
   5138 default:
   5139 	print("no communication\n")
   5140 }
   5141 
   5142 for {  // send random sequence of bits to c
   5143 	select {
   5144 	case c &lt;- 0:  // note: no statement, no fallthrough, no folding of cases
   5145 	case c &lt;- 1:
   5146 	}
   5147 }
   5148 
   5149 select {}  // block forever
   5150 </pre>
   5151 
   5152 
   5153 <h3 id="Return_statements">Return statements</h3>
   5154 
   5155 <p>
   5156 A "return" statement in a function <code>F</code> terminates the execution
   5157 of <code>F</code>, and optionally provides one or more result values.
   5158 Any functions <a href="#Defer_statements">deferred</a> by <code>F</code>
   5159 are executed before <code>F</code> returns to its caller.
   5160 </p>
   5161 
   5162 <pre class="ebnf">
   5163 ReturnStmt = "return" [ ExpressionList ] .
   5164 </pre>
   5165 
   5166 <p>
   5167 In a function without a result type, a "return" statement must not
   5168 specify any result values.
   5169 </p>
   5170 <pre>
   5171 func noResult() {
   5172 	return
   5173 }
   5174 </pre>
   5175 
   5176 <p>
   5177 There are three ways to return values from a function with a result
   5178 type:
   5179 </p>
   5180 
   5181 <ol>
   5182 	<li>The return value or values may be explicitly listed
   5183 		in the "return" statement. Each expression must be single-valued
   5184 		and <a href="#Assignability">assignable</a>
   5185 		to the corresponding element of the function's result type.
   5186 <pre>
   5187 func simpleF() int {
   5188 	return 2
   5189 }
   5190 
   5191 func complexF1() (re float64, im float64) {
   5192 	return -7.0, -4.0
   5193 }
   5194 </pre>
   5195 	</li>
   5196 	<li>The expression list in the "return" statement may be a single
   5197 		call to a multi-valued function. The effect is as if each value
   5198 		returned from that function were assigned to a temporary
   5199 		variable with the type of the respective value, followed by a
   5200 		"return" statement listing these variables, at which point the
   5201 		rules of the previous case apply.
   5202 <pre>
   5203 func complexF2() (re float64, im float64) {
   5204 	return complexF1()
   5205 }
   5206 </pre>
   5207 	</li>
   5208 	<li>The expression list may be empty if the function's result
   5209 		type specifies names for its <a href="#Function_types">result parameters</a>.
   5210 		The result parameters act as ordinary local variables
   5211 		and the function may assign values to them as necessary.
   5212 		The "return" statement returns the values of these variables.
   5213 <pre>
   5214 func complexF3() (re float64, im float64) {
   5215 	re = 7.0
   5216 	im = 4.0
   5217 	return
   5218 }
   5219 
   5220 func (devnull) Write(p []byte) (n int, _ error) {
   5221 	n = len(p)
   5222 	return
   5223 }
   5224 </pre>
   5225 	</li>
   5226 </ol>
   5227 
   5228 <p>
   5229 Regardless of how they are declared, all the result values are initialized to
   5230 the <a href="#The_zero_value">zero values</a> for their type upon entry to the
   5231 function. A "return" statement that specifies results sets the result parameters before
   5232 any deferred functions are executed.
   5233 </p>
   5234 
   5235 <p>
   5236 Implementation restriction: A compiler may disallow an empty expression list
   5237 in a "return" statement if a different entity (constant, type, or variable)
   5238 with the same name as a result parameter is in
   5239 <a href="#Declarations_and_scope">scope</a> at the place of the return.
   5240 </p>
   5241 
   5242 <pre>
   5243 func f(n int) (res int, err error) {
   5244 	if _, err := f(n-1); err != nil {
   5245 		return  // invalid return statement: err is shadowed
   5246 	}
   5247 	return
   5248 }
   5249 </pre>
   5250 
   5251 <h3 id="Break_statements">Break statements</h3>
   5252 
   5253 <p>
   5254 A "break" statement terminates execution of the innermost
   5255 <a href="#For_statements">"for"</a>,
   5256 <a href="#Switch_statements">"switch"</a>, or
   5257 <a href="#Select_statements">"select"</a> statement
   5258 within the same function.
   5259 </p>
   5260 
   5261 <pre class="ebnf">
   5262 BreakStmt = "break" [ Label ] .
   5263 </pre>
   5264 
   5265 <p>
   5266 If there is a label, it must be that of an enclosing
   5267 "for", "switch", or "select" statement,
   5268 and that is the one whose execution terminates.
   5269 </p>
   5270 
   5271 <pre>
   5272 OuterLoop:
   5273 	for i = 0; i &lt; n; i++ {
   5274 		for j = 0; j &lt; m; j++ {
   5275 			switch a[i][j] {
   5276 			case nil:
   5277 				state = Error
   5278 				break OuterLoop
   5279 			case item:
   5280 				state = Found
   5281 				break OuterLoop
   5282 			}
   5283 		}
   5284 	}
   5285 </pre>
   5286 
   5287 <h3 id="Continue_statements">Continue statements</h3>
   5288 
   5289 <p>
   5290 A "continue" statement begins the next iteration of the
   5291 innermost <a href="#For_statements">"for" loop</a> at its post statement.
   5292 The "for" loop must be within the same function.
   5293 </p>
   5294 
   5295 <pre class="ebnf">
   5296 ContinueStmt = "continue" [ Label ] .
   5297 </pre>
   5298 
   5299 <p>
   5300 If there is a label, it must be that of an enclosing
   5301 "for" statement, and that is the one whose execution
   5302 advances.
   5303 </p>
   5304 
   5305 <pre>
   5306 RowLoop:
   5307 	for y, row := range rows {
   5308 		for x, data := range row {
   5309 			if data == endOfRow {
   5310 				continue RowLoop
   5311 			}
   5312 			row[x] = data + bias(x, y)
   5313 		}
   5314 	}
   5315 </pre>
   5316 
   5317 <h3 id="Goto_statements">Goto statements</h3>
   5318 
   5319 <p>
   5320 A "goto" statement transfers control to the statement with the corresponding label
   5321 within the same function.
   5322 </p>
   5323 
   5324 <pre class="ebnf">
   5325 GotoStmt = "goto" Label .
   5326 </pre>
   5327 
   5328 <pre>
   5329 goto Error
   5330 </pre>
   5331 
   5332 <p>
   5333 Executing the "goto" statement must not cause any variables to come into
   5334 <a href="#Declarations_and_scope">scope</a> that were not already in scope at the point of the goto.
   5335 For instance, this example:
   5336 </p>
   5337 
   5338 <pre>
   5339 	goto L  // BAD
   5340 	v := 3
   5341 L:
   5342 </pre>
   5343 
   5344 <p>
   5345 is erroneous because the jump to label <code>L</code> skips
   5346 the creation of <code>v</code>.
   5347 </p>
   5348 
   5349 <p>
   5350 A "goto" statement outside a <a href="#Blocks">block</a> cannot jump to a label inside that block.
   5351 For instance, this example:
   5352 </p>
   5353 
   5354 <pre>
   5355 if n%2 == 1 {
   5356 	goto L1
   5357 }
   5358 for n &gt; 0 {
   5359 	f()
   5360 	n--
   5361 L1:
   5362 	f()
   5363 	n--
   5364 }
   5365 </pre>
   5366 
   5367 <p>
   5368 is erroneous because the label <code>L1</code> is inside
   5369 the "for" statement's block but the <code>goto</code> is not.
   5370 </p>
   5371 
   5372 <h3 id="Fallthrough_statements">Fallthrough statements</h3>
   5373 
   5374 <p>
   5375 A "fallthrough" statement transfers control to the first statement of the
   5376 next case clause in an <a href="#Expression_switches">expression "switch" statement</a>.
   5377 It may be used only as the final non-empty statement in such a clause.
   5378 </p>
   5379 
   5380 <pre class="ebnf">
   5381 FallthroughStmt = "fallthrough" .
   5382 </pre>
   5383 
   5384 
   5385 <h3 id="Defer_statements">Defer statements</h3>
   5386 
   5387 <p>
   5388 A "defer" statement invokes a function whose execution is deferred
   5389 to the moment the surrounding function returns, either because the
   5390 surrounding function executed a <a href="#Return_statements">return statement</a>,
   5391 reached the end of its <a href="#Function_declarations">function body</a>,
   5392 or because the corresponding goroutine is <a href="#Handling_panics">panicking</a>.
   5393 </p>
   5394 
   5395 <pre class="ebnf">
   5396 DeferStmt = "defer" Expression .
   5397 </pre>
   5398 
   5399 <p>
   5400 The expression must be a function or method call; it cannot be parenthesized.
   5401 Calls of built-in functions are restricted as for
   5402 <a href="#Expression_statements">expression statements</a>.
   5403 </p>
   5404 
   5405 <p>
   5406 Each time a "defer" statement
   5407 executes, the function value and parameters to the call are
   5408 <a href="#Calls">evaluated as usual</a>
   5409 and saved anew but the actual function is not invoked.
   5410 Instead, deferred functions are invoked immediately before
   5411 the surrounding function returns, in the reverse order
   5412 they were deferred.
   5413 If a deferred function value evaluates
   5414 to <code>nil</code>, execution <a href="#Handling_panics">panics</a>
   5415 when the function is invoked, not when the "defer" statement is executed.
   5416 </p>
   5417 
   5418 <p>
   5419 For instance, if the deferred function is
   5420 a <a href="#Function_literals">function literal</a> and the surrounding
   5421 function has <a href="#Function_types">named result parameters</a> that
   5422 are in scope within the literal, the deferred function may access and modify
   5423 the result parameters before they are returned.
   5424 If the deferred function has any return values, they are discarded when
   5425 the function completes.
   5426 (See also the section on <a href="#Handling_panics">handling panics</a>.)
   5427 </p>
   5428 
   5429 <pre>
   5430 lock(l)
   5431 defer unlock(l)  // unlocking happens before surrounding function returns
   5432 
   5433 // prints 3 2 1 0 before surrounding function returns
   5434 for i := 0; i &lt;= 3; i++ {
   5435 	defer fmt.Print(i)
   5436 }
   5437 
   5438 // f returns 1
   5439 func f() (result int) {
   5440 	defer func() {
   5441 		result++
   5442 	}()
   5443 	return 0
   5444 }
   5445 </pre>
   5446 
   5447 <h2 id="Built-in_functions">Built-in functions</h2>
   5448 
   5449 <p>
   5450 Built-in functions are
   5451 <a href="#Predeclared_identifiers">predeclared</a>.
   5452 They are called like any other function but some of them
   5453 accept a type instead of an expression as the first argument.
   5454 </p>
   5455 
   5456 <p>
   5457 The built-in functions do not have standard Go types,
   5458 so they can only appear in <a href="#Calls">call expressions</a>;
   5459 they cannot be used as function values.
   5460 </p>
   5461 
   5462 <h3 id="Close">Close</h3>
   5463 
   5464 <p>
   5465 For a channel <code>c</code>, the built-in function <code>close(c)</code>
   5466 records that no more values will be sent on the channel.
   5467 It is an error if <code>c</code> is a receive-only channel.
   5468 Sending to or closing a closed channel causes a <a href="#Run_time_panics">run-time panic</a>.
   5469 Closing the nil channel also causes a <a href="#Run_time_panics">run-time panic</a>.
   5470 After calling <code>close</code>, and after any previously
   5471 sent values have been received, receive operations will return
   5472 the zero value for the channel's type without blocking.
   5473 The multi-valued <a href="#Receive_operator">receive operation</a>
   5474 returns a received value along with an indication of whether the channel is closed.
   5475 </p>
   5476 
   5477 
   5478 <h3 id="Length_and_capacity">Length and capacity</h3>
   5479 
   5480 <p>
   5481 The built-in functions <code>len</code> and <code>cap</code> take arguments
   5482 of various types and return a result of type <code>int</code>.
   5483 The implementation guarantees that the result always fits into an <code>int</code>.
   5484 </p>
   5485 
   5486 <pre class="grammar">
   5487 Call      Argument type    Result
   5488 
   5489 len(s)    string type      string length in bytes
   5490           [n]T, *[n]T      array length (== n)
   5491           []T              slice length
   5492           map[K]T          map length (number of defined keys)
   5493           chan T           number of elements queued in channel buffer
   5494 
   5495 cap(s)    [n]T, *[n]T      array length (== n)
   5496           []T              slice capacity
   5497           chan T           channel buffer capacity
   5498 </pre>
   5499 
   5500 <p>
   5501 The capacity of a slice is the number of elements for which there is
   5502 space allocated in the underlying array.
   5503 At any time the following relationship holds:
   5504 </p>
   5505 
   5506 <pre>
   5507 0 &lt;= len(s) &lt;= cap(s)
   5508 </pre>
   5509 
   5510 <p>
   5511 The length of a <code>nil</code> slice, map or channel is 0.
   5512 The capacity of a <code>nil</code> slice or channel is 0.
   5513 </p>
   5514 
   5515 <p>
   5516 The expression <code>len(s)</code> is <a href="#Constants">constant</a> if
   5517 <code>s</code> is a string constant. The expressions <code>len(s)</code> and
   5518 <code>cap(s)</code> are constants if the type of <code>s</code> is an array
   5519 or pointer to an array and the expression <code>s</code> does not contain
   5520 <a href="#Receive_operator">channel receives</a> or (non-constant)
   5521 <a href="#Calls">function calls</a>; in this case <code>s</code> is not evaluated.
   5522 Otherwise, invocations of <code>len</code> and <code>cap</code> are not
   5523 constant and <code>s</code> is evaluated.
   5524 </p>
   5525 
   5526 <pre>
   5527 const (
   5528 	c1 = imag(2i)                    // imag(2i) = 2.0 is a constant
   5529 	c2 = len([10]float64{2})         // [10]float64{2} contains no function calls
   5530 	c3 = len([10]float64{c1})        // [10]float64{c1} contains no function calls
   5531 	c4 = len([10]float64{imag(2i)})  // imag(2i) is a constant and no function call is issued
   5532 	c5 = len([10]float64{imag(z)})   // invalid: imag(z) is a (non-constant) function call
   5533 )
   5534 var z complex128
   5535 </pre>
   5536 
   5537 <h3 id="Allocation">Allocation</h3>
   5538 
   5539 <p>
   5540 The built-in function <code>new</code> takes a type <code>T</code>,
   5541 allocates storage for a <a href="#Variables">variable</a> of that type
   5542 at run time, and returns a value of type <code>*T</code>
   5543 <a href="#Pointer_types">pointing</a> to it.
   5544 The variable is initialized as described in the section on
   5545 <a href="#The_zero_value">initial values</a>.
   5546 </p>
   5547 
   5548 <pre class="grammar">
   5549 new(T)
   5550 </pre>
   5551 
   5552 <p>
   5553 For instance
   5554 </p>
   5555 
   5556 <pre>
   5557 type S struct { a int; b float64 }
   5558 new(S)
   5559 </pre>
   5560 
   5561 <p>
   5562 allocates storage for a variable of type <code>S</code>,
   5563 initializes it (<code>a=0</code>, <code>b=0.0</code>),
   5564 and returns a value of type <code>*S</code> containing the address
   5565 of the location.
   5566 </p>
   5567 
   5568 <h3 id="Making_slices_maps_and_channels">Making slices, maps and channels</h3>
   5569 
   5570 <p>
   5571 The built-in function <code>make</code> takes a type <code>T</code>,
   5572 which must be a slice, map or channel type,
   5573 optionally followed by a type-specific list of expressions.
   5574 It returns a value of type <code>T</code> (not <code>*T</code>).
   5575 The memory is initialized as described in the section on
   5576 <a href="#The_zero_value">initial values</a>.
   5577 </p>
   5578 
   5579 <pre class="grammar">
   5580 Call             Type T     Result
   5581 
   5582 make(T, n)       slice      slice of type T with length n and capacity n
   5583 make(T, n, m)    slice      slice of type T with length n and capacity m
   5584 
   5585 make(T)          map        map of type T
   5586 make(T, n)       map        map of type T with initial space for n elements
   5587 
   5588 make(T)          channel    unbuffered channel of type T
   5589 make(T, n)       channel    buffered channel of type T, buffer size n
   5590 </pre>
   5591 
   5592 
   5593 <p>
   5594 The size arguments <code>n</code> and <code>m</code> must be of integer type or untyped.
   5595 A <a href="#Constants">constant</a> size argument must be non-negative and
   5596 representable by a value of type <code>int</code>.
   5597 If both <code>n</code> and <code>m</code> are provided and are constant, then
   5598 <code>n</code> must be no larger than <code>m</code>.
   5599 If <code>n</code> is negative or larger than <code>m</code> at run time,
   5600 a <a href="#Run_time_panics">run-time panic</a> occurs.
   5601 </p>
   5602 
   5603 <pre>
   5604 s := make([]int, 10, 100)       // slice with len(s) == 10, cap(s) == 100
   5605 s := make([]int, 1e3)           // slice with len(s) == cap(s) == 1000
   5606 s := make([]int, 1&lt;&lt;63)         // illegal: len(s) is not representable by a value of type int
   5607 s := make([]int, 10, 0)         // illegal: len(s) > cap(s)
   5608 c := make(chan int, 10)         // channel with a buffer size of 10
   5609 m := make(map[string]int, 100)  // map with initial space for 100 elements
   5610 </pre>
   5611 
   5612 
   5613 <h3 id="Appending_and_copying_slices">Appending to and copying slices</h3>
   5614 
   5615 <p>
   5616 The built-in functions <code>append</code> and <code>copy</code> assist in
   5617 common slice operations.
   5618 For both functions, the result is independent of whether the memory referenced
   5619 by the arguments overlaps.
   5620 </p>
   5621 
   5622 <p>
   5623 The <a href="#Function_types">variadic</a> function <code>append</code>
   5624 appends zero or more values <code>x</code>
   5625 to <code>s</code> of type <code>S</code>, which must be a slice type, and
   5626 returns the resulting slice, also of type <code>S</code>.
   5627 The values <code>x</code> are passed to a parameter of type <code>...T</code>
   5628 where <code>T</code> is the <a href="#Slice_types">element type</a> of
   5629 <code>S</code> and the respective
   5630 <a href="#Passing_arguments_to_..._parameters">parameter passing rules</a> apply.
   5631 As a special case, <code>append</code> also accepts a first argument
   5632 assignable to type <code>[]byte</code> with a second argument of
   5633 string type followed by <code>...</code>. This form appends the
   5634 bytes of the string.
   5635 </p>
   5636 
   5637 <pre class="grammar">
   5638 append(s S, x ...T) S  // T is the element type of S
   5639 </pre>
   5640 
   5641 <p>
   5642 If the capacity of <code>s</code> is not large enough to fit the additional
   5643 values, <code>append</code> allocates a new, sufficiently large underlying
   5644 array that fits both the existing slice elements and the additional values.
   5645 Otherwise, <code>append</code> re-uses the underlying array.
   5646 </p>
   5647 
   5648 <pre>
   5649 s0 := []int{0, 0}
   5650 s1 := append(s0, 2)                // append a single element     s1 == []int{0, 0, 2}
   5651 s2 := append(s1, 3, 5, 7)          // append multiple elements    s2 == []int{0, 0, 2, 3, 5, 7}
   5652 s3 := append(s2, s0...)            // append a slice              s3 == []int{0, 0, 2, 3, 5, 7, 0, 0}
   5653 s4 := append(s3[3:6], s3[2:]...)   // append overlapping slice    s4 == []int{3, 5, 7, 2, 3, 5, 7, 0, 0}
   5654 
   5655 var t []interface{}
   5656 t = append(t, 42, 3.1415, "foo")   //                             t == []interface{}{42, 3.1415, "foo"}
   5657 
   5658 var b []byte
   5659 b = append(b, "bar"...)            // append string contents      b == []byte{'b', 'a', 'r' }
   5660 </pre>
   5661 
   5662 <p>
   5663 The function <code>copy</code> copies slice elements from
   5664 a source <code>src</code> to a destination <code>dst</code> and returns the
   5665 number of elements copied.
   5666 Both arguments must have <a href="#Type_identity">identical</a> element type <code>T</code> and must be
   5667 <a href="#Assignability">assignable</a> to a slice of type <code>[]T</code>.
   5668 The number of elements copied is the minimum of
   5669 <code>len(src)</code> and <code>len(dst)</code>.
   5670 As a special case, <code>copy</code> also accepts a destination argument assignable
   5671 to type <code>[]byte</code> with a source argument of a string type.
   5672 This form copies the bytes from the string into the byte slice.
   5673 </p>
   5674 
   5675 <pre class="grammar">
   5676 copy(dst, src []T) int
   5677 copy(dst []byte, src string) int
   5678 </pre>
   5679 
   5680 <p>
   5681 Examples:
   5682 </p>
   5683 
   5684 <pre>
   5685 var a = [...]int{0, 1, 2, 3, 4, 5, 6, 7}
   5686 var s = make([]int, 6)
   5687 var b = make([]byte, 5)
   5688 n1 := copy(s, a[0:])            // n1 == 6, s == []int{0, 1, 2, 3, 4, 5}
   5689 n2 := copy(s, s[2:])            // n2 == 4, s == []int{2, 3, 4, 5, 4, 5}
   5690 n3 := copy(b, "Hello, World!")  // n3 == 5, b == []byte("Hello")
   5691 </pre>
   5692 
   5693 
   5694 <h3 id="Deletion_of_map_elements">Deletion of map elements</h3>
   5695 
   5696 <p>
   5697 The built-in function <code>delete</code> removes the element with key
   5698 <code>k</code> from a <a href="#Map_types">map</a> <code>m</code>. The
   5699 type of <code>k</code> must be <a href="#Assignability">assignable</a>
   5700 to the key type of <code>m</code>.
   5701 </p>
   5702 
   5703 <pre class="grammar">
   5704 delete(m, k)  // remove element m[k] from map m
   5705 </pre>
   5706 
   5707 <p>
   5708 If the map <code>m</code> is <code>nil</code> or the element <code>m[k]</code>
   5709 does not exist, <code>delete</code> is a no-op.
   5710 </p>
   5711 
   5712 
   5713 <h3 id="Complex_numbers">Manipulating complex numbers</h3>
   5714 
   5715 <p>
   5716 Three functions assemble and disassemble complex numbers.
   5717 The built-in function <code>complex</code> constructs a complex
   5718 value from a floating-point real and imaginary part, while
   5719 <code>real</code> and <code>imag</code>
   5720 extract the real and imaginary parts of a complex value.
   5721 </p>
   5722 
   5723 <pre class="grammar">
   5724 complex(realPart, imaginaryPart floatT) complexT
   5725 real(complexT) floatT
   5726 imag(complexT) floatT
   5727 </pre>
   5728 
   5729 <p>
   5730 The type of the arguments and return value correspond.
   5731 For <code>complex</code>, the two arguments must be of the same
   5732 floating-point type and the return type is the complex type
   5733 with the corresponding floating-point constituents:
   5734 <code>complex64</code> for <code>float32</code> arguments, and
   5735 <code>complex128</code> for <code>float64</code> arguments.
   5736 If one of the arguments evaluates to an untyped constant, it is first
   5737 <a href="#Conversions">converted</a> to the type of the other argument.
   5738 If both arguments evaluate to untyped constants, they must be non-complex
   5739 numbers or their imaginary parts must be zero, and the return value of
   5740 the function is an untyped complex constant.
   5741 </p>
   5742 
   5743 <p>
   5744 For <code>real</code> and <code>imag</code>, the argument must be
   5745 of complex type, and the return type is the corresponding floating-point
   5746 type: <code>float32</code> for a <code>complex64</code> argument, and
   5747 <code>float64</code> for a <code>complex128</code> argument.
   5748 If the argument evaluates to an untyped constant, it must be a number,
   5749 and the return value of the function is an untyped floating-point constant.
   5750 </p>
   5751 
   5752 <p>
   5753 The <code>real</code> and <code>imag</code> functions together form the inverse of
   5754 <code>complex</code>, so for a value <code>z</code> of a complex type <code>Z</code>,
   5755 <code>z&nbsp;==&nbsp;Z(complex(real(z),&nbsp;imag(z)))</code>.
   5756 </p>
   5757 
   5758 <p>
   5759 If the operands of these functions are all constants, the return
   5760 value is a constant.
   5761 </p>
   5762 
   5763 <pre>
   5764 var a = complex(2, -2)             // complex128
   5765 const b = complex(1.0, -1.4)       // untyped complex constant 1 - 1.4i
   5766 x := float32(math.Cos(math.Pi/2))  // float32
   5767 var c64 = complex(5, -x)           // complex64
   5768 var s uint = complex(1, 0)         // untyped complex constant 1 + 0i can be converted to uint
   5769 _ = complex(1, 2&lt;&lt;s)               // illegal: 2 assumes floating-point type, cannot shift
   5770 var rl = real(c64)                 // float32
   5771 var im = imag(a)                   // float64
   5772 const c = imag(b)                  // untyped constant -1.4
   5773 _ = imag(3 &lt;&lt; s)                   // illegal: 3 assumes complex type, cannot shift
   5774 </pre>
   5775 
   5776 <h3 id="Handling_panics">Handling panics</h3>
   5777 
   5778 <p> Two built-in functions, <code>panic</code> and <code>recover</code>,
   5779 assist in reporting and handling <a href="#Run_time_panics">run-time panics</a>
   5780 and program-defined error conditions.
   5781 </p>
   5782 
   5783 <pre class="grammar">
   5784 func panic(interface{})
   5785 func recover() interface{}
   5786 </pre>
   5787 
   5788 <p>
   5789 While executing a function <code>F</code>,
   5790 an explicit call to <code>panic</code> or a <a href="#Run_time_panics">run-time panic</a>
   5791 terminates the execution of <code>F</code>.
   5792 Any functions <a href="#Defer_statements">deferred</a> by <code>F</code>
   5793 are then executed as usual.
   5794 Next, any deferred functions run by <code>F's</code> caller are run,
   5795 and so on up to any deferred by the top-level function in the executing goroutine.
   5796 At that point, the program is terminated and the error
   5797 condition is reported, including the value of the argument to <code>panic</code>.
   5798 This termination sequence is called <i>panicking</i>.
   5799 </p>
   5800 
   5801 <pre>
   5802 panic(42)
   5803 panic("unreachable")
   5804 panic(Error("cannot parse"))
   5805 </pre>
   5806 
   5807 <p>
   5808 The <code>recover</code> function allows a program to manage behavior
   5809 of a panicking goroutine.
   5810 Suppose a function <code>G</code> defers a function <code>D</code> that calls
   5811 <code>recover</code> and a panic occurs in a function on the same goroutine in which <code>G</code>
   5812 is executing.
   5813 When the running of deferred functions reaches <code>D</code>,
   5814 the return value of <code>D</code>'s call to <code>recover</code> will be the value passed to the call of <code>panic</code>.
   5815 If <code>D</code> returns normally, without starting a new
   5816 <code>panic</code>, the panicking sequence stops. In that case,
   5817 the state of functions called between <code>G</code> and the call to <code>panic</code>
   5818 is discarded, and normal execution resumes.
   5819 Any functions deferred by <code>G</code> before <code>D</code> are then run and <code>G</code>'s
   5820 execution terminates by returning to its caller.
   5821 </p>
   5822 
   5823 <p>
   5824 The return value of <code>recover</code> is <code>nil</code> if any of the following conditions holds:
   5825 </p>
   5826 <ul>
   5827 <li>
   5828 <code>panic</code>'s argument was <code>nil</code>;
   5829 </li>
   5830 <li>
   5831 the goroutine is not panicking;
   5832 </li>
   5833 <li>
   5834 <code>recover</code> was not called directly by a deferred function.
   5835 </li>
   5836 </ul>
   5837 
   5838 <p>
   5839 The <code>protect</code> function in the example below invokes
   5840 the function argument <code>g</code> and protects callers from
   5841 run-time panics raised by <code>g</code>.
   5842 </p>
   5843 
   5844 <pre>
   5845 func protect(g func()) {
   5846 	defer func() {
   5847 		log.Println("done")  // Println executes normally even if there is a panic
   5848 		if x := recover(); x != nil {
   5849 			log.Printf("run time panic: %v", x)
   5850 		}
   5851 	}()
   5852 	log.Println("start")
   5853 	g()
   5854 }
   5855 </pre>
   5856 
   5857 
   5858 <h3 id="Bootstrapping">Bootstrapping</h3>
   5859 
   5860 <p>
   5861 Current implementations provide several built-in functions useful during
   5862 bootstrapping. These functions are documented for completeness but are not
   5863 guaranteed to stay in the language. They do not return a result.
   5864 </p>
   5865 
   5866 <pre class="grammar">
   5867 Function   Behavior
   5868 
   5869 print      prints all arguments; formatting of arguments is implementation-specific
   5870 println    like print but prints spaces between arguments and a newline at the end
   5871 </pre>
   5872 
   5873 
   5874 <h2 id="Packages">Packages</h2>
   5875 
   5876 <p>
   5877 Go programs are constructed by linking together <i>packages</i>.
   5878 A package in turn is constructed from one or more source files
   5879 that together declare constants, types, variables and functions
   5880 belonging to the package and which are accessible in all files
   5881 of the same package. Those elements may be
   5882 <a href="#Exported_identifiers">exported</a> and used in another package.
   5883 </p>
   5884 
   5885 <h3 id="Source_file_organization">Source file organization</h3>
   5886 
   5887 <p>
   5888 Each source file consists of a package clause defining the package
   5889 to which it belongs, followed by a possibly empty set of import
   5890 declarations that declare packages whose contents it wishes to use,
   5891 followed by a possibly empty set of declarations of functions,
   5892 types, variables, and constants.
   5893 </p>
   5894 
   5895 <pre class="ebnf">
   5896 SourceFile       = PackageClause ";" { ImportDecl ";" } { TopLevelDecl ";" } .
   5897 </pre>
   5898 
   5899 <h3 id="Package_clause">Package clause</h3>
   5900 
   5901 <p>
   5902 A package clause begins each source file and defines the package
   5903 to which the file belongs.
   5904 </p>
   5905 
   5906 <pre class="ebnf">
   5907 PackageClause  = "package" PackageName .
   5908 PackageName    = identifier .
   5909 </pre>
   5910 
   5911 <p>
   5912 The PackageName must not be the <a href="#Blank_identifier">blank identifier</a>.
   5913 </p>
   5914 
   5915 <pre>
   5916 package math
   5917 </pre>
   5918 
   5919 <p>
   5920 A set of files sharing the same PackageName form the implementation of a package.
   5921 An implementation may require that all source files for a package inhabit the same directory.
   5922 </p>
   5923 
   5924 <h3 id="Import_declarations">Import declarations</h3>
   5925 
   5926 <p>
   5927 An import declaration states that the source file containing the declaration
   5928 depends on functionality of the <i>imported</i> package
   5929 (<a href="#Program_initialization_and_execution">Program initialization and execution</a>)
   5930 and enables access to <a href="#Exported_identifiers">exported</a> identifiers
   5931 of that package.
   5932 The import names an identifier (PackageName) to be used for access and an ImportPath
   5933 that specifies the package to be imported.
   5934 </p>
   5935 
   5936 <pre class="ebnf">
   5937 ImportDecl       = "import" ( ImportSpec | "(" { ImportSpec ";" } ")" ) .
   5938 ImportSpec       = [ "." | PackageName ] ImportPath .
   5939 ImportPath       = string_lit .
   5940 </pre>
   5941 
   5942 <p>
   5943 The PackageName is used in <a href="#Qualified_identifiers">qualified identifiers</a>
   5944 to access exported identifiers of the package within the importing source file.
   5945 It is declared in the <a href="#Blocks">file block</a>.
   5946 If the PackageName is omitted, it defaults to the identifier specified in the
   5947 <a href="#Package_clause">package clause</a> of the imported package.
   5948 If an explicit period (<code>.</code>) appears instead of a name, all the
   5949 package's exported identifiers declared in that package's
   5950 <a href="#Blocks">package block</a> will be declared in the importing source
   5951 file's file block and must be accessed without a qualifier.
   5952 </p>
   5953 
   5954 <p>
   5955 The interpretation of the ImportPath is implementation-dependent but
   5956 it is typically a substring of the full file name of the compiled
   5957 package and may be relative to a repository of installed packages.
   5958 </p>
   5959 
   5960 <p>
   5961 Implementation restriction: A compiler may restrict ImportPaths to
   5962 non-empty strings using only characters belonging to
   5963 <a href="http://www.unicode.org/versions/Unicode6.3.0/">Unicode's</a>
   5964 L, M, N, P, and S general categories (the Graphic characters without
   5965 spaces) and may also exclude the characters
   5966 <code>!"#$%&amp;'()*,:;&lt;=&gt;?[\]^`{|}</code>
   5967 and the Unicode replacement character U+FFFD.
   5968 </p>
   5969 
   5970 <p>
   5971 Assume we have compiled a package containing the package clause
   5972 <code>package math</code>, which exports function <code>Sin</code>, and
   5973 installed the compiled package in the file identified by
   5974 <code>"lib/math"</code>.
   5975 This table illustrates how <code>Sin</code> is accessed in files
   5976 that import the package after the
   5977 various types of import declaration.
   5978 </p>
   5979 
   5980 <pre class="grammar">
   5981 Import declaration          Local name of Sin
   5982 
   5983 import   "lib/math"         math.Sin
   5984 import m "lib/math"         m.Sin
   5985 import . "lib/math"         Sin
   5986 </pre>
   5987 
   5988 <p>
   5989 An import declaration declares a dependency relation between
   5990 the importing and imported package.
   5991 It is illegal for a package to import itself, directly or indirectly,
   5992 or to directly import a package without
   5993 referring to any of its exported identifiers. To import a package solely for
   5994 its side-effects (initialization), use the <a href="#Blank_identifier">blank</a>
   5995 identifier as explicit package name:
   5996 </p>
   5997 
   5998 <pre>
   5999 import _ "lib/math"
   6000 </pre>
   6001 
   6002 
   6003 <h3 id="An_example_package">An example package</h3>
   6004 
   6005 <p>
   6006 Here is a complete Go package that implements a concurrent prime sieve.
   6007 </p>
   6008 
   6009 <pre>
   6010 package main
   6011 
   6012 import "fmt"
   6013 
   6014 // Send the sequence 2, 3, 4,  to channel 'ch'.
   6015 func generate(ch chan&lt;- int) {
   6016 	for i := 2; ; i++ {
   6017 		ch &lt;- i  // Send 'i' to channel 'ch'.
   6018 	}
   6019 }
   6020 
   6021 // Copy the values from channel 'src' to channel 'dst',
   6022 // removing those divisible by 'prime'.
   6023 func filter(src &lt;-chan int, dst chan&lt;- int, prime int) {
   6024 	for i := range src {  // Loop over values received from 'src'.
   6025 		if i%prime != 0 {
   6026 			dst &lt;- i  // Send 'i' to channel 'dst'.
   6027 		}
   6028 	}
   6029 }
   6030 
   6031 // The prime sieve: Daisy-chain filter processes together.
   6032 func sieve() {
   6033 	ch := make(chan int)  // Create a new channel.
   6034 	go generate(ch)       // Start generate() as a subprocess.
   6035 	for {
   6036 		prime := &lt;-ch
   6037 		fmt.Print(prime, "\n")
   6038 		ch1 := make(chan int)
   6039 		go filter(ch, ch1, prime)
   6040 		ch = ch1
   6041 	}
   6042 }
   6043 
   6044 func main() {
   6045 	sieve()
   6046 }
   6047 </pre>
   6048 
   6049 <h2 id="Program_initialization_and_execution">Program initialization and execution</h2>
   6050 
   6051 <h3 id="The_zero_value">The zero value</h3>
   6052 <p>
   6053 When storage is allocated for a <a href="#Variables">variable</a>,
   6054 either through a declaration or a call of <code>new</code>, or when
   6055 a new value is created, either through a composite literal or a call
   6056 of <code>make</code>,
   6057 and no explicit initialization is provided, the variable or value is
   6058 given a default value.  Each element of such a variable or value is
   6059 set to the <i>zero value</i> for its type: <code>false</code> for booleans,
   6060 <code>0</code> for integers, <code>0.0</code> for floats, <code>""</code>
   6061 for strings, and <code>nil</code> for pointers, functions, interfaces, slices, channels, and maps.
   6062 This initialization is done recursively, so for instance each element of an
   6063 array of structs will have its fields zeroed if no value is specified.
   6064 </p>
   6065 <p>
   6066 These two simple declarations are equivalent:
   6067 </p>
   6068 
   6069 <pre>
   6070 var i int
   6071 var i int = 0
   6072 </pre>
   6073 
   6074 <p>
   6075 After
   6076 </p>
   6077 
   6078 <pre>
   6079 type T struct { i int; f float64; next *T }
   6080 t := new(T)
   6081 </pre>
   6082 
   6083 <p>
   6084 the following holds:
   6085 </p>
   6086 
   6087 <pre>
   6088 t.i == 0
   6089 t.f == 0.0
   6090 t.next == nil
   6091 </pre>
   6092 
   6093 <p>
   6094 The same would also be true after
   6095 </p>
   6096 
   6097 <pre>
   6098 var t T
   6099 </pre>
   6100 
   6101 <h3 id="Package_initialization">Package initialization</h3>
   6102 
   6103 <p>
   6104 Within a package, package-level variables are initialized in
   6105 <i>declaration order</i> but after any of the variables
   6106 they <i>depend</i> on.
   6107 </p>
   6108 
   6109 <p>
   6110 More precisely, a package-level variable is considered <i>ready for
   6111 initialization</i> if it is not yet initialized and either has
   6112 no <a href="#Variable_declarations">initialization expression</a> or
   6113 its initialization expression has no dependencies on uninitialized variables.
   6114 Initialization proceeds by repeatedly initializing the next package-level
   6115 variable that is earliest in declaration order and ready for initialization,
   6116 until there are no variables ready for initialization.
   6117 </p>
   6118 
   6119 <p>
   6120 If any variables are still uninitialized when this
   6121 process ends, those variables are part of one or more initialization cycles,
   6122 and the program is not valid.
   6123 </p>
   6124 
   6125 <p>
   6126 The declaration order of variables declared in multiple files is determined
   6127 by the order in which the files are presented to the compiler: Variables
   6128 declared in the first file are declared before any of the variables declared
   6129 in the second file, and so on.
   6130 </p>
   6131 
   6132 <p>
   6133 Dependency analysis does not rely on the actual values of the
   6134 variables, only on lexical <i>references</i> to them in the source,
   6135 analyzed transitively. For instance, if a variable <code>x</code>'s
   6136 initialization expression refers to a function whose body refers to
   6137 variable <code>y</code> then <code>x</code> depends on <code>y</code>.
   6138 Specifically:
   6139 </p>
   6140 
   6141 <ul>
   6142 <li>
   6143 A reference to a variable or function is an identifier denoting that
   6144 variable or function.
   6145 </li>
   6146 
   6147 <li>
   6148 A reference to a method <code>m</code> is a
   6149 <a href="#Method_values">method value</a> or
   6150 <a href="#Method_expressions">method expression</a> of the form
   6151 <code>t.m</code>, where the (static) type of <code>t</code> is
   6152 not an interface type, and the method <code>m</code> is in the
   6153 <a href="#Method_sets">method set</a> of <code>t</code>.
   6154 It is immaterial whether the resulting function value
   6155 <code>t.m</code> is invoked.
   6156 </li>
   6157 
   6158 <li>
   6159 A variable, function, or method <code>x</code> depends on a variable
   6160 <code>y</code> if <code>x</code>'s initialization expression or body
   6161 (for functions and methods) contains a reference to <code>y</code>
   6162 or to a function or method that depends on <code>y</code>.
   6163 </li>
   6164 </ul>
   6165 
   6166 <p>
   6167 Dependency analysis is performed per package; only references referring
   6168 to variables, functions, and methods declared in the current package
   6169 are considered.
   6170 </p>
   6171 
   6172 <p>
   6173 For example, given the declarations
   6174 </p>
   6175 
   6176 <pre>
   6177 var (
   6178 	a = c + b
   6179 	b = f()
   6180 	c = f()
   6181 	d = 3
   6182 )
   6183 
   6184 func f() int {
   6185 	d++
   6186 	return d
   6187 }
   6188 </pre>
   6189 
   6190 <p>
   6191 the initialization order is <code>d</code>, <code>b</code>, <code>c</code>, <code>a</code>.
   6192 </p>
   6193 
   6194 <p>
   6195 Variables may also be initialized using functions named <code>init</code>
   6196 declared in the package block, with no arguments and no result parameters.
   6197 </p>
   6198 
   6199 <pre>
   6200 func init() {  }
   6201 </pre>
   6202 
   6203 <p>
   6204 Multiple such functions may be defined per package, even within a single
   6205 source file. In the package block, the <code>init</code> identifier can
   6206 be used only to declare <code>init</code> functions, yet the identifier
   6207 itself is not <a href="#Declarations_and_scope">declared</a>. Thus
   6208 <code>init</code> functions cannot be referred to from anywhere
   6209 in a program.
   6210 </p>
   6211 
   6212 <p>
   6213 A package with no imports is initialized by assigning initial values
   6214 to all its package-level variables followed by calling all <code>init</code>
   6215 functions in the order they appear in the source, possibly in multiple files,
   6216 as presented to the compiler.
   6217 If a package has imports, the imported packages are initialized
   6218 before initializing the package itself. If multiple packages import
   6219 a package, the imported package will be initialized only once.
   6220 The importing of packages, by construction, guarantees that there
   6221 can be no cyclic initialization dependencies.
   6222 </p>
   6223 
   6224 <p>
   6225 Package initialization&mdash;variable initialization and the invocation of
   6226 <code>init</code> functions&mdash;happens in a single goroutine,
   6227 sequentially, one package at a time.
   6228 An <code>init</code> function may launch other goroutines, which can run
   6229 concurrently with the initialization code. However, initialization
   6230 always sequences
   6231 the <code>init</code> functions: it will not invoke the next one
   6232 until the previous one has returned.
   6233 </p>
   6234 
   6235 <p>
   6236 To ensure reproducible initialization behavior, build systems are encouraged
   6237 to present multiple files belonging to the same package in lexical file name
   6238 order to a compiler.
   6239 </p>
   6240 
   6241 
   6242 <h3 id="Program_execution">Program execution</h3>
   6243 <p>
   6244 A complete program is created by linking a single, unimported package
   6245 called the <i>main package</i> with all the packages it imports, transitively.
   6246 The main package must
   6247 have package name <code>main</code> and
   6248 declare a function <code>main</code> that takes no
   6249 arguments and returns no value.
   6250 </p>
   6251 
   6252 <pre>
   6253 func main() {  }
   6254 </pre>
   6255 
   6256 <p>
   6257 Program execution begins by initializing the main package and then
   6258 invoking the function <code>main</code>.
   6259 When that function invocation returns, the program exits.
   6260 It does not wait for other (non-<code>main</code>) goroutines to complete.
   6261 </p>
   6262 
   6263 <h2 id="Errors">Errors</h2>
   6264 
   6265 <p>
   6266 The predeclared type <code>error</code> is defined as
   6267 </p>
   6268 
   6269 <pre>
   6270 type error interface {
   6271 	Error() string
   6272 }
   6273 </pre>
   6274 
   6275 <p>
   6276 It is the conventional interface for representing an error condition,
   6277 with the nil value representing no error.
   6278 For instance, a function to read data from a file might be defined:
   6279 </p>
   6280 
   6281 <pre>
   6282 func Read(f *File, b []byte) (n int, err error)
   6283 </pre>
   6284 
   6285 <h2 id="Run_time_panics">Run-time panics</h2>
   6286 
   6287 <p>
   6288 Execution errors such as attempting to index an array out
   6289 of bounds trigger a <i>run-time panic</i> equivalent to a call of
   6290 the built-in function <a href="#Handling_panics"><code>panic</code></a>
   6291 with a value of the implementation-defined interface type <code>runtime.Error</code>.
   6292 That type satisfies the predeclared interface type
   6293 <a href="#Errors"><code>error</code></a>.
   6294 The exact error values that
   6295 represent distinct run-time error conditions are unspecified.
   6296 </p>
   6297 
   6298 <pre>
   6299 package runtime
   6300 
   6301 type Error interface {
   6302 	error
   6303 	// and perhaps other methods
   6304 }
   6305 </pre>
   6306 
   6307 <h2 id="System_considerations">System considerations</h2>
   6308 
   6309 <h3 id="Package_unsafe">Package <code>unsafe</code></h3>
   6310 
   6311 <p>
   6312 The built-in package <code>unsafe</code>, known to the compiler,
   6313 provides facilities for low-level programming including operations
   6314 that violate the type system. A package using <code>unsafe</code>
   6315 must be vetted manually for type safety and may not be portable.
   6316 The package provides the following interface:
   6317 </p>
   6318 
   6319 <pre class="grammar">
   6320 package unsafe
   6321 
   6322 type ArbitraryType int  // shorthand for an arbitrary Go type; it is not a real type
   6323 type Pointer *ArbitraryType
   6324 
   6325 func Alignof(variable ArbitraryType) uintptr
   6326 func Offsetof(selector ArbitraryType) uintptr
   6327 func Sizeof(variable ArbitraryType) uintptr
   6328 </pre>
   6329 
   6330 <p>
   6331 A <code>Pointer</code> is a <a href="#Pointer_types">pointer type</a> but a <code>Pointer</code>
   6332 value may not be <a href="#Address_operators">dereferenced</a>.
   6333 Any pointer or value of <a href="#Types">underlying type</a> <code>uintptr</code> can be converted to
   6334 a <code>Pointer</code> type and vice versa.
   6335 The effect of converting between <code>Pointer</code> and <code>uintptr</code> is implementation-defined.
   6336 </p>
   6337 
   6338 <pre>
   6339 var f float64
   6340 bits = *(*uint64)(unsafe.Pointer(&amp;f))
   6341 
   6342 type ptr unsafe.Pointer
   6343 bits = *(*uint64)(ptr(&amp;f))
   6344 
   6345 var p ptr = nil
   6346 </pre>
   6347 
   6348 <p>
   6349 The functions <code>Alignof</code> and <code>Sizeof</code> take an expression <code>x</code>
   6350 of any type and return the alignment or size, respectively, of a hypothetical variable <code>v</code>
   6351 as if <code>v</code> was declared via <code>var v = x</code>.
   6352 </p>
   6353 <p>
   6354 The function <code>Offsetof</code> takes a (possibly parenthesized) <a href="#Selectors">selector</a>
   6355 <code>s.f</code>, denoting a field <code>f</code> of the struct denoted by <code>s</code>
   6356 or <code>*s</code>, and returns the field offset in bytes relative to the struct's address.
   6357 If <code>f</code> is an <a href="#Struct_types">embedded field</a>, it must be reachable
   6358 without pointer indirections through fields of the struct.
   6359 For a struct <code>s</code> with field <code>f</code>:
   6360 </p>
   6361 
   6362 <pre>
   6363 uintptr(unsafe.Pointer(&amp;s)) + unsafe.Offsetof(s.f) == uintptr(unsafe.Pointer(&amp;s.f))
   6364 </pre>
   6365 
   6366 <p>
   6367 Computer architectures may require memory addresses to be <i>aligned</i>;
   6368 that is, for addresses of a variable to be a multiple of a factor,
   6369 the variable's type's <i>alignment</i>.  The function <code>Alignof</code>
   6370 takes an expression denoting a variable of any type and returns the
   6371 alignment of the (type of the) variable in bytes.  For a variable
   6372 <code>x</code>:
   6373 </p>
   6374 
   6375 <pre>
   6376 uintptr(unsafe.Pointer(&amp;x)) % unsafe.Alignof(x) == 0
   6377 </pre>
   6378 
   6379 <p>
   6380 Calls to <code>Alignof</code>, <code>Offsetof</code>, and
   6381 <code>Sizeof</code> are compile-time constant expressions of type <code>uintptr</code>.
   6382 </p>
   6383 
   6384 <h3 id="Size_and_alignment_guarantees">Size and alignment guarantees</h3>
   6385 
   6386 <p>
   6387 For the <a href="#Numeric_types">numeric types</a>, the following sizes are guaranteed:
   6388 </p>
   6389 
   6390 <pre class="grammar">
   6391 type                                 size in bytes
   6392 
   6393 byte, uint8, int8                     1
   6394 uint16, int16                         2
   6395 uint32, int32, float32                4
   6396 uint64, int64, float64, complex64     8
   6397 complex128                           16
   6398 </pre>
   6399 
   6400 <p>
   6401 The following minimal alignment properties are guaranteed:
   6402 </p>
   6403 <ol>
   6404 <li>For a variable <code>x</code> of any type: <code>unsafe.Alignof(x)</code> is at least 1.
   6405 </li>
   6406 
   6407 <li>For a variable <code>x</code> of struct type: <code>unsafe.Alignof(x)</code> is the largest of
   6408    all the values <code>unsafe.Alignof(x.f)</code> for each field <code>f</code> of <code>x</code>, but at least 1.
   6409 </li>
   6410 
   6411 <li>For a variable <code>x</code> of array type: <code>unsafe.Alignof(x)</code> is the same as
   6412    <code>unsafe.Alignof(x[0])</code>, but at least 1.
   6413 </li>
   6414 </ol>
   6415 
   6416 <p>
   6417 A struct or array type has size zero if it contains no fields (or elements, respectively) that have a size greater than zero. Two distinct zero-size variables may have the same address in memory.
   6418 </p>
   6419