Home | History | Annotate | Download | only in asn1
      1 // Copyright 2009 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 // Package asn1 implements parsing of DER-encoded ASN.1 data structures,
      6 // as defined in ITU-T Rec X.690.
      7 //
      8 // See also ``A Layman's Guide to a Subset of ASN.1, BER, and DER,''
      9 // http://luca.ntop.org/Teaching/Appunti/asn1.html.
     10 package asn1
     11 
     12 // ASN.1 is a syntax for specifying abstract objects and BER, DER, PER, XER etc
     13 // are different encoding formats for those objects. Here, we'll be dealing
     14 // with DER, the Distinguished Encoding Rules. DER is used in X.509 because
     15 // it's fast to parse and, unlike BER, has a unique encoding for every object.
     16 // When calculating hashes over objects, it's important that the resulting
     17 // bytes be the same at both ends and DER removes this margin of error.
     18 //
     19 // ASN.1 is very complex and this package doesn't attempt to implement
     20 // everything by any means.
     21 
     22 import (
     23 	"errors"
     24 	"fmt"
     25 	"math/big"
     26 	"reflect"
     27 	"strconv"
     28 	"time"
     29 	"unicode/utf8"
     30 )
     31 
     32 // A StructuralError suggests that the ASN.1 data is valid, but the Go type
     33 // which is receiving it doesn't match.
     34 type StructuralError struct {
     35 	Msg string
     36 }
     37 
     38 func (e StructuralError) Error() string { return "asn1: structure error: " + e.Msg }
     39 
     40 // A SyntaxError suggests that the ASN.1 data is invalid.
     41 type SyntaxError struct {
     42 	Msg string
     43 }
     44 
     45 func (e SyntaxError) Error() string { return "asn1: syntax error: " + e.Msg }
     46 
     47 // We start by dealing with each of the primitive types in turn.
     48 
     49 // BOOLEAN
     50 
     51 func parseBool(bytes []byte) (ret bool, err error) {
     52 	if len(bytes) != 1 {
     53 		err = SyntaxError{"invalid boolean"}
     54 		return
     55 	}
     56 
     57 	// DER demands that "If the encoding represents the boolean value TRUE,
     58 	// its single contents octet shall have all eight bits set to one."
     59 	// Thus only 0 and 255 are valid encoded values.
     60 	switch bytes[0] {
     61 	case 0:
     62 		ret = false
     63 	case 0xff:
     64 		ret = true
     65 	default:
     66 		err = SyntaxError{"invalid boolean"}
     67 	}
     68 
     69 	return
     70 }
     71 
     72 // INTEGER
     73 
     74 // checkInteger returns nil if the given bytes are a valid DER-encoded
     75 // INTEGER and an error otherwise.
     76 func checkInteger(bytes []byte) error {
     77 	if len(bytes) == 0 {
     78 		return StructuralError{"empty integer"}
     79 	}
     80 	if len(bytes) == 1 {
     81 		return nil
     82 	}
     83 	if (bytes[0] == 0 && bytes[1]&0x80 == 0) || (bytes[0] == 0xff && bytes[1]&0x80 == 0x80) {
     84 		return StructuralError{"integer not minimally-encoded"}
     85 	}
     86 	return nil
     87 }
     88 
     89 // parseInt64 treats the given bytes as a big-endian, signed integer and
     90 // returns the result.
     91 func parseInt64(bytes []byte) (ret int64, err error) {
     92 	err = checkInteger(bytes)
     93 	if err != nil {
     94 		return
     95 	}
     96 	if len(bytes) > 8 {
     97 		// We'll overflow an int64 in this case.
     98 		err = StructuralError{"integer too large"}
     99 		return
    100 	}
    101 	for bytesRead := 0; bytesRead < len(bytes); bytesRead++ {
    102 		ret <<= 8
    103 		ret |= int64(bytes[bytesRead])
    104 	}
    105 
    106 	// Shift up and down in order to sign extend the result.
    107 	ret <<= 64 - uint8(len(bytes))*8
    108 	ret >>= 64 - uint8(len(bytes))*8
    109 	return
    110 }
    111 
    112 // parseInt treats the given bytes as a big-endian, signed integer and returns
    113 // the result.
    114 func parseInt32(bytes []byte) (int32, error) {
    115 	if err := checkInteger(bytes); err != nil {
    116 		return 0, err
    117 	}
    118 	ret64, err := parseInt64(bytes)
    119 	if err != nil {
    120 		return 0, err
    121 	}
    122 	if ret64 != int64(int32(ret64)) {
    123 		return 0, StructuralError{"integer too large"}
    124 	}
    125 	return int32(ret64), nil
    126 }
    127 
    128 var bigOne = big.NewInt(1)
    129 
    130 // parseBigInt treats the given bytes as a big-endian, signed integer and returns
    131 // the result.
    132 func parseBigInt(bytes []byte) (*big.Int, error) {
    133 	if err := checkInteger(bytes); err != nil {
    134 		return nil, err
    135 	}
    136 	ret := new(big.Int)
    137 	if len(bytes) > 0 && bytes[0]&0x80 == 0x80 {
    138 		// This is a negative number.
    139 		notBytes := make([]byte, len(bytes))
    140 		for i := range notBytes {
    141 			notBytes[i] = ^bytes[i]
    142 		}
    143 		ret.SetBytes(notBytes)
    144 		ret.Add(ret, bigOne)
    145 		ret.Neg(ret)
    146 		return ret, nil
    147 	}
    148 	ret.SetBytes(bytes)
    149 	return ret, nil
    150 }
    151 
    152 // BIT STRING
    153 
    154 // BitString is the structure to use when you want an ASN.1 BIT STRING type. A
    155 // bit string is padded up to the nearest byte in memory and the number of
    156 // valid bits is recorded. Padding bits will be zero.
    157 type BitString struct {
    158 	Bytes     []byte // bits packed into bytes.
    159 	BitLength int    // length in bits.
    160 }
    161 
    162 // At returns the bit at the given index. If the index is out of range it
    163 // returns false.
    164 func (b BitString) At(i int) int {
    165 	if i < 0 || i >= b.BitLength {
    166 		return 0
    167 	}
    168 	x := i / 8
    169 	y := 7 - uint(i%8)
    170 	return int(b.Bytes[x]>>y) & 1
    171 }
    172 
    173 // RightAlign returns a slice where the padding bits are at the beginning. The
    174 // slice may share memory with the BitString.
    175 func (b BitString) RightAlign() []byte {
    176 	shift := uint(8 - (b.BitLength % 8))
    177 	if shift == 8 || len(b.Bytes) == 0 {
    178 		return b.Bytes
    179 	}
    180 
    181 	a := make([]byte, len(b.Bytes))
    182 	a[0] = b.Bytes[0] >> shift
    183 	for i := 1; i < len(b.Bytes); i++ {
    184 		a[i] = b.Bytes[i-1] << (8 - shift)
    185 		a[i] |= b.Bytes[i] >> shift
    186 	}
    187 
    188 	return a
    189 }
    190 
    191 // parseBitString parses an ASN.1 bit string from the given byte slice and returns it.
    192 func parseBitString(bytes []byte) (ret BitString, err error) {
    193 	if len(bytes) == 0 {
    194 		err = SyntaxError{"zero length BIT STRING"}
    195 		return
    196 	}
    197 	paddingBits := int(bytes[0])
    198 	if paddingBits > 7 ||
    199 		len(bytes) == 1 && paddingBits > 0 ||
    200 		bytes[len(bytes)-1]&((1<<bytes[0])-1) != 0 {
    201 		err = SyntaxError{"invalid padding bits in BIT STRING"}
    202 		return
    203 	}
    204 	ret.BitLength = (len(bytes)-1)*8 - paddingBits
    205 	ret.Bytes = bytes[1:]
    206 	return
    207 }
    208 
    209 // OBJECT IDENTIFIER
    210 
    211 // An ObjectIdentifier represents an ASN.1 OBJECT IDENTIFIER.
    212 type ObjectIdentifier []int
    213 
    214 // Equal reports whether oi and other represent the same identifier.
    215 func (oi ObjectIdentifier) Equal(other ObjectIdentifier) bool {
    216 	if len(oi) != len(other) {
    217 		return false
    218 	}
    219 	for i := 0; i < len(oi); i++ {
    220 		if oi[i] != other[i] {
    221 			return false
    222 		}
    223 	}
    224 
    225 	return true
    226 }
    227 
    228 func (oi ObjectIdentifier) String() string {
    229 	var s string
    230 
    231 	for i, v := range oi {
    232 		if i > 0 {
    233 			s += "."
    234 		}
    235 		s += strconv.Itoa(v)
    236 	}
    237 
    238 	return s
    239 }
    240 
    241 // parseObjectIdentifier parses an OBJECT IDENTIFIER from the given bytes and
    242 // returns it. An object identifier is a sequence of variable length integers
    243 // that are assigned in a hierarchy.
    244 func parseObjectIdentifier(bytes []byte) (s []int, err error) {
    245 	if len(bytes) == 0 {
    246 		err = SyntaxError{"zero length OBJECT IDENTIFIER"}
    247 		return
    248 	}
    249 
    250 	// In the worst case, we get two elements from the first byte (which is
    251 	// encoded differently) and then every varint is a single byte long.
    252 	s = make([]int, len(bytes)+1)
    253 
    254 	// The first varint is 40*value1 + value2:
    255 	// According to this packing, value1 can take the values 0, 1 and 2 only.
    256 	// When value1 = 0 or value1 = 1, then value2 is <= 39. When value1 = 2,
    257 	// then there are no restrictions on value2.
    258 	v, offset, err := parseBase128Int(bytes, 0)
    259 	if err != nil {
    260 		return
    261 	}
    262 	if v < 80 {
    263 		s[0] = v / 40
    264 		s[1] = v % 40
    265 	} else {
    266 		s[0] = 2
    267 		s[1] = v - 80
    268 	}
    269 
    270 	i := 2
    271 	for ; offset < len(bytes); i++ {
    272 		v, offset, err = parseBase128Int(bytes, offset)
    273 		if err != nil {
    274 			return
    275 		}
    276 		s[i] = v
    277 	}
    278 	s = s[0:i]
    279 	return
    280 }
    281 
    282 // ENUMERATED
    283 
    284 // An Enumerated is represented as a plain int.
    285 type Enumerated int
    286 
    287 // FLAG
    288 
    289 // A Flag accepts any data and is set to true if present.
    290 type Flag bool
    291 
    292 // parseBase128Int parses a base-128 encoded int from the given offset in the
    293 // given byte slice. It returns the value and the new offset.
    294 func parseBase128Int(bytes []byte, initOffset int) (ret, offset int, err error) {
    295 	offset = initOffset
    296 	for shifted := 0; offset < len(bytes); shifted++ {
    297 		if shifted == 4 {
    298 			err = StructuralError{"base 128 integer too large"}
    299 			return
    300 		}
    301 		ret <<= 7
    302 		b := bytes[offset]
    303 		ret |= int(b & 0x7f)
    304 		offset++
    305 		if b&0x80 == 0 {
    306 			return
    307 		}
    308 	}
    309 	err = SyntaxError{"truncated base 128 integer"}
    310 	return
    311 }
    312 
    313 // UTCTime
    314 
    315 func parseUTCTime(bytes []byte) (ret time.Time, err error) {
    316 	s := string(bytes)
    317 
    318 	formatStr := "0601021504Z0700"
    319 	ret, err = time.Parse(formatStr, s)
    320 	if err != nil {
    321 		formatStr = "060102150405Z0700"
    322 		ret, err = time.Parse(formatStr, s)
    323 	}
    324 	if err != nil {
    325 		return
    326 	}
    327 
    328 	if serialized := ret.Format(formatStr); serialized != s {
    329 		err = fmt.Errorf("asn1: time did not serialize back to the original value and may be invalid: given %q, but serialized as %q", s, serialized)
    330 		return
    331 	}
    332 
    333 	if ret.Year() >= 2050 {
    334 		// UTCTime only encodes times prior to 2050. See https://tools.ietf.org/html/rfc5280#section-4.1.2.5.1
    335 		ret = ret.AddDate(-100, 0, 0)
    336 	}
    337 
    338 	return
    339 }
    340 
    341 // parseGeneralizedTime parses the GeneralizedTime from the given byte slice
    342 // and returns the resulting time.
    343 func parseGeneralizedTime(bytes []byte) (ret time.Time, err error) {
    344 	const formatStr = "20060102150405Z0700"
    345 	s := string(bytes)
    346 
    347 	if ret, err = time.Parse(formatStr, s); err != nil {
    348 		return
    349 	}
    350 
    351 	if serialized := ret.Format(formatStr); serialized != s {
    352 		err = fmt.Errorf("asn1: time did not serialize back to the original value and may be invalid: given %q, but serialized as %q", s, serialized)
    353 	}
    354 
    355 	return
    356 }
    357 
    358 // PrintableString
    359 
    360 // parsePrintableString parses a ASN.1 PrintableString from the given byte
    361 // array and returns it.
    362 func parsePrintableString(bytes []byte) (ret string, err error) {
    363 	for _, b := range bytes {
    364 		if !isPrintable(b) {
    365 			err = SyntaxError{"PrintableString contains invalid character"}
    366 			return
    367 		}
    368 	}
    369 	ret = string(bytes)
    370 	return
    371 }
    372 
    373 // isPrintable reports whether the given b is in the ASN.1 PrintableString set.
    374 func isPrintable(b byte) bool {
    375 	return 'a' <= b && b <= 'z' ||
    376 		'A' <= b && b <= 'Z' ||
    377 		'0' <= b && b <= '9' ||
    378 		'\'' <= b && b <= ')' ||
    379 		'+' <= b && b <= '/' ||
    380 		b == ' ' ||
    381 		b == ':' ||
    382 		b == '=' ||
    383 		b == '?' ||
    384 		// This is technically not allowed in a PrintableString.
    385 		// However, x509 certificates with wildcard strings don't
    386 		// always use the correct string type so we permit it.
    387 		b == '*'
    388 }
    389 
    390 // IA5String
    391 
    392 // parseIA5String parses a ASN.1 IA5String (ASCII string) from the given
    393 // byte slice and returns it.
    394 func parseIA5String(bytes []byte) (ret string, err error) {
    395 	for _, b := range bytes {
    396 		if b >= utf8.RuneSelf {
    397 			err = SyntaxError{"IA5String contains invalid character"}
    398 			return
    399 		}
    400 	}
    401 	ret = string(bytes)
    402 	return
    403 }
    404 
    405 // T61String
    406 
    407 // parseT61String parses a ASN.1 T61String (8-bit clean string) from the given
    408 // byte slice and returns it.
    409 func parseT61String(bytes []byte) (ret string, err error) {
    410 	return string(bytes), nil
    411 }
    412 
    413 // UTF8String
    414 
    415 // parseUTF8String parses a ASN.1 UTF8String (raw UTF-8) from the given byte
    416 // array and returns it.
    417 func parseUTF8String(bytes []byte) (ret string, err error) {
    418 	if !utf8.Valid(bytes) {
    419 		return "", errors.New("asn1: invalid UTF-8 string")
    420 	}
    421 	return string(bytes), nil
    422 }
    423 
    424 // A RawValue represents an undecoded ASN.1 object.
    425 type RawValue struct {
    426 	Class, Tag int
    427 	IsCompound bool
    428 	Bytes      []byte
    429 	FullBytes  []byte // includes the tag and length
    430 }
    431 
    432 // RawContent is used to signal that the undecoded, DER data needs to be
    433 // preserved for a struct. To use it, the first field of the struct must have
    434 // this type. It's an error for any of the other fields to have this type.
    435 type RawContent []byte
    436 
    437 // Tagging
    438 
    439 // parseTagAndLength parses an ASN.1 tag and length pair from the given offset
    440 // into a byte slice. It returns the parsed data and the new offset. SET and
    441 // SET OF (tag 17) are mapped to SEQUENCE and SEQUENCE OF (tag 16) since we
    442 // don't distinguish between ordered and unordered objects in this code.
    443 func parseTagAndLength(bytes []byte, initOffset int) (ret tagAndLength, offset int, err error) {
    444 	offset = initOffset
    445 	// parseTagAndLength should not be called without at least a single
    446 	// byte to read. Thus this check is for robustness:
    447 	if offset >= len(bytes) {
    448 		err = errors.New("asn1: internal error in parseTagAndLength")
    449 		return
    450 	}
    451 	b := bytes[offset]
    452 	offset++
    453 	ret.class = int(b >> 6)
    454 	ret.isCompound = b&0x20 == 0x20
    455 	ret.tag = int(b & 0x1f)
    456 
    457 	// If the bottom five bits are set, then the tag number is actually base 128
    458 	// encoded afterwards
    459 	if ret.tag == 0x1f {
    460 		ret.tag, offset, err = parseBase128Int(bytes, offset)
    461 		if err != nil {
    462 			return
    463 		}
    464 		// Tags should be encoded in minimal form.
    465 		if ret.tag < 0x1f {
    466 			err = SyntaxError{"non-minimal tag"}
    467 			return
    468 		}
    469 	}
    470 	if offset >= len(bytes) {
    471 		err = SyntaxError{"truncated tag or length"}
    472 		return
    473 	}
    474 	b = bytes[offset]
    475 	offset++
    476 	if b&0x80 == 0 {
    477 		// The length is encoded in the bottom 7 bits.
    478 		ret.length = int(b & 0x7f)
    479 	} else {
    480 		// Bottom 7 bits give the number of length bytes to follow.
    481 		numBytes := int(b & 0x7f)
    482 		if numBytes == 0 {
    483 			err = SyntaxError{"indefinite length found (not DER)"}
    484 			return
    485 		}
    486 		ret.length = 0
    487 		for i := 0; i < numBytes; i++ {
    488 			if offset >= len(bytes) {
    489 				err = SyntaxError{"truncated tag or length"}
    490 				return
    491 			}
    492 			b = bytes[offset]
    493 			offset++
    494 			if ret.length >= 1<<23 {
    495 				// We can't shift ret.length up without
    496 				// overflowing.
    497 				err = StructuralError{"length too large"}
    498 				return
    499 			}
    500 			ret.length <<= 8
    501 			ret.length |= int(b)
    502 			if ret.length == 0 {
    503 				// DER requires that lengths be minimal.
    504 				err = StructuralError{"superfluous leading zeros in length"}
    505 				return
    506 			}
    507 		}
    508 		// Short lengths must be encoded in short form.
    509 		if ret.length < 0x80 {
    510 			err = StructuralError{"non-minimal length"}
    511 			return
    512 		}
    513 	}
    514 
    515 	return
    516 }
    517 
    518 // parseSequenceOf is used for SEQUENCE OF and SET OF values. It tries to parse
    519 // a number of ASN.1 values from the given byte slice and returns them as a
    520 // slice of Go values of the given type.
    521 func parseSequenceOf(bytes []byte, sliceType reflect.Type, elemType reflect.Type) (ret reflect.Value, err error) {
    522 	expectedTag, compoundType, ok := getUniversalType(elemType)
    523 	if !ok {
    524 		err = StructuralError{"unknown Go type for slice"}
    525 		return
    526 	}
    527 
    528 	// First we iterate over the input and count the number of elements,
    529 	// checking that the types are correct in each case.
    530 	numElements := 0
    531 	for offset := 0; offset < len(bytes); {
    532 		var t tagAndLength
    533 		t, offset, err = parseTagAndLength(bytes, offset)
    534 		if err != nil {
    535 			return
    536 		}
    537 		switch t.tag {
    538 		case TagIA5String, TagGeneralString, TagT61String, TagUTF8String:
    539 			// We pretend that various other string types are
    540 			// PRINTABLE STRINGs so that a sequence of them can be
    541 			// parsed into a []string.
    542 			t.tag = TagPrintableString
    543 		case TagGeneralizedTime, TagUTCTime:
    544 			// Likewise, both time types are treated the same.
    545 			t.tag = TagUTCTime
    546 		}
    547 
    548 		if t.class != ClassUniversal || t.isCompound != compoundType || t.tag != expectedTag {
    549 			err = StructuralError{"sequence tag mismatch"}
    550 			return
    551 		}
    552 		if invalidLength(offset, t.length, len(bytes)) {
    553 			err = SyntaxError{"truncated sequence"}
    554 			return
    555 		}
    556 		offset += t.length
    557 		numElements++
    558 	}
    559 	ret = reflect.MakeSlice(sliceType, numElements, numElements)
    560 	params := fieldParameters{}
    561 	offset := 0
    562 	for i := 0; i < numElements; i++ {
    563 		offset, err = parseField(ret.Index(i), bytes, offset, params)
    564 		if err != nil {
    565 			return
    566 		}
    567 	}
    568 	return
    569 }
    570 
    571 var (
    572 	bitStringType        = reflect.TypeOf(BitString{})
    573 	objectIdentifierType = reflect.TypeOf(ObjectIdentifier{})
    574 	enumeratedType       = reflect.TypeOf(Enumerated(0))
    575 	flagType             = reflect.TypeOf(Flag(false))
    576 	timeType             = reflect.TypeOf(time.Time{})
    577 	rawValueType         = reflect.TypeOf(RawValue{})
    578 	rawContentsType      = reflect.TypeOf(RawContent(nil))
    579 	bigIntType           = reflect.TypeOf(new(big.Int))
    580 )
    581 
    582 // invalidLength returns true iff offset + length > sliceLength, or if the
    583 // addition would overflow.
    584 func invalidLength(offset, length, sliceLength int) bool {
    585 	return offset+length < offset || offset+length > sliceLength
    586 }
    587 
    588 // parseField is the main parsing function. Given a byte slice and an offset
    589 // into the array, it will try to parse a suitable ASN.1 value out and store it
    590 // in the given Value.
    591 func parseField(v reflect.Value, bytes []byte, initOffset int, params fieldParameters) (offset int, err error) {
    592 	offset = initOffset
    593 	fieldType := v.Type()
    594 
    595 	// If we have run out of data, it may be that there are optional elements at the end.
    596 	if offset == len(bytes) {
    597 		if !setDefaultValue(v, params) {
    598 			err = SyntaxError{"sequence truncated"}
    599 		}
    600 		return
    601 	}
    602 
    603 	// Deal with raw values.
    604 	if fieldType == rawValueType {
    605 		var t tagAndLength
    606 		t, offset, err = parseTagAndLength(bytes, offset)
    607 		if err != nil {
    608 			return
    609 		}
    610 		if invalidLength(offset, t.length, len(bytes)) {
    611 			err = SyntaxError{"data truncated"}
    612 			return
    613 		}
    614 		result := RawValue{t.class, t.tag, t.isCompound, bytes[offset : offset+t.length], bytes[initOffset : offset+t.length]}
    615 		offset += t.length
    616 		v.Set(reflect.ValueOf(result))
    617 		return
    618 	}
    619 
    620 	// Deal with the ANY type.
    621 	if ifaceType := fieldType; ifaceType.Kind() == reflect.Interface && ifaceType.NumMethod() == 0 {
    622 		var t tagAndLength
    623 		t, offset, err = parseTagAndLength(bytes, offset)
    624 		if err != nil {
    625 			return
    626 		}
    627 		if invalidLength(offset, t.length, len(bytes)) {
    628 			err = SyntaxError{"data truncated"}
    629 			return
    630 		}
    631 		var result interface{}
    632 		if !t.isCompound && t.class == ClassUniversal {
    633 			innerBytes := bytes[offset : offset+t.length]
    634 			switch t.tag {
    635 			case TagPrintableString:
    636 				result, err = parsePrintableString(innerBytes)
    637 			case TagIA5String:
    638 				result, err = parseIA5String(innerBytes)
    639 			case TagT61String:
    640 				result, err = parseT61String(innerBytes)
    641 			case TagUTF8String:
    642 				result, err = parseUTF8String(innerBytes)
    643 			case TagInteger:
    644 				result, err = parseInt64(innerBytes)
    645 			case TagBitString:
    646 				result, err = parseBitString(innerBytes)
    647 			case TagOID:
    648 				result, err = parseObjectIdentifier(innerBytes)
    649 			case TagUTCTime:
    650 				result, err = parseUTCTime(innerBytes)
    651 			case TagGeneralizedTime:
    652 				result, err = parseGeneralizedTime(innerBytes)
    653 			case TagOctetString:
    654 				result = innerBytes
    655 			default:
    656 				// If we don't know how to handle the type, we just leave Value as nil.
    657 			}
    658 		}
    659 		offset += t.length
    660 		if err != nil {
    661 			return
    662 		}
    663 		if result != nil {
    664 			v.Set(reflect.ValueOf(result))
    665 		}
    666 		return
    667 	}
    668 	universalTag, compoundType, ok1 := getUniversalType(fieldType)
    669 	if !ok1 {
    670 		err = StructuralError{fmt.Sprintf("unknown Go type: %v", fieldType)}
    671 		return
    672 	}
    673 
    674 	t, offset, err := parseTagAndLength(bytes, offset)
    675 	if err != nil {
    676 		return
    677 	}
    678 	if params.explicit {
    679 		expectedClass := ClassContextSpecific
    680 		if params.application {
    681 			expectedClass = ClassApplication
    682 		}
    683 		if offset == len(bytes) {
    684 			err = StructuralError{"explicit tag has no child"}
    685 			return
    686 		}
    687 		if t.class == expectedClass && t.tag == *params.tag && (t.length == 0 || t.isCompound) {
    688 			if t.length > 0 {
    689 				t, offset, err = parseTagAndLength(bytes, offset)
    690 				if err != nil {
    691 					return
    692 				}
    693 			} else {
    694 				if fieldType != flagType {
    695 					err = StructuralError{"zero length explicit tag was not an asn1.Flag"}
    696 					return
    697 				}
    698 				v.SetBool(true)
    699 				return
    700 			}
    701 		} else {
    702 			// The tags didn't match, it might be an optional element.
    703 			ok := setDefaultValue(v, params)
    704 			if ok {
    705 				offset = initOffset
    706 			} else {
    707 				err = StructuralError{"explicitly tagged member didn't match"}
    708 			}
    709 			return
    710 		}
    711 	}
    712 
    713 	// Special case for strings: all the ASN.1 string types map to the Go
    714 	// type string. getUniversalType returns the tag for PrintableString
    715 	// when it sees a string, so if we see a different string type on the
    716 	// wire, we change the universal type to match.
    717 	if universalTag == TagPrintableString {
    718 		if t.class == ClassUniversal {
    719 			switch t.tag {
    720 			case TagIA5String, TagGeneralString, TagT61String, TagUTF8String:
    721 				universalTag = t.tag
    722 			}
    723 		} else if params.stringType != 0 {
    724 			universalTag = params.stringType
    725 		}
    726 	}
    727 
    728 	// Special case for time: UTCTime and GeneralizedTime both map to the
    729 	// Go type time.Time.
    730 	if universalTag == TagUTCTime && t.tag == TagGeneralizedTime && t.class == ClassUniversal {
    731 		universalTag = TagGeneralizedTime
    732 	}
    733 
    734 	if params.set {
    735 		universalTag = TagSet
    736 	}
    737 
    738 	expectedClass := ClassUniversal
    739 	expectedTag := universalTag
    740 
    741 	if !params.explicit && params.tag != nil {
    742 		expectedClass = ClassContextSpecific
    743 		expectedTag = *params.tag
    744 	}
    745 
    746 	if !params.explicit && params.application && params.tag != nil {
    747 		expectedClass = ClassApplication
    748 		expectedTag = *params.tag
    749 	}
    750 
    751 	// We have unwrapped any explicit tagging at this point.
    752 	if t.class != expectedClass || t.tag != expectedTag || t.isCompound != compoundType {
    753 		// Tags don't match. Again, it could be an optional element.
    754 		ok := setDefaultValue(v, params)
    755 		if ok {
    756 			offset = initOffset
    757 		} else {
    758 			err = StructuralError{fmt.Sprintf("tags don't match (%d vs %+v) %+v %s @%d", expectedTag, t, params, fieldType.Name(), offset)}
    759 		}
    760 		return
    761 	}
    762 	if invalidLength(offset, t.length, len(bytes)) {
    763 		err = SyntaxError{"data truncated"}
    764 		return
    765 	}
    766 	innerBytes := bytes[offset : offset+t.length]
    767 	offset += t.length
    768 
    769 	// We deal with the structures defined in this package first.
    770 	switch fieldType {
    771 	case objectIdentifierType:
    772 		newSlice, err1 := parseObjectIdentifier(innerBytes)
    773 		v.Set(reflect.MakeSlice(v.Type(), len(newSlice), len(newSlice)))
    774 		if err1 == nil {
    775 			reflect.Copy(v, reflect.ValueOf(newSlice))
    776 		}
    777 		err = err1
    778 		return
    779 	case bitStringType:
    780 		bs, err1 := parseBitString(innerBytes)
    781 		if err1 == nil {
    782 			v.Set(reflect.ValueOf(bs))
    783 		}
    784 		err = err1
    785 		return
    786 	case timeType:
    787 		var time time.Time
    788 		var err1 error
    789 		if universalTag == TagUTCTime {
    790 			time, err1 = parseUTCTime(innerBytes)
    791 		} else {
    792 			time, err1 = parseGeneralizedTime(innerBytes)
    793 		}
    794 		if err1 == nil {
    795 			v.Set(reflect.ValueOf(time))
    796 		}
    797 		err = err1
    798 		return
    799 	case enumeratedType:
    800 		parsedInt, err1 := parseInt32(innerBytes)
    801 		if err1 == nil {
    802 			v.SetInt(int64(parsedInt))
    803 		}
    804 		err = err1
    805 		return
    806 	case flagType:
    807 		v.SetBool(true)
    808 		return
    809 	case bigIntType:
    810 		parsedInt, err1 := parseBigInt(innerBytes)
    811 		if err1 == nil {
    812 			v.Set(reflect.ValueOf(parsedInt))
    813 		}
    814 		err = err1
    815 		return
    816 	}
    817 	switch val := v; val.Kind() {
    818 	case reflect.Bool:
    819 		parsedBool, err1 := parseBool(innerBytes)
    820 		if err1 == nil {
    821 			val.SetBool(parsedBool)
    822 		}
    823 		err = err1
    824 		return
    825 	case reflect.Int, reflect.Int32, reflect.Int64:
    826 		if val.Type().Size() == 4 {
    827 			parsedInt, err1 := parseInt32(innerBytes)
    828 			if err1 == nil {
    829 				val.SetInt(int64(parsedInt))
    830 			}
    831 			err = err1
    832 		} else {
    833 			parsedInt, err1 := parseInt64(innerBytes)
    834 			if err1 == nil {
    835 				val.SetInt(parsedInt)
    836 			}
    837 			err = err1
    838 		}
    839 		return
    840 	// TODO(dfc) Add support for the remaining integer types
    841 	case reflect.Struct:
    842 		structType := fieldType
    843 
    844 		for i := 0; i < structType.NumField(); i++ {
    845 			if structType.Field(i).PkgPath != "" {
    846 				err = StructuralError{"struct contains unexported fields"}
    847 				return
    848 			}
    849 		}
    850 
    851 		if structType.NumField() > 0 &&
    852 			structType.Field(0).Type == rawContentsType {
    853 			bytes := bytes[initOffset:offset]
    854 			val.Field(0).Set(reflect.ValueOf(RawContent(bytes)))
    855 		}
    856 
    857 		innerOffset := 0
    858 		for i := 0; i < structType.NumField(); i++ {
    859 			field := structType.Field(i)
    860 			if i == 0 && field.Type == rawContentsType {
    861 				continue
    862 			}
    863 			innerOffset, err = parseField(val.Field(i), innerBytes, innerOffset, parseFieldParameters(field.Tag.Get("asn1")))
    864 			if err != nil {
    865 				return
    866 			}
    867 		}
    868 		// We allow extra bytes at the end of the SEQUENCE because
    869 		// adding elements to the end has been used in X.509 as the
    870 		// version numbers have increased.
    871 		return
    872 	case reflect.Slice:
    873 		sliceType := fieldType
    874 		if sliceType.Elem().Kind() == reflect.Uint8 {
    875 			val.Set(reflect.MakeSlice(sliceType, len(innerBytes), len(innerBytes)))
    876 			reflect.Copy(val, reflect.ValueOf(innerBytes))
    877 			return
    878 		}
    879 		newSlice, err1 := parseSequenceOf(innerBytes, sliceType, sliceType.Elem())
    880 		if err1 == nil {
    881 			val.Set(newSlice)
    882 		}
    883 		err = err1
    884 		return
    885 	case reflect.String:
    886 		var v string
    887 		switch universalTag {
    888 		case TagPrintableString:
    889 			v, err = parsePrintableString(innerBytes)
    890 		case TagIA5String:
    891 			v, err = parseIA5String(innerBytes)
    892 		case TagT61String:
    893 			v, err = parseT61String(innerBytes)
    894 		case TagUTF8String:
    895 			v, err = parseUTF8String(innerBytes)
    896 		case TagGeneralString:
    897 			// GeneralString is specified in ISO-2022/ECMA-35,
    898 			// A brief review suggests that it includes structures
    899 			// that allow the encoding to change midstring and
    900 			// such. We give up and pass it as an 8-bit string.
    901 			v, err = parseT61String(innerBytes)
    902 		default:
    903 			err = SyntaxError{fmt.Sprintf("internal error: unknown string type %d", universalTag)}
    904 		}
    905 		if err == nil {
    906 			val.SetString(v)
    907 		}
    908 		return
    909 	}
    910 	err = StructuralError{"unsupported: " + v.Type().String()}
    911 	return
    912 }
    913 
    914 // canHaveDefaultValue reports whether k is a Kind that we will set a default
    915 // value for. (A signed integer, essentially.)
    916 func canHaveDefaultValue(k reflect.Kind) bool {
    917 	switch k {
    918 	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
    919 		return true
    920 	}
    921 
    922 	return false
    923 }
    924 
    925 // setDefaultValue is used to install a default value, from a tag string, into
    926 // a Value. It is successful if the field was optional, even if a default value
    927 // wasn't provided or it failed to install it into the Value.
    928 func setDefaultValue(v reflect.Value, params fieldParameters) (ok bool) {
    929 	if !params.optional {
    930 		return
    931 	}
    932 	ok = true
    933 	if params.defaultValue == nil {
    934 		return
    935 	}
    936 	if canHaveDefaultValue(v.Kind()) {
    937 		v.SetInt(*params.defaultValue)
    938 	}
    939 	return
    940 }
    941 
    942 // Unmarshal parses the DER-encoded ASN.1 data structure b
    943 // and uses the reflect package to fill in an arbitrary value pointed at by val.
    944 // Because Unmarshal uses the reflect package, the structs
    945 // being written to must use upper case field names.
    946 //
    947 // An ASN.1 INTEGER can be written to an int, int32, int64,
    948 // or *big.Int (from the math/big package).
    949 // If the encoded value does not fit in the Go type,
    950 // Unmarshal returns a parse error.
    951 //
    952 // An ASN.1 BIT STRING can be written to a BitString.
    953 //
    954 // An ASN.1 OCTET STRING can be written to a []byte.
    955 //
    956 // An ASN.1 OBJECT IDENTIFIER can be written to an
    957 // ObjectIdentifier.
    958 //
    959 // An ASN.1 ENUMERATED can be written to an Enumerated.
    960 //
    961 // An ASN.1 UTCTIME or GENERALIZEDTIME can be written to a time.Time.
    962 //
    963 // An ASN.1 PrintableString or IA5String can be written to a string.
    964 //
    965 // Any of the above ASN.1 values can be written to an interface{}.
    966 // The value stored in the interface has the corresponding Go type.
    967 // For integers, that type is int64.
    968 //
    969 // An ASN.1 SEQUENCE OF x or SET OF x can be written
    970 // to a slice if an x can be written to the slice's element type.
    971 //
    972 // An ASN.1 SEQUENCE or SET can be written to a struct
    973 // if each of the elements in the sequence can be
    974 // written to the corresponding element in the struct.
    975 //
    976 // The following tags on struct fields have special meaning to Unmarshal:
    977 //
    978 //	application	specifies that a APPLICATION tag is used
    979 //	default:x	sets the default value for optional integer fields (only used if optional is also present)
    980 //	explicit	specifies that an additional, explicit tag wraps the implicit one
    981 //	optional	marks the field as ASN.1 OPTIONAL
    982 //	set		causes a SET, rather than a SEQUENCE type to be expected
    983 //	tag:x		specifies the ASN.1 tag number; implies ASN.1 CONTEXT SPECIFIC
    984 //
    985 // If the type of the first field of a structure is RawContent then the raw
    986 // ASN1 contents of the struct will be stored in it.
    987 //
    988 // If the type name of a slice element ends with "SET" then it's treated as if
    989 // the "set" tag was set on it. This can be used with nested slices where a
    990 // struct tag cannot be given.
    991 //
    992 // Other ASN.1 types are not supported; if it encounters them,
    993 // Unmarshal returns a parse error.
    994 func Unmarshal(b []byte, val interface{}) (rest []byte, err error) {
    995 	return UnmarshalWithParams(b, val, "")
    996 }
    997 
    998 // UnmarshalWithParams allows field parameters to be specified for the
    999 // top-level element. The form of the params is the same as the field tags.
   1000 func UnmarshalWithParams(b []byte, val interface{}, params string) (rest []byte, err error) {
   1001 	v := reflect.ValueOf(val).Elem()
   1002 	offset, err := parseField(v, b, 0, parseFieldParameters(params))
   1003 	if err != nil {
   1004 		return nil, err
   1005 	}
   1006 	return b[offset:], nil
   1007 }
   1008