Home | History | Annotate | Download | only in math
      1 // Copyright 2010 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 package math
      6 
      7 // The original C code, the long comment, and the constants
      8 // below are from FreeBSD's /usr/src/lib/msun/src/s_asinh.c
      9 // and came with this notice. The go code is a simplified
     10 // version of the original C.
     11 //
     12 // ====================================================
     13 // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
     14 //
     15 // Developed at SunPro, a Sun Microsystems, Inc. business.
     16 // Permission to use, copy, modify, and distribute this
     17 // software is freely granted, provided that this notice
     18 // is preserved.
     19 // ====================================================
     20 //
     21 //
     22 // asinh(x)
     23 // Method :
     24 //	Based on
     25 //	        asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ]
     26 //	we have
     27 //	asinh(x) := x  if  1+x*x=1,
     28 //	         := sign(x)*(log(x)+ln2)) for large |x|, else
     29 //	         := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else
     30 //	         := sign(x)*log1p(|x| + x**2/(1 + sqrt(1+x**2)))
     31 //
     32 
     33 // Asinh returns the inverse hyperbolic sine of x.
     34 //
     35 // Special cases are:
     36 //	Asinh(0) = 0
     37 //	Asinh(Inf) = Inf
     38 //	Asinh(NaN) = NaN
     39 func Asinh(x float64) float64 {
     40 	const (
     41 		Ln2      = 6.93147180559945286227e-01 // 0x3FE62E42FEFA39EF
     42 		NearZero = 1.0 / (1 << 28)            // 2**-28
     43 		Large    = 1 << 28                    // 2**28
     44 	)
     45 	// special cases
     46 	if IsNaN(x) || IsInf(x, 0) {
     47 		return x
     48 	}
     49 	sign := false
     50 	if x < 0 {
     51 		x = -x
     52 		sign = true
     53 	}
     54 	var temp float64
     55 	switch {
     56 	case x > Large:
     57 		temp = Log(x) + Ln2 // |x| > 2**28
     58 	case x > 2:
     59 		temp = Log(2*x + 1/(Sqrt(x*x+1)+x)) // 2**28 > |x| > 2.0
     60 	case x < NearZero:
     61 		temp = x // |x| < 2**-28
     62 	default:
     63 		temp = Log1p(x + x*x/(1+Sqrt(1+x*x))) // 2.0 > |x| > 2**-28
     64 	}
     65 	if sign {
     66 		temp = -temp
     67 	}
     68 	return temp
     69 }
     70