Home | History | Annotate | Download | only in cmplx
      1 // Copyright 2010 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 package cmplx
      6 
      7 import "math"
      8 
      9 // The original C code, the long comment, and the constants
     10 // below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c.
     11 // The go code is a simplified version of the original C.
     12 //
     13 // Cephes Math Library Release 2.8:  June, 2000
     14 // Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
     15 //
     16 // The readme file at http://netlib.sandia.gov/cephes/ says:
     17 //    Some software in this archive may be from the book _Methods and
     18 // Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
     19 // International, 1989) or from the Cephes Mathematical Library, a
     20 // commercial product. In either event, it is copyrighted by the author.
     21 // What you see here may be used freely but it comes with no support or
     22 // guarantee.
     23 //
     24 //   The two known misprints in the book are repaired here in the
     25 // source listings for the gamma function and the incomplete beta
     26 // integral.
     27 //
     28 //   Stephen L. Moshier
     29 //   moshier (a] na-net.ornl.gov
     30 
     31 // Complex circular tangent
     32 //
     33 // DESCRIPTION:
     34 //
     35 // If
     36 //     z = x + iy,
     37 //
     38 // then
     39 //
     40 //           sin 2x  +  i sinh 2y
     41 //     w  =  --------------------.
     42 //            cos 2x  +  cosh 2y
     43 //
     44 // On the real axis the denominator is zero at odd multiples
     45 // of PI/2.  The denominator is evaluated by its Taylor
     46 // series near these points.
     47 //
     48 // ctan(z) = -i ctanh(iz).
     49 //
     50 // ACCURACY:
     51 //
     52 //                      Relative error:
     53 // arithmetic   domain     # trials      peak         rms
     54 //    DEC       -10,+10      5200       7.1e-17     1.6e-17
     55 //    IEEE      -10,+10     30000       7.2e-16     1.2e-16
     56 // Also tested by ctan * ccot = 1 and catan(ctan(z))  =  z.
     57 
     58 // Tan returns the tangent of x.
     59 func Tan(x complex128) complex128 {
     60 	d := math.Cos(2*real(x)) + math.Cosh(2*imag(x))
     61 	if math.Abs(d) < 0.25 {
     62 		d = tanSeries(x)
     63 	}
     64 	if d == 0 {
     65 		return Inf()
     66 	}
     67 	return complex(math.Sin(2*real(x))/d, math.Sinh(2*imag(x))/d)
     68 }
     69 
     70 // Complex hyperbolic tangent
     71 //
     72 // DESCRIPTION:
     73 //
     74 // tanh z = (sinh 2x  +  i sin 2y) / (cosh 2x + cos 2y) .
     75 //
     76 // ACCURACY:
     77 //
     78 //                      Relative error:
     79 // arithmetic   domain     # trials      peak         rms
     80 //    IEEE      -10,+10     30000       1.7e-14     2.4e-16
     81 
     82 // Tanh returns the hyperbolic tangent of x.
     83 func Tanh(x complex128) complex128 {
     84 	d := math.Cosh(2*real(x)) + math.Cos(2*imag(x))
     85 	if d == 0 {
     86 		return Inf()
     87 	}
     88 	return complex(math.Sinh(2*real(x))/d, math.Sin(2*imag(x))/d)
     89 }
     90 
     91 // Program to subtract nearest integer multiple of PI
     92 func reducePi(x float64) float64 {
     93 	const (
     94 		// extended precision value of PI:
     95 		DP1 = 3.14159265160560607910E0   // ?? 0x400921fb54000000
     96 		DP2 = 1.98418714791870343106E-9  // ?? 0x3e210b4610000000
     97 		DP3 = 1.14423774522196636802E-17 // ?? 0x3c6a62633145c06e
     98 	)
     99 	t := x / math.Pi
    100 	if t >= 0 {
    101 		t += 0.5
    102 	} else {
    103 		t -= 0.5
    104 	}
    105 	t = float64(int64(t)) // int64(t) = the multiple
    106 	return ((x - t*DP1) - t*DP2) - t*DP3
    107 }
    108 
    109 // Taylor series expansion for cosh(2y) - cos(2x)
    110 func tanSeries(z complex128) float64 {
    111 	const MACHEP = 1.0 / (1 << 53)
    112 	x := math.Abs(2 * real(z))
    113 	y := math.Abs(2 * imag(z))
    114 	x = reducePi(x)
    115 	x = x * x
    116 	y = y * y
    117 	x2 := 1.0
    118 	y2 := 1.0
    119 	f := 1.0
    120 	rn := 0.0
    121 	d := 0.0
    122 	for {
    123 		rn++
    124 		f *= rn
    125 		rn++
    126 		f *= rn
    127 		x2 *= x
    128 		y2 *= y
    129 		t := y2 + x2
    130 		t /= f
    131 		d += t
    132 
    133 		rn++
    134 		f *= rn
    135 		rn++
    136 		f *= rn
    137 		x2 *= x
    138 		y2 *= y
    139 		t = y2 - x2
    140 		t /= f
    141 		d += t
    142 		if !(math.Abs(t/d) > MACHEP) {
    143 			// Caution: Use ! and > instead of <= for correct behavior if t/d is NaN.
    144 			// See issue 17577.
    145 			break
    146 		}
    147 	}
    148 	return d
    149 }
    150 
    151 // Complex circular cotangent
    152 //
    153 // DESCRIPTION:
    154 //
    155 // If
    156 //     z = x + iy,
    157 //
    158 // then
    159 //
    160 //           sin 2x  -  i sinh 2y
    161 //     w  =  --------------------.
    162 //            cosh 2y  -  cos 2x
    163 //
    164 // On the real axis, the denominator has zeros at even
    165 // multiples of PI/2.  Near these points it is evaluated
    166 // by a Taylor series.
    167 //
    168 // ACCURACY:
    169 //
    170 //                      Relative error:
    171 // arithmetic   domain     # trials      peak         rms
    172 //    DEC       -10,+10      3000       6.5e-17     1.6e-17
    173 //    IEEE      -10,+10     30000       9.2e-16     1.2e-16
    174 // Also tested by ctan * ccot = 1 + i0.
    175 
    176 // Cot returns the cotangent of x.
    177 func Cot(x complex128) complex128 {
    178 	d := math.Cosh(2*imag(x)) - math.Cos(2*real(x))
    179 	if math.Abs(d) < 0.25 {
    180 		d = tanSeries(x)
    181 	}
    182 	if d == 0 {
    183 		return Inf()
    184 	}
    185 	return complex(math.Sin(2*real(x))/d, -math.Sinh(2*imag(x))/d)
    186 }
    187