Home | History | Annotate | Download | only in math
      1 // Copyright 2011 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 package math
      6 
      7 /*
      8 	Floating-point sine and cosine.
      9 */
     10 
     11 // The original C code, the long comment, and the constants
     12 // below were from http://netlib.sandia.gov/cephes/cmath/sin.c,
     13 // available from http://www.netlib.org/cephes/cmath.tgz.
     14 // The go code is a simplified version of the original C.
     15 //
     16 //      sin.c
     17 //
     18 //      Circular sine
     19 //
     20 // SYNOPSIS:
     21 //
     22 // double x, y, sin();
     23 // y = sin( x );
     24 //
     25 // DESCRIPTION:
     26 //
     27 // Range reduction is into intervals of pi/4.  The reduction error is nearly
     28 // eliminated by contriving an extended precision modular arithmetic.
     29 //
     30 // Two polynomial approximating functions are employed.
     31 // Between 0 and pi/4 the sine is approximated by
     32 //      x  +  x**3 P(x**2).
     33 // Between pi/4 and pi/2 the cosine is represented as
     34 //      1  -  x**2 Q(x**2).
     35 //
     36 // ACCURACY:
     37 //
     38 //                      Relative error:
     39 // arithmetic   domain      # trials      peak         rms
     40 //    DEC       0, 10       150000       3.0e-17     7.8e-18
     41 //    IEEE -1.07e9,+1.07e9  130000       2.1e-16     5.4e-17
     42 //
     43 // Partial loss of accuracy begins to occur at x = 2**30 = 1.074e9.  The loss
     44 // is not gradual, but jumps suddenly to about 1 part in 10e7.  Results may
     45 // be meaningless for x > 2**49 = 5.6e14.
     46 //
     47 //      cos.c
     48 //
     49 //      Circular cosine
     50 //
     51 // SYNOPSIS:
     52 //
     53 // double x, y, cos();
     54 // y = cos( x );
     55 //
     56 // DESCRIPTION:
     57 //
     58 // Range reduction is into intervals of pi/4.  The reduction error is nearly
     59 // eliminated by contriving an extended precision modular arithmetic.
     60 //
     61 // Two polynomial approximating functions are employed.
     62 // Between 0 and pi/4 the cosine is approximated by
     63 //      1  -  x**2 Q(x**2).
     64 // Between pi/4 and pi/2 the sine is represented as
     65 //      x  +  x**3 P(x**2).
     66 //
     67 // ACCURACY:
     68 //
     69 //                      Relative error:
     70 // arithmetic   domain      # trials      peak         rms
     71 //    IEEE -1.07e9,+1.07e9  130000       2.1e-16     5.4e-17
     72 //    DEC        0,+1.07e9   17000       3.0e-17     7.2e-18
     73 //
     74 // Cephes Math Library Release 2.8:  June, 2000
     75 // Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
     76 //
     77 // The readme file at http://netlib.sandia.gov/cephes/ says:
     78 //    Some software in this archive may be from the book _Methods and
     79 // Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
     80 // International, 1989) or from the Cephes Mathematical Library, a
     81 // commercial product. In either event, it is copyrighted by the author.
     82 // What you see here may be used freely but it comes with no support or
     83 // guarantee.
     84 //
     85 //   The two known misprints in the book are repaired here in the
     86 // source listings for the gamma function and the incomplete beta
     87 // integral.
     88 //
     89 //   Stephen L. Moshier
     90 //   moshier (a] na-net.ornl.gov
     91 
     92 // sin coefficients
     93 var _sin = [...]float64{
     94 	1.58962301576546568060E-10, // 0x3de5d8fd1fd19ccd
     95 	-2.50507477628578072866E-8, // 0xbe5ae5e5a9291f5d
     96 	2.75573136213857245213E-6,  // 0x3ec71de3567d48a1
     97 	-1.98412698295895385996E-4, // 0xbf2a01a019bfdf03
     98 	8.33333333332211858878E-3,  // 0x3f8111111110f7d0
     99 	-1.66666666666666307295E-1, // 0xbfc5555555555548
    100 }
    101 
    102 // cos coefficients
    103 var _cos = [...]float64{
    104 	-1.13585365213876817300E-11, // 0xbda8fa49a0861a9b
    105 	2.08757008419747316778E-9,   // 0x3e21ee9d7b4e3f05
    106 	-2.75573141792967388112E-7,  // 0xbe927e4f7eac4bc6
    107 	2.48015872888517045348E-5,   // 0x3efa01a019c844f5
    108 	-1.38888888888730564116E-3,  // 0xbf56c16c16c14f91
    109 	4.16666666666665929218E-2,   // 0x3fa555555555554b
    110 }
    111 
    112 // Cos returns the cosine of the radian argument x.
    113 //
    114 // Special cases are:
    115 //	Cos(Inf) = NaN
    116 //	Cos(NaN) = NaN
    117 func Cos(x float64) float64
    118 
    119 func cos(x float64) float64 {
    120 	const (
    121 		PI4A = 7.85398125648498535156E-1                             // 0x3fe921fb40000000, Pi/4 split into three parts
    122 		PI4B = 3.77489470793079817668E-8                             // 0x3e64442d00000000,
    123 		PI4C = 2.69515142907905952645E-15                            // 0x3ce8469898cc5170,
    124 		M4PI = 1.273239544735162542821171882678754627704620361328125 // 4/pi
    125 	)
    126 	// special cases
    127 	switch {
    128 	case IsNaN(x) || IsInf(x, 0):
    129 		return NaN()
    130 	}
    131 
    132 	// make argument positive
    133 	sign := false
    134 	if x < 0 {
    135 		x = -x
    136 	}
    137 
    138 	j := int64(x * M4PI) // integer part of x/(Pi/4), as integer for tests on the phase angle
    139 	y := float64(j)      // integer part of x/(Pi/4), as float
    140 
    141 	// map zeros to origin
    142 	if j&1 == 1 {
    143 		j++
    144 		y++
    145 	}
    146 	j &= 7 // octant modulo 2Pi radians (360 degrees)
    147 	if j > 3 {
    148 		j -= 4
    149 		sign = !sign
    150 	}
    151 	if j > 1 {
    152 		sign = !sign
    153 	}
    154 
    155 	z := ((x - y*PI4A) - y*PI4B) - y*PI4C // Extended precision modular arithmetic
    156 	zz := z * z
    157 	if j == 1 || j == 2 {
    158 		y = z + z*zz*((((((_sin[0]*zz)+_sin[1])*zz+_sin[2])*zz+_sin[3])*zz+_sin[4])*zz+_sin[5])
    159 	} else {
    160 		y = 1.0 - 0.5*zz + zz*zz*((((((_cos[0]*zz)+_cos[1])*zz+_cos[2])*zz+_cos[3])*zz+_cos[4])*zz+_cos[5])
    161 	}
    162 	if sign {
    163 		y = -y
    164 	}
    165 	return y
    166 }
    167 
    168 // Sin returns the sine of the radian argument x.
    169 //
    170 // Special cases are:
    171 //	Sin(0) = 0
    172 //	Sin(Inf) = NaN
    173 //	Sin(NaN) = NaN
    174 func Sin(x float64) float64
    175 
    176 func sin(x float64) float64 {
    177 	const (
    178 		PI4A = 7.85398125648498535156E-1                             // 0x3fe921fb40000000, Pi/4 split into three parts
    179 		PI4B = 3.77489470793079817668E-8                             // 0x3e64442d00000000,
    180 		PI4C = 2.69515142907905952645E-15                            // 0x3ce8469898cc5170,
    181 		M4PI = 1.273239544735162542821171882678754627704620361328125 // 4/pi
    182 	)
    183 	// special cases
    184 	switch {
    185 	case x == 0 || IsNaN(x):
    186 		return x // return 0 || NaN()
    187 	case IsInf(x, 0):
    188 		return NaN()
    189 	}
    190 
    191 	// make argument positive but save the sign
    192 	sign := false
    193 	if x < 0 {
    194 		x = -x
    195 		sign = true
    196 	}
    197 
    198 	j := int64(x * M4PI) // integer part of x/(Pi/4), as integer for tests on the phase angle
    199 	y := float64(j)      // integer part of x/(Pi/4), as float
    200 
    201 	// map zeros to origin
    202 	if j&1 == 1 {
    203 		j++
    204 		y++
    205 	}
    206 	j &= 7 // octant modulo 2Pi radians (360 degrees)
    207 	// reflect in x axis
    208 	if j > 3 {
    209 		sign = !sign
    210 		j -= 4
    211 	}
    212 
    213 	z := ((x - y*PI4A) - y*PI4B) - y*PI4C // Extended precision modular arithmetic
    214 	zz := z * z
    215 	if j == 1 || j == 2 {
    216 		y = 1.0 - 0.5*zz + zz*zz*((((((_cos[0]*zz)+_cos[1])*zz+_cos[2])*zz+_cos[3])*zz+_cos[4])*zz+_cos[5])
    217 	} else {
    218 		y = z + z*zz*((((((_sin[0]*zz)+_sin[1])*zz+_sin[2])*zz+_sin[3])*zz+_sin[4])*zz+_sin[5])
    219 	}
    220 	if sign {
    221 		y = -y
    222 	}
    223 	return y
    224 }
    225