Home | History | Annotate | Download | only in regexp
      1 // Copyright 2009 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 // Package regexp implements regular expression search.
      6 //
      7 // The syntax of the regular expressions accepted is the same
      8 // general syntax used by Perl, Python, and other languages.
      9 // More precisely, it is the syntax accepted by RE2 and described at
     10 // https://golang.org/s/re2syntax, except for \C.
     11 // For an overview of the syntax, run
     12 //   go doc regexp/syntax
     13 //
     14 // The regexp implementation provided by this package is
     15 // guaranteed to run in time linear in the size of the input.
     16 // (This is a property not guaranteed by most open source
     17 // implementations of regular expressions.) For more information
     18 // about this property, see
     19 //	http://swtch.com/~rsc/regexp/regexp1.html
     20 // or any book about automata theory.
     21 //
     22 // All characters are UTF-8-encoded code points.
     23 //
     24 // There are 16 methods of Regexp that match a regular expression and identify
     25 // the matched text. Their names are matched by this regular expression:
     26 //
     27 //	Find(All)?(String)?(Submatch)?(Index)?
     28 //
     29 // If 'All' is present, the routine matches successive non-overlapping
     30 // matches of the entire expression. Empty matches abutting a preceding
     31 // match are ignored. The return value is a slice containing the successive
     32 // return values of the corresponding non-'All' routine. These routines take
     33 // an extra integer argument, n; if n >= 0, the function returns at most n
     34 // matches/submatches.
     35 //
     36 // If 'String' is present, the argument is a string; otherwise it is a slice
     37 // of bytes; return values are adjusted as appropriate.
     38 //
     39 // If 'Submatch' is present, the return value is a slice identifying the
     40 // successive submatches of the expression. Submatches are matches of
     41 // parenthesized subexpressions (also known as capturing groups) within the
     42 // regular expression, numbered from left to right in order of opening
     43 // parenthesis. Submatch 0 is the match of the entire expression, submatch 1
     44 // the match of the first parenthesized subexpression, and so on.
     45 //
     46 // If 'Index' is present, matches and submatches are identified by byte index
     47 // pairs within the input string: result[2*n:2*n+1] identifies the indexes of
     48 // the nth submatch. The pair for n==0 identifies the match of the entire
     49 // expression. If 'Index' is not present, the match is identified by the
     50 // text of the match/submatch. If an index is negative, it means that
     51 // subexpression did not match any string in the input.
     52 //
     53 // There is also a subset of the methods that can be applied to text read
     54 // from a RuneReader:
     55 //
     56 //	MatchReader, FindReaderIndex, FindReaderSubmatchIndex
     57 //
     58 // This set may grow. Note that regular expression matches may need to
     59 // examine text beyond the text returned by a match, so the methods that
     60 // match text from a RuneReader may read arbitrarily far into the input
     61 // before returning.
     62 //
     63 // (There are a few other methods that do not match this pattern.)
     64 //
     65 package regexp
     66 
     67 import (
     68 	"bytes"
     69 	"io"
     70 	"regexp/syntax"
     71 	"strconv"
     72 	"strings"
     73 	"sync"
     74 	"unicode"
     75 	"unicode/utf8"
     76 )
     77 
     78 // Regexp is the representation of a compiled regular expression.
     79 // A Regexp is safe for concurrent use by multiple goroutines.
     80 type Regexp struct {
     81 	// read-only after Compile
     82 	regexpRO
     83 
     84 	// cache of machines for running regexp
     85 	mu      sync.Mutex
     86 	machine []*machine
     87 }
     88 
     89 type regexpRO struct {
     90 	expr           string         // as passed to Compile
     91 	prog           *syntax.Prog   // compiled program
     92 	onepass        *onePassProg   // onepass program or nil
     93 	prefix         string         // required prefix in unanchored matches
     94 	prefixBytes    []byte         // prefix, as a []byte
     95 	prefixComplete bool           // prefix is the entire regexp
     96 	prefixRune     rune           // first rune in prefix
     97 	prefixEnd      uint32         // pc for last rune in prefix
     98 	cond           syntax.EmptyOp // empty-width conditions required at start of match
     99 	numSubexp      int
    100 	subexpNames    []string
    101 	longest        bool
    102 }
    103 
    104 // String returns the source text used to compile the regular expression.
    105 func (re *Regexp) String() string {
    106 	return re.expr
    107 }
    108 
    109 // Copy returns a new Regexp object copied from re.
    110 //
    111 // When using a Regexp in multiple goroutines, giving each goroutine
    112 // its own copy helps to avoid lock contention.
    113 func (re *Regexp) Copy() *Regexp {
    114 	// It is not safe to copy Regexp by value
    115 	// since it contains a sync.Mutex.
    116 	return &Regexp{
    117 		regexpRO: re.regexpRO,
    118 	}
    119 }
    120 
    121 // Compile parses a regular expression and returns, if successful,
    122 // a Regexp object that can be used to match against text.
    123 //
    124 // When matching against text, the regexp returns a match that
    125 // begins as early as possible in the input (leftmost), and among those
    126 // it chooses the one that a backtracking search would have found first.
    127 // This so-called leftmost-first matching is the same semantics
    128 // that Perl, Python, and other implementations use, although this
    129 // package implements it without the expense of backtracking.
    130 // For POSIX leftmost-longest matching, see CompilePOSIX.
    131 func Compile(expr string) (*Regexp, error) {
    132 	return compile(expr, syntax.Perl, false)
    133 }
    134 
    135 // CompilePOSIX is like Compile but restricts the regular expression
    136 // to POSIX ERE (egrep) syntax and changes the match semantics to
    137 // leftmost-longest.
    138 //
    139 // That is, when matching against text, the regexp returns a match that
    140 // begins as early as possible in the input (leftmost), and among those
    141 // it chooses a match that is as long as possible.
    142 // This so-called leftmost-longest matching is the same semantics
    143 // that early regular expression implementations used and that POSIX
    144 // specifies.
    145 //
    146 // However, there can be multiple leftmost-longest matches, with different
    147 // submatch choices, and here this package diverges from POSIX.
    148 // Among the possible leftmost-longest matches, this package chooses
    149 // the one that a backtracking search would have found first, while POSIX
    150 // specifies that the match be chosen to maximize the length of the first
    151 // subexpression, then the second, and so on from left to right.
    152 // The POSIX rule is computationally prohibitive and not even well-defined.
    153 // See http://swtch.com/~rsc/regexp/regexp2.html#posix for details.
    154 func CompilePOSIX(expr string) (*Regexp, error) {
    155 	return compile(expr, syntax.POSIX, true)
    156 }
    157 
    158 // Longest makes future searches prefer the leftmost-longest match.
    159 // That is, when matching against text, the regexp returns a match that
    160 // begins as early as possible in the input (leftmost), and among those
    161 // it chooses a match that is as long as possible.
    162 func (re *Regexp) Longest() {
    163 	re.longest = true
    164 }
    165 
    166 func compile(expr string, mode syntax.Flags, longest bool) (*Regexp, error) {
    167 	re, err := syntax.Parse(expr, mode)
    168 	if err != nil {
    169 		return nil, err
    170 	}
    171 	maxCap := re.MaxCap()
    172 	capNames := re.CapNames()
    173 
    174 	re = re.Simplify()
    175 	prog, err := syntax.Compile(re)
    176 	if err != nil {
    177 		return nil, err
    178 	}
    179 	regexp := &Regexp{
    180 		regexpRO: regexpRO{
    181 			expr:        expr,
    182 			prog:        prog,
    183 			onepass:     compileOnePass(prog),
    184 			numSubexp:   maxCap,
    185 			subexpNames: capNames,
    186 			cond:        prog.StartCond(),
    187 			longest:     longest,
    188 		},
    189 	}
    190 	if regexp.onepass == notOnePass {
    191 		regexp.prefix, regexp.prefixComplete = prog.Prefix()
    192 	} else {
    193 		regexp.prefix, regexp.prefixComplete, regexp.prefixEnd = onePassPrefix(prog)
    194 	}
    195 	if regexp.prefix != "" {
    196 		// TODO(rsc): Remove this allocation by adding
    197 		// IndexString to package bytes.
    198 		regexp.prefixBytes = []byte(regexp.prefix)
    199 		regexp.prefixRune, _ = utf8.DecodeRuneInString(regexp.prefix)
    200 	}
    201 	return regexp, nil
    202 }
    203 
    204 // get returns a machine to use for matching re.
    205 // It uses the re's machine cache if possible, to avoid
    206 // unnecessary allocation.
    207 func (re *Regexp) get() *machine {
    208 	re.mu.Lock()
    209 	if n := len(re.machine); n > 0 {
    210 		z := re.machine[n-1]
    211 		re.machine = re.machine[:n-1]
    212 		re.mu.Unlock()
    213 		return z
    214 	}
    215 	re.mu.Unlock()
    216 	z := progMachine(re.prog, re.onepass)
    217 	z.re = re
    218 	return z
    219 }
    220 
    221 // put returns a machine to the re's machine cache.
    222 // There is no attempt to limit the size of the cache, so it will
    223 // grow to the maximum number of simultaneous matches
    224 // run using re.  (The cache empties when re gets garbage collected.)
    225 func (re *Regexp) put(z *machine) {
    226 	re.mu.Lock()
    227 	re.machine = append(re.machine, z)
    228 	re.mu.Unlock()
    229 }
    230 
    231 // MustCompile is like Compile but panics if the expression cannot be parsed.
    232 // It simplifies safe initialization of global variables holding compiled regular
    233 // expressions.
    234 func MustCompile(str string) *Regexp {
    235 	regexp, error := Compile(str)
    236 	if error != nil {
    237 		panic(`regexp: Compile(` + quote(str) + `): ` + error.Error())
    238 	}
    239 	return regexp
    240 }
    241 
    242 // MustCompilePOSIX is like CompilePOSIX but panics if the expression cannot be parsed.
    243 // It simplifies safe initialization of global variables holding compiled regular
    244 // expressions.
    245 func MustCompilePOSIX(str string) *Regexp {
    246 	regexp, error := CompilePOSIX(str)
    247 	if error != nil {
    248 		panic(`regexp: CompilePOSIX(` + quote(str) + `): ` + error.Error())
    249 	}
    250 	return regexp
    251 }
    252 
    253 func quote(s string) string {
    254 	if strconv.CanBackquote(s) {
    255 		return "`" + s + "`"
    256 	}
    257 	return strconv.Quote(s)
    258 }
    259 
    260 // NumSubexp returns the number of parenthesized subexpressions in this Regexp.
    261 func (re *Regexp) NumSubexp() int {
    262 	return re.numSubexp
    263 }
    264 
    265 // SubexpNames returns the names of the parenthesized subexpressions
    266 // in this Regexp. The name for the first sub-expression is names[1],
    267 // so that if m is a match slice, the name for m[i] is SubexpNames()[i].
    268 // Since the Regexp as a whole cannot be named, names[0] is always
    269 // the empty string. The slice should not be modified.
    270 func (re *Regexp) SubexpNames() []string {
    271 	return re.subexpNames
    272 }
    273 
    274 const endOfText rune = -1
    275 
    276 // input abstracts different representations of the input text. It provides
    277 // one-character lookahead.
    278 type input interface {
    279 	step(pos int) (r rune, width int) // advance one rune
    280 	canCheckPrefix() bool             // can we look ahead without losing info?
    281 	hasPrefix(re *Regexp) bool
    282 	index(re *Regexp, pos int) int
    283 	context(pos int) syntax.EmptyOp
    284 }
    285 
    286 // inputString scans a string.
    287 type inputString struct {
    288 	str string
    289 }
    290 
    291 func (i *inputString) step(pos int) (rune, int) {
    292 	if pos < len(i.str) {
    293 		c := i.str[pos]
    294 		if c < utf8.RuneSelf {
    295 			return rune(c), 1
    296 		}
    297 		return utf8.DecodeRuneInString(i.str[pos:])
    298 	}
    299 	return endOfText, 0
    300 }
    301 
    302 func (i *inputString) canCheckPrefix() bool {
    303 	return true
    304 }
    305 
    306 func (i *inputString) hasPrefix(re *Regexp) bool {
    307 	return strings.HasPrefix(i.str, re.prefix)
    308 }
    309 
    310 func (i *inputString) index(re *Regexp, pos int) int {
    311 	return strings.Index(i.str[pos:], re.prefix)
    312 }
    313 
    314 func (i *inputString) context(pos int) syntax.EmptyOp {
    315 	r1, r2 := endOfText, endOfText
    316 	if pos > 0 && pos <= len(i.str) {
    317 		r1, _ = utf8.DecodeLastRuneInString(i.str[:pos])
    318 	}
    319 	if pos < len(i.str) {
    320 		r2, _ = utf8.DecodeRuneInString(i.str[pos:])
    321 	}
    322 	return syntax.EmptyOpContext(r1, r2)
    323 }
    324 
    325 // inputBytes scans a byte slice.
    326 type inputBytes struct {
    327 	str []byte
    328 }
    329 
    330 func (i *inputBytes) step(pos int) (rune, int) {
    331 	if pos < len(i.str) {
    332 		c := i.str[pos]
    333 		if c < utf8.RuneSelf {
    334 			return rune(c), 1
    335 		}
    336 		return utf8.DecodeRune(i.str[pos:])
    337 	}
    338 	return endOfText, 0
    339 }
    340 
    341 func (i *inputBytes) canCheckPrefix() bool {
    342 	return true
    343 }
    344 
    345 func (i *inputBytes) hasPrefix(re *Regexp) bool {
    346 	return bytes.HasPrefix(i.str, re.prefixBytes)
    347 }
    348 
    349 func (i *inputBytes) index(re *Regexp, pos int) int {
    350 	return bytes.Index(i.str[pos:], re.prefixBytes)
    351 }
    352 
    353 func (i *inputBytes) context(pos int) syntax.EmptyOp {
    354 	r1, r2 := endOfText, endOfText
    355 	if pos > 0 && pos <= len(i.str) {
    356 		r1, _ = utf8.DecodeLastRune(i.str[:pos])
    357 	}
    358 	if pos < len(i.str) {
    359 		r2, _ = utf8.DecodeRune(i.str[pos:])
    360 	}
    361 	return syntax.EmptyOpContext(r1, r2)
    362 }
    363 
    364 // inputReader scans a RuneReader.
    365 type inputReader struct {
    366 	r     io.RuneReader
    367 	atEOT bool
    368 	pos   int
    369 }
    370 
    371 func (i *inputReader) step(pos int) (rune, int) {
    372 	if !i.atEOT && pos != i.pos {
    373 		return endOfText, 0
    374 
    375 	}
    376 	r, w, err := i.r.ReadRune()
    377 	if err != nil {
    378 		i.atEOT = true
    379 		return endOfText, 0
    380 	}
    381 	i.pos += w
    382 	return r, w
    383 }
    384 
    385 func (i *inputReader) canCheckPrefix() bool {
    386 	return false
    387 }
    388 
    389 func (i *inputReader) hasPrefix(re *Regexp) bool {
    390 	return false
    391 }
    392 
    393 func (i *inputReader) index(re *Regexp, pos int) int {
    394 	return -1
    395 }
    396 
    397 func (i *inputReader) context(pos int) syntax.EmptyOp {
    398 	return 0
    399 }
    400 
    401 // LiteralPrefix returns a literal string that must begin any match
    402 // of the regular expression re. It returns the boolean true if the
    403 // literal string comprises the entire regular expression.
    404 func (re *Regexp) LiteralPrefix() (prefix string, complete bool) {
    405 	return re.prefix, re.prefixComplete
    406 }
    407 
    408 // MatchReader reports whether the Regexp matches the text read by the
    409 // RuneReader.
    410 func (re *Regexp) MatchReader(r io.RuneReader) bool {
    411 	return re.doMatch(r, nil, "")
    412 }
    413 
    414 // MatchString reports whether the Regexp matches the string s.
    415 func (re *Regexp) MatchString(s string) bool {
    416 	return re.doMatch(nil, nil, s)
    417 }
    418 
    419 // Match reports whether the Regexp matches the byte slice b.
    420 func (re *Regexp) Match(b []byte) bool {
    421 	return re.doMatch(nil, b, "")
    422 }
    423 
    424 // MatchReader checks whether a textual regular expression matches the text
    425 // read by the RuneReader. More complicated queries need to use Compile and
    426 // the full Regexp interface.
    427 func MatchReader(pattern string, r io.RuneReader) (matched bool, err error) {
    428 	re, err := Compile(pattern)
    429 	if err != nil {
    430 		return false, err
    431 	}
    432 	return re.MatchReader(r), nil
    433 }
    434 
    435 // MatchString checks whether a textual regular expression
    436 // matches a string. More complicated queries need
    437 // to use Compile and the full Regexp interface.
    438 func MatchString(pattern string, s string) (matched bool, err error) {
    439 	re, err := Compile(pattern)
    440 	if err != nil {
    441 		return false, err
    442 	}
    443 	return re.MatchString(s), nil
    444 }
    445 
    446 // Match checks whether a textual regular expression
    447 // matches a byte slice. More complicated queries need
    448 // to use Compile and the full Regexp interface.
    449 func Match(pattern string, b []byte) (matched bool, err error) {
    450 	re, err := Compile(pattern)
    451 	if err != nil {
    452 		return false, err
    453 	}
    454 	return re.Match(b), nil
    455 }
    456 
    457 // ReplaceAllString returns a copy of src, replacing matches of the Regexp
    458 // with the replacement string repl. Inside repl, $ signs are interpreted as
    459 // in Expand, so for instance $1 represents the text of the first submatch.
    460 func (re *Regexp) ReplaceAllString(src, repl string) string {
    461 	n := 2
    462 	if strings.Contains(repl, "$") {
    463 		n = 2 * (re.numSubexp + 1)
    464 	}
    465 	b := re.replaceAll(nil, src, n, func(dst []byte, match []int) []byte {
    466 		return re.expand(dst, repl, nil, src, match)
    467 	})
    468 	return string(b)
    469 }
    470 
    471 // ReplaceAllLiteralString returns a copy of src, replacing matches of the Regexp
    472 // with the replacement string repl. The replacement repl is substituted directly,
    473 // without using Expand.
    474 func (re *Regexp) ReplaceAllLiteralString(src, repl string) string {
    475 	return string(re.replaceAll(nil, src, 2, func(dst []byte, match []int) []byte {
    476 		return append(dst, repl...)
    477 	}))
    478 }
    479 
    480 // ReplaceAllStringFunc returns a copy of src in which all matches of the
    481 // Regexp have been replaced by the return value of function repl applied
    482 // to the matched substring. The replacement returned by repl is substituted
    483 // directly, without using Expand.
    484 func (re *Regexp) ReplaceAllStringFunc(src string, repl func(string) string) string {
    485 	b := re.replaceAll(nil, src, 2, func(dst []byte, match []int) []byte {
    486 		return append(dst, repl(src[match[0]:match[1]])...)
    487 	})
    488 	return string(b)
    489 }
    490 
    491 func (re *Regexp) replaceAll(bsrc []byte, src string, nmatch int, repl func(dst []byte, m []int) []byte) []byte {
    492 	lastMatchEnd := 0 // end position of the most recent match
    493 	searchPos := 0    // position where we next look for a match
    494 	var buf []byte
    495 	var endPos int
    496 	if bsrc != nil {
    497 		endPos = len(bsrc)
    498 	} else {
    499 		endPos = len(src)
    500 	}
    501 	if nmatch > re.prog.NumCap {
    502 		nmatch = re.prog.NumCap
    503 	}
    504 
    505 	var dstCap [2]int
    506 	for searchPos <= endPos {
    507 		a := re.doExecute(nil, bsrc, src, searchPos, nmatch, dstCap[:0])
    508 		if len(a) == 0 {
    509 			break // no more matches
    510 		}
    511 
    512 		// Copy the unmatched characters before this match.
    513 		if bsrc != nil {
    514 			buf = append(buf, bsrc[lastMatchEnd:a[0]]...)
    515 		} else {
    516 			buf = append(buf, src[lastMatchEnd:a[0]]...)
    517 		}
    518 
    519 		// Now insert a copy of the replacement string, but not for a
    520 		// match of the empty string immediately after another match.
    521 		// (Otherwise, we get double replacement for patterns that
    522 		// match both empty and nonempty strings.)
    523 		if a[1] > lastMatchEnd || a[0] == 0 {
    524 			buf = repl(buf, a)
    525 		}
    526 		lastMatchEnd = a[1]
    527 
    528 		// Advance past this match; always advance at least one character.
    529 		var width int
    530 		if bsrc != nil {
    531 			_, width = utf8.DecodeRune(bsrc[searchPos:])
    532 		} else {
    533 			_, width = utf8.DecodeRuneInString(src[searchPos:])
    534 		}
    535 		if searchPos+width > a[1] {
    536 			searchPos += width
    537 		} else if searchPos+1 > a[1] {
    538 			// This clause is only needed at the end of the input
    539 			// string. In that case, DecodeRuneInString returns width=0.
    540 			searchPos++
    541 		} else {
    542 			searchPos = a[1]
    543 		}
    544 	}
    545 
    546 	// Copy the unmatched characters after the last match.
    547 	if bsrc != nil {
    548 		buf = append(buf, bsrc[lastMatchEnd:]...)
    549 	} else {
    550 		buf = append(buf, src[lastMatchEnd:]...)
    551 	}
    552 
    553 	return buf
    554 }
    555 
    556 // ReplaceAll returns a copy of src, replacing matches of the Regexp
    557 // with the replacement text repl. Inside repl, $ signs are interpreted as
    558 // in Expand, so for instance $1 represents the text of the first submatch.
    559 func (re *Regexp) ReplaceAll(src, repl []byte) []byte {
    560 	n := 2
    561 	if bytes.IndexByte(repl, '$') >= 0 {
    562 		n = 2 * (re.numSubexp + 1)
    563 	}
    564 	srepl := ""
    565 	b := re.replaceAll(src, "", n, func(dst []byte, match []int) []byte {
    566 		if len(srepl) != len(repl) {
    567 			srepl = string(repl)
    568 		}
    569 		return re.expand(dst, srepl, src, "", match)
    570 	})
    571 	return b
    572 }
    573 
    574 // ReplaceAllLiteral returns a copy of src, replacing matches of the Regexp
    575 // with the replacement bytes repl. The replacement repl is substituted directly,
    576 // without using Expand.
    577 func (re *Regexp) ReplaceAllLiteral(src, repl []byte) []byte {
    578 	return re.replaceAll(src, "", 2, func(dst []byte, match []int) []byte {
    579 		return append(dst, repl...)
    580 	})
    581 }
    582 
    583 // ReplaceAllFunc returns a copy of src in which all matches of the
    584 // Regexp have been replaced by the return value of function repl applied
    585 // to the matched byte slice. The replacement returned by repl is substituted
    586 // directly, without using Expand.
    587 func (re *Regexp) ReplaceAllFunc(src []byte, repl func([]byte) []byte) []byte {
    588 	return re.replaceAll(src, "", 2, func(dst []byte, match []int) []byte {
    589 		return append(dst, repl(src[match[0]:match[1]])...)
    590 	})
    591 }
    592 
    593 var specialBytes = []byte(`\.+*?()|[]{}^$`)
    594 
    595 func special(b byte) bool {
    596 	return bytes.IndexByte(specialBytes, b) >= 0
    597 }
    598 
    599 // QuoteMeta returns a string that quotes all regular expression metacharacters
    600 // inside the argument text; the returned string is a regular expression matching
    601 // the literal text. For example, QuoteMeta(`[foo]`) returns `\[foo\]`.
    602 func QuoteMeta(s string) string {
    603 	// A byte loop is correct because all metacharacters are ASCII.
    604 	var i int
    605 	for i = 0; i < len(s); i++ {
    606 		if special(s[i]) {
    607 			break
    608 		}
    609 	}
    610 	// No meta characters found, so return original string.
    611 	if i >= len(s) {
    612 		return s
    613 	}
    614 
    615 	b := make([]byte, 2*len(s)-i)
    616 	copy(b, s[:i])
    617 	j := i
    618 	for ; i < len(s); i++ {
    619 		if special(s[i]) {
    620 			b[j] = '\\'
    621 			j++
    622 		}
    623 		b[j] = s[i]
    624 		j++
    625 	}
    626 	return string(b[:j])
    627 }
    628 
    629 // The number of capture values in the program may correspond
    630 // to fewer capturing expressions than are in the regexp.
    631 // For example, "(a){0}" turns into an empty program, so the
    632 // maximum capture in the program is 0 but we need to return
    633 // an expression for \1.  Pad appends -1s to the slice a as needed.
    634 func (re *Regexp) pad(a []int) []int {
    635 	if a == nil {
    636 		// No match.
    637 		return nil
    638 	}
    639 	n := (1 + re.numSubexp) * 2
    640 	for len(a) < n {
    641 		a = append(a, -1)
    642 	}
    643 	return a
    644 }
    645 
    646 // Find matches in slice b if b is non-nil, otherwise find matches in string s.
    647 func (re *Regexp) allMatches(s string, b []byte, n int, deliver func([]int)) {
    648 	var end int
    649 	if b == nil {
    650 		end = len(s)
    651 	} else {
    652 		end = len(b)
    653 	}
    654 
    655 	for pos, i, prevMatchEnd := 0, 0, -1; i < n && pos <= end; {
    656 		matches := re.doExecute(nil, b, s, pos, re.prog.NumCap, nil)
    657 		if len(matches) == 0 {
    658 			break
    659 		}
    660 
    661 		accept := true
    662 		if matches[1] == pos {
    663 			// We've found an empty match.
    664 			if matches[0] == prevMatchEnd {
    665 				// We don't allow an empty match right
    666 				// after a previous match, so ignore it.
    667 				accept = false
    668 			}
    669 			var width int
    670 			// TODO: use step()
    671 			if b == nil {
    672 				_, width = utf8.DecodeRuneInString(s[pos:end])
    673 			} else {
    674 				_, width = utf8.DecodeRune(b[pos:end])
    675 			}
    676 			if width > 0 {
    677 				pos += width
    678 			} else {
    679 				pos = end + 1
    680 			}
    681 		} else {
    682 			pos = matches[1]
    683 		}
    684 		prevMatchEnd = matches[1]
    685 
    686 		if accept {
    687 			deliver(re.pad(matches))
    688 			i++
    689 		}
    690 	}
    691 }
    692 
    693 // Find returns a slice holding the text of the leftmost match in b of the regular expression.
    694 // A return value of nil indicates no match.
    695 func (re *Regexp) Find(b []byte) []byte {
    696 	var dstCap [2]int
    697 	a := re.doExecute(nil, b, "", 0, 2, dstCap[:0])
    698 	if a == nil {
    699 		return nil
    700 	}
    701 	return b[a[0]:a[1]]
    702 }
    703 
    704 // FindIndex returns a two-element slice of integers defining the location of
    705 // the leftmost match in b of the regular expression. The match itself is at
    706 // b[loc[0]:loc[1]].
    707 // A return value of nil indicates no match.
    708 func (re *Regexp) FindIndex(b []byte) (loc []int) {
    709 	a := re.doExecute(nil, b, "", 0, 2, nil)
    710 	if a == nil {
    711 		return nil
    712 	}
    713 	return a[0:2]
    714 }
    715 
    716 // FindString returns a string holding the text of the leftmost match in s of the regular
    717 // expression. If there is no match, the return value is an empty string,
    718 // but it will also be empty if the regular expression successfully matches
    719 // an empty string. Use FindStringIndex or FindStringSubmatch if it is
    720 // necessary to distinguish these cases.
    721 func (re *Regexp) FindString(s string) string {
    722 	var dstCap [2]int
    723 	a := re.doExecute(nil, nil, s, 0, 2, dstCap[:0])
    724 	if a == nil {
    725 		return ""
    726 	}
    727 	return s[a[0]:a[1]]
    728 }
    729 
    730 // FindStringIndex returns a two-element slice of integers defining the
    731 // location of the leftmost match in s of the regular expression. The match
    732 // itself is at s[loc[0]:loc[1]].
    733 // A return value of nil indicates no match.
    734 func (re *Regexp) FindStringIndex(s string) (loc []int) {
    735 	a := re.doExecute(nil, nil, s, 0, 2, nil)
    736 	if a == nil {
    737 		return nil
    738 	}
    739 	return a[0:2]
    740 }
    741 
    742 // FindReaderIndex returns a two-element slice of integers defining the
    743 // location of the leftmost match of the regular expression in text read from
    744 // the RuneReader. The match text was found in the input stream at
    745 // byte offset loc[0] through loc[1]-1.
    746 // A return value of nil indicates no match.
    747 func (re *Regexp) FindReaderIndex(r io.RuneReader) (loc []int) {
    748 	a := re.doExecute(r, nil, "", 0, 2, nil)
    749 	if a == nil {
    750 		return nil
    751 	}
    752 	return a[0:2]
    753 }
    754 
    755 // FindSubmatch returns a slice of slices holding the text of the leftmost
    756 // match of the regular expression in b and the matches, if any, of its
    757 // subexpressions, as defined by the 'Submatch' descriptions in the package
    758 // comment.
    759 // A return value of nil indicates no match.
    760 func (re *Regexp) FindSubmatch(b []byte) [][]byte {
    761 	var dstCap [4]int
    762 	a := re.doExecute(nil, b, "", 0, re.prog.NumCap, dstCap[:0])
    763 	if a == nil {
    764 		return nil
    765 	}
    766 	ret := make([][]byte, 1+re.numSubexp)
    767 	for i := range ret {
    768 		if 2*i < len(a) && a[2*i] >= 0 {
    769 			ret[i] = b[a[2*i]:a[2*i+1]]
    770 		}
    771 	}
    772 	return ret
    773 }
    774 
    775 // Expand appends template to dst and returns the result; during the
    776 // append, Expand replaces variables in the template with corresponding
    777 // matches drawn from src. The match slice should have been returned by
    778 // FindSubmatchIndex.
    779 //
    780 // In the template, a variable is denoted by a substring of the form
    781 // $name or ${name}, where name is a non-empty sequence of letters,
    782 // digits, and underscores. A purely numeric name like $1 refers to
    783 // the submatch with the corresponding index; other names refer to
    784 // capturing parentheses named with the (?P<name>...) syntax. A
    785 // reference to an out of range or unmatched index or a name that is not
    786 // present in the regular expression is replaced with an empty slice.
    787 //
    788 // In the $name form, name is taken to be as long as possible: $1x is
    789 // equivalent to ${1x}, not ${1}x, and, $10 is equivalent to ${10}, not ${1}0.
    790 //
    791 // To insert a literal $ in the output, use $$ in the template.
    792 func (re *Regexp) Expand(dst []byte, template []byte, src []byte, match []int) []byte {
    793 	return re.expand(dst, string(template), src, "", match)
    794 }
    795 
    796 // ExpandString is like Expand but the template and source are strings.
    797 // It appends to and returns a byte slice in order to give the calling
    798 // code control over allocation.
    799 func (re *Regexp) ExpandString(dst []byte, template string, src string, match []int) []byte {
    800 	return re.expand(dst, template, nil, src, match)
    801 }
    802 
    803 func (re *Regexp) expand(dst []byte, template string, bsrc []byte, src string, match []int) []byte {
    804 	for len(template) > 0 {
    805 		i := strings.Index(template, "$")
    806 		if i < 0 {
    807 			break
    808 		}
    809 		dst = append(dst, template[:i]...)
    810 		template = template[i:]
    811 		if len(template) > 1 && template[1] == '$' {
    812 			// Treat $$ as $.
    813 			dst = append(dst, '$')
    814 			template = template[2:]
    815 			continue
    816 		}
    817 		name, num, rest, ok := extract(template)
    818 		if !ok {
    819 			// Malformed; treat $ as raw text.
    820 			dst = append(dst, '$')
    821 			template = template[1:]
    822 			continue
    823 		}
    824 		template = rest
    825 		if num >= 0 {
    826 			if 2*num+1 < len(match) && match[2*num] >= 0 {
    827 				if bsrc != nil {
    828 					dst = append(dst, bsrc[match[2*num]:match[2*num+1]]...)
    829 				} else {
    830 					dst = append(dst, src[match[2*num]:match[2*num+1]]...)
    831 				}
    832 			}
    833 		} else {
    834 			for i, namei := range re.subexpNames {
    835 				if name == namei && 2*i+1 < len(match) && match[2*i] >= 0 {
    836 					if bsrc != nil {
    837 						dst = append(dst, bsrc[match[2*i]:match[2*i+1]]...)
    838 					} else {
    839 						dst = append(dst, src[match[2*i]:match[2*i+1]]...)
    840 					}
    841 					break
    842 				}
    843 			}
    844 		}
    845 	}
    846 	dst = append(dst, template...)
    847 	return dst
    848 }
    849 
    850 // extract returns the name from a leading "$name" or "${name}" in str.
    851 // If it is a number, extract returns num set to that number; otherwise num = -1.
    852 func extract(str string) (name string, num int, rest string, ok bool) {
    853 	if len(str) < 2 || str[0] != '$' {
    854 		return
    855 	}
    856 	brace := false
    857 	if str[1] == '{' {
    858 		brace = true
    859 		str = str[2:]
    860 	} else {
    861 		str = str[1:]
    862 	}
    863 	i := 0
    864 	for i < len(str) {
    865 		rune, size := utf8.DecodeRuneInString(str[i:])
    866 		if !unicode.IsLetter(rune) && !unicode.IsDigit(rune) && rune != '_' {
    867 			break
    868 		}
    869 		i += size
    870 	}
    871 	if i == 0 {
    872 		// empty name is not okay
    873 		return
    874 	}
    875 	name = str[:i]
    876 	if brace {
    877 		if i >= len(str) || str[i] != '}' {
    878 			// missing closing brace
    879 			return
    880 		}
    881 		i++
    882 	}
    883 
    884 	// Parse number.
    885 	num = 0
    886 	for i := 0; i < len(name); i++ {
    887 		if name[i] < '0' || '9' < name[i] || num >= 1e8 {
    888 			num = -1
    889 			break
    890 		}
    891 		num = num*10 + int(name[i]) - '0'
    892 	}
    893 	// Disallow leading zeros.
    894 	if name[0] == '0' && len(name) > 1 {
    895 		num = -1
    896 	}
    897 
    898 	rest = str[i:]
    899 	ok = true
    900 	return
    901 }
    902 
    903 // FindSubmatchIndex returns a slice holding the index pairs identifying the
    904 // leftmost match of the regular expression in b and the matches, if any, of
    905 // its subexpressions, as defined by the 'Submatch' and 'Index' descriptions
    906 // in the package comment.
    907 // A return value of nil indicates no match.
    908 func (re *Regexp) FindSubmatchIndex(b []byte) []int {
    909 	return re.pad(re.doExecute(nil, b, "", 0, re.prog.NumCap, nil))
    910 }
    911 
    912 // FindStringSubmatch returns a slice of strings holding the text of the
    913 // leftmost match of the regular expression in s and the matches, if any, of
    914 // its subexpressions, as defined by the 'Submatch' description in the
    915 // package comment.
    916 // A return value of nil indicates no match.
    917 func (re *Regexp) FindStringSubmatch(s string) []string {
    918 	var dstCap [4]int
    919 	a := re.doExecute(nil, nil, s, 0, re.prog.NumCap, dstCap[:0])
    920 	if a == nil {
    921 		return nil
    922 	}
    923 	ret := make([]string, 1+re.numSubexp)
    924 	for i := range ret {
    925 		if 2*i < len(a) && a[2*i] >= 0 {
    926 			ret[i] = s[a[2*i]:a[2*i+1]]
    927 		}
    928 	}
    929 	return ret
    930 }
    931 
    932 // FindStringSubmatchIndex returns a slice holding the index pairs
    933 // identifying the leftmost match of the regular expression in s and the
    934 // matches, if any, of its subexpressions, as defined by the 'Submatch' and
    935 // 'Index' descriptions in the package comment.
    936 // A return value of nil indicates no match.
    937 func (re *Regexp) FindStringSubmatchIndex(s string) []int {
    938 	return re.pad(re.doExecute(nil, nil, s, 0, re.prog.NumCap, nil))
    939 }
    940 
    941 // FindReaderSubmatchIndex returns a slice holding the index pairs
    942 // identifying the leftmost match of the regular expression of text read by
    943 // the RuneReader, and the matches, if any, of its subexpressions, as defined
    944 // by the 'Submatch' and 'Index' descriptions in the package comment. A
    945 // return value of nil indicates no match.
    946 func (re *Regexp) FindReaderSubmatchIndex(r io.RuneReader) []int {
    947 	return re.pad(re.doExecute(r, nil, "", 0, re.prog.NumCap, nil))
    948 }
    949 
    950 const startSize = 10 // The size at which to start a slice in the 'All' routines.
    951 
    952 // FindAll is the 'All' version of Find; it returns a slice of all successive
    953 // matches of the expression, as defined by the 'All' description in the
    954 // package comment.
    955 // A return value of nil indicates no match.
    956 func (re *Regexp) FindAll(b []byte, n int) [][]byte {
    957 	if n < 0 {
    958 		n = len(b) + 1
    959 	}
    960 	result := make([][]byte, 0, startSize)
    961 	re.allMatches("", b, n, func(match []int) {
    962 		result = append(result, b[match[0]:match[1]])
    963 	})
    964 	if len(result) == 0 {
    965 		return nil
    966 	}
    967 	return result
    968 }
    969 
    970 // FindAllIndex is the 'All' version of FindIndex; it returns a slice of all
    971 // successive matches of the expression, as defined by the 'All' description
    972 // in the package comment.
    973 // A return value of nil indicates no match.
    974 func (re *Regexp) FindAllIndex(b []byte, n int) [][]int {
    975 	if n < 0 {
    976 		n = len(b) + 1
    977 	}
    978 	result := make([][]int, 0, startSize)
    979 	re.allMatches("", b, n, func(match []int) {
    980 		result = append(result, match[0:2])
    981 	})
    982 	if len(result) == 0 {
    983 		return nil
    984 	}
    985 	return result
    986 }
    987 
    988 // FindAllString is the 'All' version of FindString; it returns a slice of all
    989 // successive matches of the expression, as defined by the 'All' description
    990 // in the package comment.
    991 // A return value of nil indicates no match.
    992 func (re *Regexp) FindAllString(s string, n int) []string {
    993 	if n < 0 {
    994 		n = len(s) + 1
    995 	}
    996 	result := make([]string, 0, startSize)
    997 	re.allMatches(s, nil, n, func(match []int) {
    998 		result = append(result, s[match[0]:match[1]])
    999 	})
   1000 	if len(result) == 0 {
   1001 		return nil
   1002 	}
   1003 	return result
   1004 }
   1005 
   1006 // FindAllStringIndex is the 'All' version of FindStringIndex; it returns a
   1007 // slice of all successive matches of the expression, as defined by the 'All'
   1008 // description in the package comment.
   1009 // A return value of nil indicates no match.
   1010 func (re *Regexp) FindAllStringIndex(s string, n int) [][]int {
   1011 	if n < 0 {
   1012 		n = len(s) + 1
   1013 	}
   1014 	result := make([][]int, 0, startSize)
   1015 	re.allMatches(s, nil, n, func(match []int) {
   1016 		result = append(result, match[0:2])
   1017 	})
   1018 	if len(result) == 0 {
   1019 		return nil
   1020 	}
   1021 	return result
   1022 }
   1023 
   1024 // FindAllSubmatch is the 'All' version of FindSubmatch; it returns a slice
   1025 // of all successive matches of the expression, as defined by the 'All'
   1026 // description in the package comment.
   1027 // A return value of nil indicates no match.
   1028 func (re *Regexp) FindAllSubmatch(b []byte, n int) [][][]byte {
   1029 	if n < 0 {
   1030 		n = len(b) + 1
   1031 	}
   1032 	result := make([][][]byte, 0, startSize)
   1033 	re.allMatches("", b, n, func(match []int) {
   1034 		slice := make([][]byte, len(match)/2)
   1035 		for j := range slice {
   1036 			if match[2*j] >= 0 {
   1037 				slice[j] = b[match[2*j]:match[2*j+1]]
   1038 			}
   1039 		}
   1040 		result = append(result, slice)
   1041 	})
   1042 	if len(result) == 0 {
   1043 		return nil
   1044 	}
   1045 	return result
   1046 }
   1047 
   1048 // FindAllSubmatchIndex is the 'All' version of FindSubmatchIndex; it returns
   1049 // a slice of all successive matches of the expression, as defined by the
   1050 // 'All' description in the package comment.
   1051 // A return value of nil indicates no match.
   1052 func (re *Regexp) FindAllSubmatchIndex(b []byte, n int) [][]int {
   1053 	if n < 0 {
   1054 		n = len(b) + 1
   1055 	}
   1056 	result := make([][]int, 0, startSize)
   1057 	re.allMatches("", b, n, func(match []int) {
   1058 		result = append(result, match)
   1059 	})
   1060 	if len(result) == 0 {
   1061 		return nil
   1062 	}
   1063 	return result
   1064 }
   1065 
   1066 // FindAllStringSubmatch is the 'All' version of FindStringSubmatch; it
   1067 // returns a slice of all successive matches of the expression, as defined by
   1068 // the 'All' description in the package comment.
   1069 // A return value of nil indicates no match.
   1070 func (re *Regexp) FindAllStringSubmatch(s string, n int) [][]string {
   1071 	if n < 0 {
   1072 		n = len(s) + 1
   1073 	}
   1074 	result := make([][]string, 0, startSize)
   1075 	re.allMatches(s, nil, n, func(match []int) {
   1076 		slice := make([]string, len(match)/2)
   1077 		for j := range slice {
   1078 			if match[2*j] >= 0 {
   1079 				slice[j] = s[match[2*j]:match[2*j+1]]
   1080 			}
   1081 		}
   1082 		result = append(result, slice)
   1083 	})
   1084 	if len(result) == 0 {
   1085 		return nil
   1086 	}
   1087 	return result
   1088 }
   1089 
   1090 // FindAllStringSubmatchIndex is the 'All' version of
   1091 // FindStringSubmatchIndex; it returns a slice of all successive matches of
   1092 // the expression, as defined by the 'All' description in the package
   1093 // comment.
   1094 // A return value of nil indicates no match.
   1095 func (re *Regexp) FindAllStringSubmatchIndex(s string, n int) [][]int {
   1096 	if n < 0 {
   1097 		n = len(s) + 1
   1098 	}
   1099 	result := make([][]int, 0, startSize)
   1100 	re.allMatches(s, nil, n, func(match []int) {
   1101 		result = append(result, match)
   1102 	})
   1103 	if len(result) == 0 {
   1104 		return nil
   1105 	}
   1106 	return result
   1107 }
   1108 
   1109 // Split slices s into substrings separated by the expression and returns a slice of
   1110 // the substrings between those expression matches.
   1111 //
   1112 // The slice returned by this method consists of all the substrings of s
   1113 // not contained in the slice returned by FindAllString. When called on an expression
   1114 // that contains no metacharacters, it is equivalent to strings.SplitN.
   1115 //
   1116 // Example:
   1117 //   s := regexp.MustCompile("a*").Split("abaabaccadaaae", 5)
   1118 //   // s: ["", "b", "b", "c", "cadaaae"]
   1119 //
   1120 // The count determines the number of substrings to return:
   1121 //   n > 0: at most n substrings; the last substring will be the unsplit remainder.
   1122 //   n == 0: the result is nil (zero substrings)
   1123 //   n < 0: all substrings
   1124 func (re *Regexp) Split(s string, n int) []string {
   1125 
   1126 	if n == 0 {
   1127 		return nil
   1128 	}
   1129 
   1130 	if len(re.expr) > 0 && len(s) == 0 {
   1131 		return []string{""}
   1132 	}
   1133 
   1134 	matches := re.FindAllStringIndex(s, n)
   1135 	strings := make([]string, 0, len(matches))
   1136 
   1137 	beg := 0
   1138 	end := 0
   1139 	for _, match := range matches {
   1140 		if n > 0 && len(strings) >= n-1 {
   1141 			break
   1142 		}
   1143 
   1144 		end = match[0]
   1145 		if match[1] != 0 {
   1146 			strings = append(strings, s[beg:end])
   1147 		}
   1148 		beg = match[1]
   1149 	}
   1150 
   1151 	if end != len(s) {
   1152 		strings = append(strings, s[beg:])
   1153 	}
   1154 
   1155 	return strings
   1156 }
   1157