1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Multiprecision decimal numbers. 6 // For floating-point formatting only; not general purpose. 7 // Only operations are assign and (binary) left/right shift. 8 // Can do binary floating point in multiprecision decimal precisely 9 // because 2 divides 10; cannot do decimal floating point 10 // in multiprecision binary precisely. 11 12 package strconv 13 14 type decimal struct { 15 d [800]byte // digits, big-endian representation 16 nd int // number of digits used 17 dp int // decimal point 18 neg bool 19 trunc bool // discarded nonzero digits beyond d[:nd] 20 } 21 22 func (a *decimal) String() string { 23 n := 10 + a.nd 24 if a.dp > 0 { 25 n += a.dp 26 } 27 if a.dp < 0 { 28 n += -a.dp 29 } 30 31 buf := make([]byte, n) 32 w := 0 33 switch { 34 case a.nd == 0: 35 return "0" 36 37 case a.dp <= 0: 38 // zeros fill space between decimal point and digits 39 buf[w] = '0' 40 w++ 41 buf[w] = '.' 42 w++ 43 w += digitZero(buf[w : w+-a.dp]) 44 w += copy(buf[w:], a.d[0:a.nd]) 45 46 case a.dp < a.nd: 47 // decimal point in middle of digits 48 w += copy(buf[w:], a.d[0:a.dp]) 49 buf[w] = '.' 50 w++ 51 w += copy(buf[w:], a.d[a.dp:a.nd]) 52 53 default: 54 // zeros fill space between digits and decimal point 55 w += copy(buf[w:], a.d[0:a.nd]) 56 w += digitZero(buf[w : w+a.dp-a.nd]) 57 } 58 return string(buf[0:w]) 59 } 60 61 func digitZero(dst []byte) int { 62 for i := range dst { 63 dst[i] = '0' 64 } 65 return len(dst) 66 } 67 68 // trim trailing zeros from number. 69 // (They are meaningless; the decimal point is tracked 70 // independent of the number of digits.) 71 func trim(a *decimal) { 72 for a.nd > 0 && a.d[a.nd-1] == '0' { 73 a.nd-- 74 } 75 if a.nd == 0 { 76 a.dp = 0 77 } 78 } 79 80 // Assign v to a. 81 func (a *decimal) Assign(v uint64) { 82 var buf [24]byte 83 84 // Write reversed decimal in buf. 85 n := 0 86 for v > 0 { 87 v1 := v / 10 88 v -= 10 * v1 89 buf[n] = byte(v + '0') 90 n++ 91 v = v1 92 } 93 94 // Reverse again to produce forward decimal in a.d. 95 a.nd = 0 96 for n--; n >= 0; n-- { 97 a.d[a.nd] = buf[n] 98 a.nd++ 99 } 100 a.dp = a.nd 101 trim(a) 102 } 103 104 // Maximum shift that we can do in one pass without overflow. 105 // A uint has 32 or 64 bits, and we have to be able to accommodate 9<<k. 106 const uintSize = 32 << (^uint(0) >> 63) 107 const maxShift = uintSize - 4 108 109 // Binary shift right (/ 2) by k bits. k <= maxShift to avoid overflow. 110 func rightShift(a *decimal, k uint) { 111 r := 0 // read pointer 112 w := 0 // write pointer 113 114 // Pick up enough leading digits to cover first shift. 115 var n uint 116 for ; n>>k == 0; r++ { 117 if r >= a.nd { 118 if n == 0 { 119 // a == 0; shouldn't get here, but handle anyway. 120 a.nd = 0 121 return 122 } 123 for n>>k == 0 { 124 n = n * 10 125 r++ 126 } 127 break 128 } 129 c := uint(a.d[r]) 130 n = n*10 + c - '0' 131 } 132 a.dp -= r - 1 133 134 var mask uint = (1 << k) - 1 135 136 // Pick up a digit, put down a digit. 137 for ; r < a.nd; r++ { 138 c := uint(a.d[r]) 139 dig := n >> k 140 n &= mask 141 a.d[w] = byte(dig + '0') 142 w++ 143 n = n*10 + c - '0' 144 } 145 146 // Put down extra digits. 147 for n > 0 { 148 dig := n >> k 149 n &= mask 150 if w < len(a.d) { 151 a.d[w] = byte(dig + '0') 152 w++ 153 } else if dig > 0 { 154 a.trunc = true 155 } 156 n = n * 10 157 } 158 159 a.nd = w 160 trim(a) 161 } 162 163 // Cheat sheet for left shift: table indexed by shift count giving 164 // number of new digits that will be introduced by that shift. 165 // 166 // For example, leftcheats[4] = {2, "625"}. That means that 167 // if we are shifting by 4 (multiplying by 16), it will add 2 digits 168 // when the string prefix is "625" through "999", and one fewer digit 169 // if the string prefix is "000" through "624". 170 // 171 // Credit for this trick goes to Ken. 172 173 type leftCheat struct { 174 delta int // number of new digits 175 cutoff string // minus one digit if original < a. 176 } 177 178 var leftcheats = []leftCheat{ 179 // Leading digits of 1/2^i = 5^i. 180 // 5^23 is not an exact 64-bit floating point number, 181 // so have to use bc for the math. 182 // Go up to 60 to be large enough for 32bit and 64bit platforms. 183 /* 184 seq 60 | sed 's/^/5^/' | bc | 185 awk 'BEGIN{ print "\t{ 0, \"\" }," } 186 { 187 log2 = log(2)/log(10) 188 printf("\t{ %d, \"%s\" },\t// * %d\n", 189 int(log2*NR+1), $0, 2**NR) 190 }' 191 */ 192 {0, ""}, 193 {1, "5"}, // * 2 194 {1, "25"}, // * 4 195 {1, "125"}, // * 8 196 {2, "625"}, // * 16 197 {2, "3125"}, // * 32 198 {2, "15625"}, // * 64 199 {3, "78125"}, // * 128 200 {3, "390625"}, // * 256 201 {3, "1953125"}, // * 512 202 {4, "9765625"}, // * 1024 203 {4, "48828125"}, // * 2048 204 {4, "244140625"}, // * 4096 205 {4, "1220703125"}, // * 8192 206 {5, "6103515625"}, // * 16384 207 {5, "30517578125"}, // * 32768 208 {5, "152587890625"}, // * 65536 209 {6, "762939453125"}, // * 131072 210 {6, "3814697265625"}, // * 262144 211 {6, "19073486328125"}, // * 524288 212 {7, "95367431640625"}, // * 1048576 213 {7, "476837158203125"}, // * 2097152 214 {7, "2384185791015625"}, // * 4194304 215 {7, "11920928955078125"}, // * 8388608 216 {8, "59604644775390625"}, // * 16777216 217 {8, "298023223876953125"}, // * 33554432 218 {8, "1490116119384765625"}, // * 67108864 219 {9, "7450580596923828125"}, // * 134217728 220 {9, "37252902984619140625"}, // * 268435456 221 {9, "186264514923095703125"}, // * 536870912 222 {10, "931322574615478515625"}, // * 1073741824 223 {10, "4656612873077392578125"}, // * 2147483648 224 {10, "23283064365386962890625"}, // * 4294967296 225 {10, "116415321826934814453125"}, // * 8589934592 226 {11, "582076609134674072265625"}, // * 17179869184 227 {11, "2910383045673370361328125"}, // * 34359738368 228 {11, "14551915228366851806640625"}, // * 68719476736 229 {12, "72759576141834259033203125"}, // * 137438953472 230 {12, "363797880709171295166015625"}, // * 274877906944 231 {12, "1818989403545856475830078125"}, // * 549755813888 232 {13, "9094947017729282379150390625"}, // * 1099511627776 233 {13, "45474735088646411895751953125"}, // * 2199023255552 234 {13, "227373675443232059478759765625"}, // * 4398046511104 235 {13, "1136868377216160297393798828125"}, // * 8796093022208 236 {14, "5684341886080801486968994140625"}, // * 17592186044416 237 {14, "28421709430404007434844970703125"}, // * 35184372088832 238 {14, "142108547152020037174224853515625"}, // * 70368744177664 239 {15, "710542735760100185871124267578125"}, // * 140737488355328 240 {15, "3552713678800500929355621337890625"}, // * 281474976710656 241 {15, "17763568394002504646778106689453125"}, // * 562949953421312 242 {16, "88817841970012523233890533447265625"}, // * 1125899906842624 243 {16, "444089209850062616169452667236328125"}, // * 2251799813685248 244 {16, "2220446049250313080847263336181640625"}, // * 4503599627370496 245 {16, "11102230246251565404236316680908203125"}, // * 9007199254740992 246 {17, "55511151231257827021181583404541015625"}, // * 18014398509481984 247 {17, "277555756156289135105907917022705078125"}, // * 36028797018963968 248 {17, "1387778780781445675529539585113525390625"}, // * 72057594037927936 249 {18, "6938893903907228377647697925567626953125"}, // * 144115188075855872 250 {18, "34694469519536141888238489627838134765625"}, // * 288230376151711744 251 {18, "173472347597680709441192448139190673828125"}, // * 576460752303423488 252 {19, "867361737988403547205962240695953369140625"}, // * 1152921504606846976 253 } 254 255 // Is the leading prefix of b lexicographically less than s? 256 func prefixIsLessThan(b []byte, s string) bool { 257 for i := 0; i < len(s); i++ { 258 if i >= len(b) { 259 return true 260 } 261 if b[i] != s[i] { 262 return b[i] < s[i] 263 } 264 } 265 return false 266 } 267 268 // Binary shift left (* 2) by k bits. k <= maxShift to avoid overflow. 269 func leftShift(a *decimal, k uint) { 270 delta := leftcheats[k].delta 271 if prefixIsLessThan(a.d[0:a.nd], leftcheats[k].cutoff) { 272 delta-- 273 } 274 275 r := a.nd // read index 276 w := a.nd + delta // write index 277 278 // Pick up a digit, put down a digit. 279 var n uint 280 for r--; r >= 0; r-- { 281 n += (uint(a.d[r]) - '0') << k 282 quo := n / 10 283 rem := n - 10*quo 284 w-- 285 if w < len(a.d) { 286 a.d[w] = byte(rem + '0') 287 } else if rem != 0 { 288 a.trunc = true 289 } 290 n = quo 291 } 292 293 // Put down extra digits. 294 for n > 0 { 295 quo := n / 10 296 rem := n - 10*quo 297 w-- 298 if w < len(a.d) { 299 a.d[w] = byte(rem + '0') 300 } else if rem != 0 { 301 a.trunc = true 302 } 303 n = quo 304 } 305 306 a.nd += delta 307 if a.nd >= len(a.d) { 308 a.nd = len(a.d) 309 } 310 a.dp += delta 311 trim(a) 312 } 313 314 // Binary shift left (k > 0) or right (k < 0). 315 func (a *decimal) Shift(k int) { 316 switch { 317 case a.nd == 0: 318 // nothing to do: a == 0 319 case k > 0: 320 for k > maxShift { 321 leftShift(a, maxShift) 322 k -= maxShift 323 } 324 leftShift(a, uint(k)) 325 case k < 0: 326 for k < -maxShift { 327 rightShift(a, maxShift) 328 k += maxShift 329 } 330 rightShift(a, uint(-k)) 331 } 332 } 333 334 // If we chop a at nd digits, should we round up? 335 func shouldRoundUp(a *decimal, nd int) bool { 336 if nd < 0 || nd >= a.nd { 337 return false 338 } 339 if a.d[nd] == '5' && nd+1 == a.nd { // exactly halfway - round to even 340 // if we truncated, a little higher than what's recorded - always round up 341 if a.trunc { 342 return true 343 } 344 return nd > 0 && (a.d[nd-1]-'0')%2 != 0 345 } 346 // not halfway - digit tells all 347 return a.d[nd] >= '5' 348 } 349 350 // Round a to nd digits (or fewer). 351 // If nd is zero, it means we're rounding 352 // just to the left of the digits, as in 353 // 0.09 -> 0.1. 354 func (a *decimal) Round(nd int) { 355 if nd < 0 || nd >= a.nd { 356 return 357 } 358 if shouldRoundUp(a, nd) { 359 a.RoundUp(nd) 360 } else { 361 a.RoundDown(nd) 362 } 363 } 364 365 // Round a down to nd digits (or fewer). 366 func (a *decimal) RoundDown(nd int) { 367 if nd < 0 || nd >= a.nd { 368 return 369 } 370 a.nd = nd 371 trim(a) 372 } 373 374 // Round a up to nd digits (or fewer). 375 func (a *decimal) RoundUp(nd int) { 376 if nd < 0 || nd >= a.nd { 377 return 378 } 379 380 // round up 381 for i := nd - 1; i >= 0; i-- { 382 c := a.d[i] 383 if c < '9' { // can stop after this digit 384 a.d[i]++ 385 a.nd = i + 1 386 return 387 } 388 } 389 390 // Number is all 9s. 391 // Change to single 1 with adjusted decimal point. 392 a.d[0] = '1' 393 a.nd = 1 394 a.dp++ 395 } 396 397 // Extract integer part, rounded appropriately. 398 // No guarantees about overflow. 399 func (a *decimal) RoundedInteger() uint64 { 400 if a.dp > 20 { 401 return 0xFFFFFFFFFFFFFFFF 402 } 403 var i int 404 n := uint64(0) 405 for i = 0; i < a.dp && i < a.nd; i++ { 406 n = n*10 + uint64(a.d[i]-'0') 407 } 408 for ; i < a.dp; i++ { 409 n *= 10 410 } 411 if shouldRoundUp(a, a.dp) { 412 n++ 413 } 414 return n 415 } 416