Home | History | Annotate | Download | only in fixedbugs
      1 // run
      2 
      3 // Copyright 2015 The Go Authors. All rights reserved.
      4 // Use of this source code is governed by a BSD-style
      5 // license that can be found in the LICENSE file.
      6 
      7 // WARNING: GENERATED FILE - DO NOT MODIFY MANUALLY!
      8 // (To generate, in go/types directory: go test -run=Hilbert -H=2 -out="h2.src")
      9 
     10 // This program tests arbitrary precision constant arithmetic
     11 // by generating the constant elements of a Hilbert matrix H,
     12 // its inverse I, and the product P = H*I. The product should
     13 // be the identity matrix.
     14 package main
     15 
     16 func main() {
     17 	if !ok {
     18 		print()
     19 		return
     20 	}
     21 }
     22 
     23 // Hilbert matrix, n = 2
     24 const (
     25 	h0_0, h0_1 = 1.0 / (iota + 1), 1.0 / (iota + 2)
     26 	h1_0, h1_1
     27 )
     28 
     29 // Inverse Hilbert matrix
     30 const (
     31 	i0_0 = +1 * b2_1 * b2_1 * b0_0 * b0_0
     32 	i0_1 = -2 * b2_0 * b3_1 * b1_0 * b1_0
     33 
     34 	i1_0 = -2 * b3_1 * b2_0 * b1_1 * b1_1
     35 	i1_1 = +3 * b3_0 * b3_0 * b2_1 * b2_1
     36 )
     37 
     38 // Product matrix
     39 const (
     40 	p0_0 = h0_0*i0_0 + h0_1*i1_0
     41 	p0_1 = h0_0*i0_1 + h0_1*i1_1
     42 
     43 	p1_0 = h1_0*i0_0 + h1_1*i1_0
     44 	p1_1 = h1_0*i0_1 + h1_1*i1_1
     45 )
     46 
     47 // Verify that product is identity matrix
     48 const ok = p0_0 == 1 && p0_1 == 0 &&
     49 	p1_0 == 0 && p1_1 == 1 &&
     50 	true
     51 
     52 func print() {
     53 	println(p0_0, p0_1)
     54 	println(p1_0, p1_1)
     55 }
     56 
     57 // Binomials
     58 const (
     59 	b0_0 = f0 / (f0 * f0)
     60 
     61 	b1_0 = f1 / (f0 * f1)
     62 	b1_1 = f1 / (f1 * f0)
     63 
     64 	b2_0 = f2 / (f0 * f2)
     65 	b2_1 = f2 / (f1 * f1)
     66 	b2_2 = f2 / (f2 * f0)
     67 
     68 	b3_0 = f3 / (f0 * f3)
     69 	b3_1 = f3 / (f1 * f2)
     70 	b3_2 = f3 / (f2 * f1)
     71 	b3_3 = f3 / (f3 * f0)
     72 )
     73 
     74 // Factorials
     75 const (
     76 	f0 = 1
     77 	f1 = 1
     78 	f2 = f1 * 2
     79 	f3 = f2 * 3
     80 )
     81