Home | History | Annotate | Download | only in printer
      1 // Copyright 2009 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 // This file implements printing of AST nodes; specifically
      6 // expressions, statements, declarations, and files. It uses
      7 // the print functionality implemented in printer.go.
      8 
      9 package printer
     10 
     11 import (
     12 	"bytes"
     13 	"go/ast"
     14 	"go/token"
     15 	"strconv"
     16 	"strings"
     17 	"unicode"
     18 	"unicode/utf8"
     19 )
     20 
     21 // Formatting issues:
     22 // - better comment formatting for /*-style comments at the end of a line (e.g. a declaration)
     23 //   when the comment spans multiple lines; if such a comment is just two lines, formatting is
     24 //   not idempotent
     25 // - formatting of expression lists
     26 // - should use blank instead of tab to separate one-line function bodies from
     27 //   the function header unless there is a group of consecutive one-liners
     28 
     29 // ----------------------------------------------------------------------------
     30 // Common AST nodes.
     31 
     32 // Print as many newlines as necessary (but at least min newlines) to get to
     33 // the current line. ws is printed before the first line break. If newSection
     34 // is set, the first line break is printed as formfeed. Returns true if any
     35 // line break was printed; returns false otherwise.
     36 //
     37 // TODO(gri): linebreak may add too many lines if the next statement at "line"
     38 //            is preceded by comments because the computation of n assumes
     39 //            the current position before the comment and the target position
     40 //            after the comment. Thus, after interspersing such comments, the
     41 //            space taken up by them is not considered to reduce the number of
     42 //            linebreaks. At the moment there is no easy way to know about
     43 //            future (not yet interspersed) comments in this function.
     44 //
     45 func (p *printer) linebreak(line, min int, ws whiteSpace, newSection bool) (printedBreak bool) {
     46 	n := nlimit(line - p.pos.Line)
     47 	if n < min {
     48 		n = min
     49 	}
     50 	if n > 0 {
     51 		p.print(ws)
     52 		if newSection {
     53 			p.print(formfeed)
     54 			n--
     55 		}
     56 		for ; n > 0; n-- {
     57 			p.print(newline)
     58 		}
     59 		printedBreak = true
     60 	}
     61 	return
     62 }
     63 
     64 // setComment sets g as the next comment if g != nil and if node comments
     65 // are enabled - this mode is used when printing source code fragments such
     66 // as exports only. It assumes that there is no pending comment in p.comments
     67 // and at most one pending comment in the p.comment cache.
     68 func (p *printer) setComment(g *ast.CommentGroup) {
     69 	if g == nil || !p.useNodeComments {
     70 		return
     71 	}
     72 	if p.comments == nil {
     73 		// initialize p.comments lazily
     74 		p.comments = make([]*ast.CommentGroup, 1)
     75 	} else if p.cindex < len(p.comments) {
     76 		// for some reason there are pending comments; this
     77 		// should never happen - handle gracefully and flush
     78 		// all comments up to g, ignore anything after that
     79 		p.flush(p.posFor(g.List[0].Pos()), token.ILLEGAL)
     80 		p.comments = p.comments[0:1]
     81 		// in debug mode, report error
     82 		p.internalError("setComment found pending comments")
     83 	}
     84 	p.comments[0] = g
     85 	p.cindex = 0
     86 	// don't overwrite any pending comment in the p.comment cache
     87 	// (there may be a pending comment when a line comment is
     88 	// immediately followed by a lead comment with no other
     89 	// tokens between)
     90 	if p.commentOffset == infinity {
     91 		p.nextComment() // get comment ready for use
     92 	}
     93 }
     94 
     95 type exprListMode uint
     96 
     97 const (
     98 	commaTerm exprListMode = 1 << iota // list is optionally terminated by a comma
     99 	noIndent                           // no extra indentation in multi-line lists
    100 )
    101 
    102 // If indent is set, a multi-line identifier list is indented after the
    103 // first linebreak encountered.
    104 func (p *printer) identList(list []*ast.Ident, indent bool) {
    105 	// convert into an expression list so we can re-use exprList formatting
    106 	xlist := make([]ast.Expr, len(list))
    107 	for i, x := range list {
    108 		xlist[i] = x
    109 	}
    110 	var mode exprListMode
    111 	if !indent {
    112 		mode = noIndent
    113 	}
    114 	p.exprList(token.NoPos, xlist, 1, mode, token.NoPos)
    115 }
    116 
    117 // Print a list of expressions. If the list spans multiple
    118 // source lines, the original line breaks are respected between
    119 // expressions.
    120 //
    121 // TODO(gri) Consider rewriting this to be independent of []ast.Expr
    122 //           so that we can use the algorithm for any kind of list
    123 //           (e.g., pass list via a channel over which to range).
    124 func (p *printer) exprList(prev0 token.Pos, list []ast.Expr, depth int, mode exprListMode, next0 token.Pos) {
    125 	if len(list) == 0 {
    126 		return
    127 	}
    128 
    129 	prev := p.posFor(prev0)
    130 	next := p.posFor(next0)
    131 	line := p.lineFor(list[0].Pos())
    132 	endLine := p.lineFor(list[len(list)-1].End())
    133 
    134 	if prev.IsValid() && prev.Line == line && line == endLine {
    135 		// all list entries on a single line
    136 		for i, x := range list {
    137 			if i > 0 {
    138 				// use position of expression following the comma as
    139 				// comma position for correct comment placement
    140 				p.print(x.Pos(), token.COMMA, blank)
    141 			}
    142 			p.expr0(x, depth)
    143 		}
    144 		return
    145 	}
    146 
    147 	// list entries span multiple lines;
    148 	// use source code positions to guide line breaks
    149 
    150 	// don't add extra indentation if noIndent is set;
    151 	// i.e., pretend that the first line is already indented
    152 	ws := ignore
    153 	if mode&noIndent == 0 {
    154 		ws = indent
    155 	}
    156 
    157 	// the first linebreak is always a formfeed since this section must not
    158 	// depend on any previous formatting
    159 	prevBreak := -1 // index of last expression that was followed by a linebreak
    160 	if prev.IsValid() && prev.Line < line && p.linebreak(line, 0, ws, true) {
    161 		ws = ignore
    162 		prevBreak = 0
    163 	}
    164 
    165 	// initialize expression/key size: a zero value indicates expr/key doesn't fit on a single line
    166 	size := 0
    167 
    168 	// print all list elements
    169 	prevLine := prev.Line
    170 	for i, x := range list {
    171 		line = p.lineFor(x.Pos())
    172 
    173 		// determine if the next linebreak, if any, needs to use formfeed:
    174 		// in general, use the entire node size to make the decision; for
    175 		// key:value expressions, use the key size
    176 		// TODO(gri) for a better result, should probably incorporate both
    177 		//           the key and the node size into the decision process
    178 		useFF := true
    179 
    180 		// determine element size: all bets are off if we don't have
    181 		// position information for the previous and next token (likely
    182 		// generated code - simply ignore the size in this case by setting
    183 		// it to 0)
    184 		prevSize := size
    185 		const infinity = 1e6 // larger than any source line
    186 		size = p.nodeSize(x, infinity)
    187 		pair, isPair := x.(*ast.KeyValueExpr)
    188 		if size <= infinity && prev.IsValid() && next.IsValid() {
    189 			// x fits on a single line
    190 			if isPair {
    191 				size = p.nodeSize(pair.Key, infinity) // size <= infinity
    192 			}
    193 		} else {
    194 			// size too large or we don't have good layout information
    195 			size = 0
    196 		}
    197 
    198 		// if the previous line and the current line had single-
    199 		// line-expressions and the key sizes are small or the
    200 		// the ratio between the key sizes does not exceed a
    201 		// threshold, align columns and do not use formfeed
    202 		if prevSize > 0 && size > 0 {
    203 			const smallSize = 20
    204 			if prevSize <= smallSize && size <= smallSize {
    205 				useFF = false
    206 			} else {
    207 				const r = 4 // threshold
    208 				ratio := float64(size) / float64(prevSize)
    209 				useFF = ratio <= 1.0/r || r <= ratio
    210 			}
    211 		}
    212 
    213 		needsLinebreak := 0 < prevLine && prevLine < line
    214 		if i > 0 {
    215 			// use position of expression following the comma as
    216 			// comma position for correct comment placement, but
    217 			// only if the expression is on the same line
    218 			if !needsLinebreak {
    219 				p.print(x.Pos())
    220 			}
    221 			p.print(token.COMMA)
    222 			needsBlank := true
    223 			if needsLinebreak {
    224 				// lines are broken using newlines so comments remain aligned
    225 				// unless forceFF is set or there are multiple expressions on
    226 				// the same line in which case formfeed is used
    227 				if p.linebreak(line, 0, ws, useFF || prevBreak+1 < i) {
    228 					ws = ignore
    229 					prevBreak = i
    230 					needsBlank = false // we got a line break instead
    231 				}
    232 			}
    233 			if needsBlank {
    234 				p.print(blank)
    235 			}
    236 		}
    237 
    238 		if len(list) > 1 && isPair && size > 0 && needsLinebreak {
    239 			// we have a key:value expression that fits onto one line
    240 			// and it's not on the same line as the prior expression:
    241 			// use a column for the key such that consecutive entries
    242 			// can align if possible
    243 			// (needsLinebreak is set if we started a new line before)
    244 			p.expr(pair.Key)
    245 			p.print(pair.Colon, token.COLON, vtab)
    246 			p.expr(pair.Value)
    247 		} else {
    248 			p.expr0(x, depth)
    249 		}
    250 
    251 		prevLine = line
    252 	}
    253 
    254 	if mode&commaTerm != 0 && next.IsValid() && p.pos.Line < next.Line {
    255 		// print a terminating comma if the next token is on a new line
    256 		p.print(token.COMMA)
    257 		if ws == ignore && mode&noIndent == 0 {
    258 			// unindent if we indented
    259 			p.print(unindent)
    260 		}
    261 		p.print(formfeed) // terminating comma needs a line break to look good
    262 		return
    263 	}
    264 
    265 	if ws == ignore && mode&noIndent == 0 {
    266 		// unindent if we indented
    267 		p.print(unindent)
    268 	}
    269 }
    270 
    271 func (p *printer) parameters(fields *ast.FieldList) {
    272 	p.print(fields.Opening, token.LPAREN)
    273 	if len(fields.List) > 0 {
    274 		prevLine := p.lineFor(fields.Opening)
    275 		ws := indent
    276 		for i, par := range fields.List {
    277 			// determine par begin and end line (may be different
    278 			// if there are multiple parameter names for this par
    279 			// or the type is on a separate line)
    280 			var parLineBeg int
    281 			if len(par.Names) > 0 {
    282 				parLineBeg = p.lineFor(par.Names[0].Pos())
    283 			} else {
    284 				parLineBeg = p.lineFor(par.Type.Pos())
    285 			}
    286 			var parLineEnd = p.lineFor(par.Type.End())
    287 			// separating "," if needed
    288 			needsLinebreak := 0 < prevLine && prevLine < parLineBeg
    289 			if i > 0 {
    290 				// use position of parameter following the comma as
    291 				// comma position for correct comma placement, but
    292 				// only if the next parameter is on the same line
    293 				if !needsLinebreak {
    294 					p.print(par.Pos())
    295 				}
    296 				p.print(token.COMMA)
    297 			}
    298 			// separator if needed (linebreak or blank)
    299 			if needsLinebreak && p.linebreak(parLineBeg, 0, ws, true) {
    300 				// break line if the opening "(" or previous parameter ended on a different line
    301 				ws = ignore
    302 			} else if i > 0 {
    303 				p.print(blank)
    304 			}
    305 			// parameter names
    306 			if len(par.Names) > 0 {
    307 				// Very subtle: If we indented before (ws == ignore), identList
    308 				// won't indent again. If we didn't (ws == indent), identList will
    309 				// indent if the identList spans multiple lines, and it will outdent
    310 				// again at the end (and still ws == indent). Thus, a subsequent indent
    311 				// by a linebreak call after a type, or in the next multi-line identList
    312 				// will do the right thing.
    313 				p.identList(par.Names, ws == indent)
    314 				p.print(blank)
    315 			}
    316 			// parameter type
    317 			p.expr(stripParensAlways(par.Type))
    318 			prevLine = parLineEnd
    319 		}
    320 		// if the closing ")" is on a separate line from the last parameter,
    321 		// print an additional "," and line break
    322 		if closing := p.lineFor(fields.Closing); 0 < prevLine && prevLine < closing {
    323 			p.print(token.COMMA)
    324 			p.linebreak(closing, 0, ignore, true)
    325 		}
    326 		// unindent if we indented
    327 		if ws == ignore {
    328 			p.print(unindent)
    329 		}
    330 	}
    331 	p.print(fields.Closing, token.RPAREN)
    332 }
    333 
    334 func (p *printer) signature(params, result *ast.FieldList) {
    335 	if params != nil {
    336 		p.parameters(params)
    337 	} else {
    338 		p.print(token.LPAREN, token.RPAREN)
    339 	}
    340 	n := result.NumFields()
    341 	if n > 0 {
    342 		// result != nil
    343 		p.print(blank)
    344 		if n == 1 && result.List[0].Names == nil {
    345 			// single anonymous result; no ()'s
    346 			p.expr(stripParensAlways(result.List[0].Type))
    347 			return
    348 		}
    349 		p.parameters(result)
    350 	}
    351 }
    352 
    353 func identListSize(list []*ast.Ident, maxSize int) (size int) {
    354 	for i, x := range list {
    355 		if i > 0 {
    356 			size += len(", ")
    357 		}
    358 		size += utf8.RuneCountInString(x.Name)
    359 		if size >= maxSize {
    360 			break
    361 		}
    362 	}
    363 	return
    364 }
    365 
    366 func (p *printer) isOneLineFieldList(list []*ast.Field) bool {
    367 	if len(list) != 1 {
    368 		return false // allow only one field
    369 	}
    370 	f := list[0]
    371 	if f.Tag != nil || f.Comment != nil {
    372 		return false // don't allow tags or comments
    373 	}
    374 	// only name(s) and type
    375 	const maxSize = 30 // adjust as appropriate, this is an approximate value
    376 	namesSize := identListSize(f.Names, maxSize)
    377 	if namesSize > 0 {
    378 		namesSize = 1 // blank between names and types
    379 	}
    380 	typeSize := p.nodeSize(f.Type, maxSize)
    381 	return namesSize+typeSize <= maxSize
    382 }
    383 
    384 func (p *printer) setLineComment(text string) {
    385 	p.setComment(&ast.CommentGroup{List: []*ast.Comment{{Slash: token.NoPos, Text: text}}})
    386 }
    387 
    388 func (p *printer) fieldList(fields *ast.FieldList, isStruct, isIncomplete bool) {
    389 	lbrace := fields.Opening
    390 	list := fields.List
    391 	rbrace := fields.Closing
    392 	hasComments := isIncomplete || p.commentBefore(p.posFor(rbrace))
    393 	srcIsOneLine := lbrace.IsValid() && rbrace.IsValid() && p.lineFor(lbrace) == p.lineFor(rbrace)
    394 
    395 	if !hasComments && srcIsOneLine {
    396 		// possibly a one-line struct/interface
    397 		if len(list) == 0 {
    398 			// no blank between keyword and {} in this case
    399 			p.print(lbrace, token.LBRACE, rbrace, token.RBRACE)
    400 			return
    401 		} else if isStruct && p.isOneLineFieldList(list) { // for now ignore interfaces
    402 			// small enough - print on one line
    403 			// (don't use identList and ignore source line breaks)
    404 			p.print(lbrace, token.LBRACE, blank)
    405 			f := list[0]
    406 			for i, x := range f.Names {
    407 				if i > 0 {
    408 					// no comments so no need for comma position
    409 					p.print(token.COMMA, blank)
    410 				}
    411 				p.expr(x)
    412 			}
    413 			if len(f.Names) > 0 {
    414 				p.print(blank)
    415 			}
    416 			p.expr(f.Type)
    417 			p.print(blank, rbrace, token.RBRACE)
    418 			return
    419 		}
    420 	}
    421 	// hasComments || !srcIsOneLine
    422 
    423 	p.print(blank, lbrace, token.LBRACE, indent)
    424 	if hasComments || len(list) > 0 {
    425 		p.print(formfeed)
    426 	}
    427 
    428 	if isStruct {
    429 
    430 		sep := vtab
    431 		if len(list) == 1 {
    432 			sep = blank
    433 		}
    434 		var line int
    435 		for i, f := range list {
    436 			if i > 0 {
    437 				p.linebreak(p.lineFor(f.Pos()), 1, ignore, p.linesFrom(line) > 0)
    438 			}
    439 			extraTabs := 0
    440 			p.setComment(f.Doc)
    441 			p.recordLine(&line)
    442 			if len(f.Names) > 0 {
    443 				// named fields
    444 				p.identList(f.Names, false)
    445 				p.print(sep)
    446 				p.expr(f.Type)
    447 				extraTabs = 1
    448 			} else {
    449 				// anonymous field
    450 				p.expr(f.Type)
    451 				extraTabs = 2
    452 			}
    453 			if f.Tag != nil {
    454 				if len(f.Names) > 0 && sep == vtab {
    455 					p.print(sep)
    456 				}
    457 				p.print(sep)
    458 				p.expr(f.Tag)
    459 				extraTabs = 0
    460 			}
    461 			if f.Comment != nil {
    462 				for ; extraTabs > 0; extraTabs-- {
    463 					p.print(sep)
    464 				}
    465 				p.setComment(f.Comment)
    466 			}
    467 		}
    468 		if isIncomplete {
    469 			if len(list) > 0 {
    470 				p.print(formfeed)
    471 			}
    472 			p.flush(p.posFor(rbrace), token.RBRACE) // make sure we don't lose the last line comment
    473 			p.setLineComment("// contains filtered or unexported fields")
    474 		}
    475 
    476 	} else { // interface
    477 
    478 		var line int
    479 		for i, f := range list {
    480 			if i > 0 {
    481 				p.linebreak(p.lineFor(f.Pos()), 1, ignore, p.linesFrom(line) > 0)
    482 			}
    483 			p.setComment(f.Doc)
    484 			p.recordLine(&line)
    485 			if ftyp, isFtyp := f.Type.(*ast.FuncType); isFtyp {
    486 				// method
    487 				p.expr(f.Names[0])
    488 				p.signature(ftyp.Params, ftyp.Results)
    489 			} else {
    490 				// embedded interface
    491 				p.expr(f.Type)
    492 			}
    493 			p.setComment(f.Comment)
    494 		}
    495 		if isIncomplete {
    496 			if len(list) > 0 {
    497 				p.print(formfeed)
    498 			}
    499 			p.flush(p.posFor(rbrace), token.RBRACE) // make sure we don't lose the last line comment
    500 			p.setLineComment("// contains filtered or unexported methods")
    501 		}
    502 
    503 	}
    504 	p.print(unindent, formfeed, rbrace, token.RBRACE)
    505 }
    506 
    507 // ----------------------------------------------------------------------------
    508 // Expressions
    509 
    510 func walkBinary(e *ast.BinaryExpr) (has4, has5 bool, maxProblem int) {
    511 	switch e.Op.Precedence() {
    512 	case 4:
    513 		has4 = true
    514 	case 5:
    515 		has5 = true
    516 	}
    517 
    518 	switch l := e.X.(type) {
    519 	case *ast.BinaryExpr:
    520 		if l.Op.Precedence() < e.Op.Precedence() {
    521 			// parens will be inserted.
    522 			// pretend this is an *ast.ParenExpr and do nothing.
    523 			break
    524 		}
    525 		h4, h5, mp := walkBinary(l)
    526 		has4 = has4 || h4
    527 		has5 = has5 || h5
    528 		if maxProblem < mp {
    529 			maxProblem = mp
    530 		}
    531 	}
    532 
    533 	switch r := e.Y.(type) {
    534 	case *ast.BinaryExpr:
    535 		if r.Op.Precedence() <= e.Op.Precedence() {
    536 			// parens will be inserted.
    537 			// pretend this is an *ast.ParenExpr and do nothing.
    538 			break
    539 		}
    540 		h4, h5, mp := walkBinary(r)
    541 		has4 = has4 || h4
    542 		has5 = has5 || h5
    543 		if maxProblem < mp {
    544 			maxProblem = mp
    545 		}
    546 
    547 	case *ast.StarExpr:
    548 		if e.Op == token.QUO { // `*/`
    549 			maxProblem = 5
    550 		}
    551 
    552 	case *ast.UnaryExpr:
    553 		switch e.Op.String() + r.Op.String() {
    554 		case "/*", "&&", "&^":
    555 			maxProblem = 5
    556 		case "++", "--":
    557 			if maxProblem < 4 {
    558 				maxProblem = 4
    559 			}
    560 		}
    561 	}
    562 	return
    563 }
    564 
    565 func cutoff(e *ast.BinaryExpr, depth int) int {
    566 	has4, has5, maxProblem := walkBinary(e)
    567 	if maxProblem > 0 {
    568 		return maxProblem + 1
    569 	}
    570 	if has4 && has5 {
    571 		if depth == 1 {
    572 			return 5
    573 		}
    574 		return 4
    575 	}
    576 	if depth == 1 {
    577 		return 6
    578 	}
    579 	return 4
    580 }
    581 
    582 func diffPrec(expr ast.Expr, prec int) int {
    583 	x, ok := expr.(*ast.BinaryExpr)
    584 	if !ok || prec != x.Op.Precedence() {
    585 		return 1
    586 	}
    587 	return 0
    588 }
    589 
    590 func reduceDepth(depth int) int {
    591 	depth--
    592 	if depth < 1 {
    593 		depth = 1
    594 	}
    595 	return depth
    596 }
    597 
    598 // Format the binary expression: decide the cutoff and then format.
    599 // Let's call depth == 1 Normal mode, and depth > 1 Compact mode.
    600 // (Algorithm suggestion by Russ Cox.)
    601 //
    602 // The precedences are:
    603 //	5             *  /  %  <<  >>  &  &^
    604 //	4             +  -  |  ^
    605 //	3             ==  !=  <  <=  >  >=
    606 //	2             &&
    607 //	1             ||
    608 //
    609 // The only decision is whether there will be spaces around levels 4 and 5.
    610 // There are never spaces at level 6 (unary), and always spaces at levels 3 and below.
    611 //
    612 // To choose the cutoff, look at the whole expression but excluding primary
    613 // expressions (function calls, parenthesized exprs), and apply these rules:
    614 //
    615 //	1) If there is a binary operator with a right side unary operand
    616 //	   that would clash without a space, the cutoff must be (in order):
    617 //
    618 //		/*	6
    619 //		&&	6
    620 //		&^	6
    621 //		++	5
    622 //		--	5
    623 //
    624 //         (Comparison operators always have spaces around them.)
    625 //
    626 //	2) If there is a mix of level 5 and level 4 operators, then the cutoff
    627 //	   is 5 (use spaces to distinguish precedence) in Normal mode
    628 //	   and 4 (never use spaces) in Compact mode.
    629 //
    630 //	3) If there are no level 4 operators or no level 5 operators, then the
    631 //	   cutoff is 6 (always use spaces) in Normal mode
    632 //	   and 4 (never use spaces) in Compact mode.
    633 //
    634 func (p *printer) binaryExpr(x *ast.BinaryExpr, prec1, cutoff, depth int) {
    635 	prec := x.Op.Precedence()
    636 	if prec < prec1 {
    637 		// parenthesis needed
    638 		// Note: The parser inserts an ast.ParenExpr node; thus this case
    639 		//       can only occur if the AST is created in a different way.
    640 		p.print(token.LPAREN)
    641 		p.expr0(x, reduceDepth(depth)) // parentheses undo one level of depth
    642 		p.print(token.RPAREN)
    643 		return
    644 	}
    645 
    646 	printBlank := prec < cutoff
    647 
    648 	ws := indent
    649 	p.expr1(x.X, prec, depth+diffPrec(x.X, prec))
    650 	if printBlank {
    651 		p.print(blank)
    652 	}
    653 	xline := p.pos.Line // before the operator (it may be on the next line!)
    654 	yline := p.lineFor(x.Y.Pos())
    655 	p.print(x.OpPos, x.Op)
    656 	if xline != yline && xline > 0 && yline > 0 {
    657 		// at least one line break, but respect an extra empty line
    658 		// in the source
    659 		if p.linebreak(yline, 1, ws, true) {
    660 			ws = ignore
    661 			printBlank = false // no blank after line break
    662 		}
    663 	}
    664 	if printBlank {
    665 		p.print(blank)
    666 	}
    667 	p.expr1(x.Y, prec+1, depth+1)
    668 	if ws == ignore {
    669 		p.print(unindent)
    670 	}
    671 }
    672 
    673 func isBinary(expr ast.Expr) bool {
    674 	_, ok := expr.(*ast.BinaryExpr)
    675 	return ok
    676 }
    677 
    678 func (p *printer) expr1(expr ast.Expr, prec1, depth int) {
    679 	p.print(expr.Pos())
    680 
    681 	switch x := expr.(type) {
    682 	case *ast.BadExpr:
    683 		p.print("BadExpr")
    684 
    685 	case *ast.Ident:
    686 		p.print(x)
    687 
    688 	case *ast.BinaryExpr:
    689 		if depth < 1 {
    690 			p.internalError("depth < 1:", depth)
    691 			depth = 1
    692 		}
    693 		p.binaryExpr(x, prec1, cutoff(x, depth), depth)
    694 
    695 	case *ast.KeyValueExpr:
    696 		p.expr(x.Key)
    697 		p.print(x.Colon, token.COLON, blank)
    698 		p.expr(x.Value)
    699 
    700 	case *ast.StarExpr:
    701 		const prec = token.UnaryPrec
    702 		if prec < prec1 {
    703 			// parenthesis needed
    704 			p.print(token.LPAREN)
    705 			p.print(token.MUL)
    706 			p.expr(x.X)
    707 			p.print(token.RPAREN)
    708 		} else {
    709 			// no parenthesis needed
    710 			p.print(token.MUL)
    711 			p.expr(x.X)
    712 		}
    713 
    714 	case *ast.UnaryExpr:
    715 		const prec = token.UnaryPrec
    716 		if prec < prec1 {
    717 			// parenthesis needed
    718 			p.print(token.LPAREN)
    719 			p.expr(x)
    720 			p.print(token.RPAREN)
    721 		} else {
    722 			// no parenthesis needed
    723 			p.print(x.Op)
    724 			if x.Op == token.RANGE {
    725 				// TODO(gri) Remove this code if it cannot be reached.
    726 				p.print(blank)
    727 			}
    728 			p.expr1(x.X, prec, depth)
    729 		}
    730 
    731 	case *ast.BasicLit:
    732 		p.print(x)
    733 
    734 	case *ast.FuncLit:
    735 		p.expr(x.Type)
    736 		p.funcBody(p.distanceFrom(x.Type.Pos()), blank, x.Body)
    737 
    738 	case *ast.ParenExpr:
    739 		if _, hasParens := x.X.(*ast.ParenExpr); hasParens {
    740 			// don't print parentheses around an already parenthesized expression
    741 			// TODO(gri) consider making this more general and incorporate precedence levels
    742 			p.expr0(x.X, depth)
    743 		} else {
    744 			p.print(token.LPAREN)
    745 			p.expr0(x.X, reduceDepth(depth)) // parentheses undo one level of depth
    746 			p.print(x.Rparen, token.RPAREN)
    747 		}
    748 
    749 	case *ast.SelectorExpr:
    750 		p.selectorExpr(x, depth, false)
    751 
    752 	case *ast.TypeAssertExpr:
    753 		p.expr1(x.X, token.HighestPrec, depth)
    754 		p.print(token.PERIOD, x.Lparen, token.LPAREN)
    755 		if x.Type != nil {
    756 			p.expr(x.Type)
    757 		} else {
    758 			p.print(token.TYPE)
    759 		}
    760 		p.print(x.Rparen, token.RPAREN)
    761 
    762 	case *ast.IndexExpr:
    763 		// TODO(gri): should treat[] like parentheses and undo one level of depth
    764 		p.expr1(x.X, token.HighestPrec, 1)
    765 		p.print(x.Lbrack, token.LBRACK)
    766 		p.expr0(x.Index, depth+1)
    767 		p.print(x.Rbrack, token.RBRACK)
    768 
    769 	case *ast.SliceExpr:
    770 		// TODO(gri): should treat[] like parentheses and undo one level of depth
    771 		p.expr1(x.X, token.HighestPrec, 1)
    772 		p.print(x.Lbrack, token.LBRACK)
    773 		indices := []ast.Expr{x.Low, x.High}
    774 		if x.Max != nil {
    775 			indices = append(indices, x.Max)
    776 		}
    777 		for i, y := range indices {
    778 			if i > 0 {
    779 				// blanks around ":" if both sides exist and either side is a binary expression
    780 				// TODO(gri) once we have committed a variant of a[i:j:k] we may want to fine-
    781 				//           tune the formatting here
    782 				x := indices[i-1]
    783 				if depth <= 1 && x != nil && y != nil && (isBinary(x) || isBinary(y)) {
    784 					p.print(blank, token.COLON, blank)
    785 				} else {
    786 					p.print(token.COLON)
    787 				}
    788 			}
    789 			if y != nil {
    790 				p.expr0(y, depth+1)
    791 			}
    792 		}
    793 		p.print(x.Rbrack, token.RBRACK)
    794 
    795 	case *ast.CallExpr:
    796 		if len(x.Args) > 1 {
    797 			depth++
    798 		}
    799 		var wasIndented bool
    800 		if _, ok := x.Fun.(*ast.FuncType); ok {
    801 			// conversions to literal function types require parentheses around the type
    802 			p.print(token.LPAREN)
    803 			wasIndented = p.possibleSelectorExpr(x.Fun, token.HighestPrec, depth)
    804 			p.print(token.RPAREN)
    805 		} else {
    806 			wasIndented = p.possibleSelectorExpr(x.Fun, token.HighestPrec, depth)
    807 		}
    808 		p.print(x.Lparen, token.LPAREN)
    809 		if x.Ellipsis.IsValid() {
    810 			p.exprList(x.Lparen, x.Args, depth, 0, x.Ellipsis)
    811 			p.print(x.Ellipsis, token.ELLIPSIS)
    812 			if x.Rparen.IsValid() && p.lineFor(x.Ellipsis) < p.lineFor(x.Rparen) {
    813 				p.print(token.COMMA, formfeed)
    814 			}
    815 		} else {
    816 			p.exprList(x.Lparen, x.Args, depth, commaTerm, x.Rparen)
    817 		}
    818 		p.print(x.Rparen, token.RPAREN)
    819 		if wasIndented {
    820 			p.print(unindent)
    821 		}
    822 
    823 	case *ast.CompositeLit:
    824 		// composite literal elements that are composite literals themselves may have the type omitted
    825 		if x.Type != nil {
    826 			p.expr1(x.Type, token.HighestPrec, depth)
    827 		}
    828 		p.level++
    829 		p.print(x.Lbrace, token.LBRACE)
    830 		p.exprList(x.Lbrace, x.Elts, 1, commaTerm, x.Rbrace)
    831 		// do not insert extra line break following a /*-style comment
    832 		// before the closing '}' as it might break the code if there
    833 		// is no trailing ','
    834 		mode := noExtraLinebreak
    835 		// do not insert extra blank following a /*-style comment
    836 		// before the closing '}' unless the literal is empty
    837 		if len(x.Elts) > 0 {
    838 			mode |= noExtraBlank
    839 		}
    840 		p.print(mode, x.Rbrace, token.RBRACE, mode)
    841 		p.level--
    842 
    843 	case *ast.Ellipsis:
    844 		p.print(token.ELLIPSIS)
    845 		if x.Elt != nil {
    846 			p.expr(x.Elt)
    847 		}
    848 
    849 	case *ast.ArrayType:
    850 		p.print(token.LBRACK)
    851 		if x.Len != nil {
    852 			p.expr(x.Len)
    853 		}
    854 		p.print(token.RBRACK)
    855 		p.expr(x.Elt)
    856 
    857 	case *ast.StructType:
    858 		p.print(token.STRUCT)
    859 		p.fieldList(x.Fields, true, x.Incomplete)
    860 
    861 	case *ast.FuncType:
    862 		p.print(token.FUNC)
    863 		p.signature(x.Params, x.Results)
    864 
    865 	case *ast.InterfaceType:
    866 		p.print(token.INTERFACE)
    867 		p.fieldList(x.Methods, false, x.Incomplete)
    868 
    869 	case *ast.MapType:
    870 		p.print(token.MAP, token.LBRACK)
    871 		p.expr(x.Key)
    872 		p.print(token.RBRACK)
    873 		p.expr(x.Value)
    874 
    875 	case *ast.ChanType:
    876 		switch x.Dir {
    877 		case ast.SEND | ast.RECV:
    878 			p.print(token.CHAN)
    879 		case ast.RECV:
    880 			p.print(token.ARROW, token.CHAN) // x.Arrow and x.Pos() are the same
    881 		case ast.SEND:
    882 			p.print(token.CHAN, x.Arrow, token.ARROW)
    883 		}
    884 		p.print(blank)
    885 		p.expr(x.Value)
    886 
    887 	default:
    888 		panic("unreachable")
    889 	}
    890 
    891 	return
    892 }
    893 
    894 func (p *printer) possibleSelectorExpr(expr ast.Expr, prec1, depth int) bool {
    895 	if x, ok := expr.(*ast.SelectorExpr); ok {
    896 		return p.selectorExpr(x, depth, true)
    897 	}
    898 	p.expr1(expr, prec1, depth)
    899 	return false
    900 }
    901 
    902 // selectorExpr handles an *ast.SelectorExpr node and returns whether x spans
    903 // multiple lines.
    904 func (p *printer) selectorExpr(x *ast.SelectorExpr, depth int, isMethod bool) bool {
    905 	p.expr1(x.X, token.HighestPrec, depth)
    906 	p.print(token.PERIOD)
    907 	if line := p.lineFor(x.Sel.Pos()); p.pos.IsValid() && p.pos.Line < line {
    908 		p.print(indent, newline, x.Sel.Pos(), x.Sel)
    909 		if !isMethod {
    910 			p.print(unindent)
    911 		}
    912 		return true
    913 	}
    914 	p.print(x.Sel.Pos(), x.Sel)
    915 	return false
    916 }
    917 
    918 func (p *printer) expr0(x ast.Expr, depth int) {
    919 	p.expr1(x, token.LowestPrec, depth)
    920 }
    921 
    922 func (p *printer) expr(x ast.Expr) {
    923 	const depth = 1
    924 	p.expr1(x, token.LowestPrec, depth)
    925 }
    926 
    927 // ----------------------------------------------------------------------------
    928 // Statements
    929 
    930 // Print the statement list indented, but without a newline after the last statement.
    931 // Extra line breaks between statements in the source are respected but at most one
    932 // empty line is printed between statements.
    933 func (p *printer) stmtList(list []ast.Stmt, nindent int, nextIsRBrace bool) {
    934 	if nindent > 0 {
    935 		p.print(indent)
    936 	}
    937 	var line int
    938 	i := 0
    939 	for _, s := range list {
    940 		// ignore empty statements (was issue 3466)
    941 		if _, isEmpty := s.(*ast.EmptyStmt); !isEmpty {
    942 			// nindent == 0 only for lists of switch/select case clauses;
    943 			// in those cases each clause is a new section
    944 			if len(p.output) > 0 {
    945 				// only print line break if we are not at the beginning of the output
    946 				// (i.e., we are not printing only a partial program)
    947 				p.linebreak(p.lineFor(s.Pos()), 1, ignore, i == 0 || nindent == 0 || p.linesFrom(line) > 0)
    948 			}
    949 			p.recordLine(&line)
    950 			p.stmt(s, nextIsRBrace && i == len(list)-1)
    951 			// labeled statements put labels on a separate line, but here
    952 			// we only care about the start line of the actual statement
    953 			// without label - correct line for each label
    954 			for t := s; ; {
    955 				lt, _ := t.(*ast.LabeledStmt)
    956 				if lt == nil {
    957 					break
    958 				}
    959 				line++
    960 				t = lt.Stmt
    961 			}
    962 			i++
    963 		}
    964 	}
    965 	if nindent > 0 {
    966 		p.print(unindent)
    967 	}
    968 }
    969 
    970 // block prints an *ast.BlockStmt; it always spans at least two lines.
    971 func (p *printer) block(b *ast.BlockStmt, nindent int) {
    972 	p.print(b.Lbrace, token.LBRACE)
    973 	p.stmtList(b.List, nindent, true)
    974 	p.linebreak(p.lineFor(b.Rbrace), 1, ignore, true)
    975 	p.print(b.Rbrace, token.RBRACE)
    976 }
    977 
    978 func isTypeName(x ast.Expr) bool {
    979 	switch t := x.(type) {
    980 	case *ast.Ident:
    981 		return true
    982 	case *ast.SelectorExpr:
    983 		return isTypeName(t.X)
    984 	}
    985 	return false
    986 }
    987 
    988 func stripParens(x ast.Expr) ast.Expr {
    989 	if px, strip := x.(*ast.ParenExpr); strip {
    990 		// parentheses must not be stripped if there are any
    991 		// unparenthesized composite literals starting with
    992 		// a type name
    993 		ast.Inspect(px.X, func(node ast.Node) bool {
    994 			switch x := node.(type) {
    995 			case *ast.ParenExpr:
    996 				// parentheses protect enclosed composite literals
    997 				return false
    998 			case *ast.CompositeLit:
    999 				if isTypeName(x.Type) {
   1000 					strip = false // do not strip parentheses
   1001 				}
   1002 				return false
   1003 			}
   1004 			// in all other cases, keep inspecting
   1005 			return true
   1006 		})
   1007 		if strip {
   1008 			return stripParens(px.X)
   1009 		}
   1010 	}
   1011 	return x
   1012 }
   1013 
   1014 func stripParensAlways(x ast.Expr) ast.Expr {
   1015 	if x, ok := x.(*ast.ParenExpr); ok {
   1016 		return stripParensAlways(x.X)
   1017 	}
   1018 	return x
   1019 }
   1020 
   1021 func (p *printer) controlClause(isForStmt bool, init ast.Stmt, expr ast.Expr, post ast.Stmt) {
   1022 	p.print(blank)
   1023 	needsBlank := false
   1024 	if init == nil && post == nil {
   1025 		// no semicolons required
   1026 		if expr != nil {
   1027 			p.expr(stripParens(expr))
   1028 			needsBlank = true
   1029 		}
   1030 	} else {
   1031 		// all semicolons required
   1032 		// (they are not separators, print them explicitly)
   1033 		if init != nil {
   1034 			p.stmt(init, false)
   1035 		}
   1036 		p.print(token.SEMICOLON, blank)
   1037 		if expr != nil {
   1038 			p.expr(stripParens(expr))
   1039 			needsBlank = true
   1040 		}
   1041 		if isForStmt {
   1042 			p.print(token.SEMICOLON, blank)
   1043 			needsBlank = false
   1044 			if post != nil {
   1045 				p.stmt(post, false)
   1046 				needsBlank = true
   1047 			}
   1048 		}
   1049 	}
   1050 	if needsBlank {
   1051 		p.print(blank)
   1052 	}
   1053 }
   1054 
   1055 // indentList reports whether an expression list would look better if it
   1056 // were indented wholesale (starting with the very first element, rather
   1057 // than starting at the first line break).
   1058 //
   1059 func (p *printer) indentList(list []ast.Expr) bool {
   1060 	// Heuristic: indentList returns true if there are more than one multi-
   1061 	// line element in the list, or if there is any element that is not
   1062 	// starting on the same line as the previous one ends.
   1063 	if len(list) >= 2 {
   1064 		var b = p.lineFor(list[0].Pos())
   1065 		var e = p.lineFor(list[len(list)-1].End())
   1066 		if 0 < b && b < e {
   1067 			// list spans multiple lines
   1068 			n := 0 // multi-line element count
   1069 			line := b
   1070 			for _, x := range list {
   1071 				xb := p.lineFor(x.Pos())
   1072 				xe := p.lineFor(x.End())
   1073 				if line < xb {
   1074 					// x is not starting on the same
   1075 					// line as the previous one ended
   1076 					return true
   1077 				}
   1078 				if xb < xe {
   1079 					// x is a multi-line element
   1080 					n++
   1081 				}
   1082 				line = xe
   1083 			}
   1084 			return n > 1
   1085 		}
   1086 	}
   1087 	return false
   1088 }
   1089 
   1090 func (p *printer) stmt(stmt ast.Stmt, nextIsRBrace bool) {
   1091 	p.print(stmt.Pos())
   1092 
   1093 	switch s := stmt.(type) {
   1094 	case *ast.BadStmt:
   1095 		p.print("BadStmt")
   1096 
   1097 	case *ast.DeclStmt:
   1098 		p.decl(s.Decl)
   1099 
   1100 	case *ast.EmptyStmt:
   1101 		// nothing to do
   1102 
   1103 	case *ast.LabeledStmt:
   1104 		// a "correcting" unindent immediately following a line break
   1105 		// is applied before the line break if there is no comment
   1106 		// between (see writeWhitespace)
   1107 		p.print(unindent)
   1108 		p.expr(s.Label)
   1109 		p.print(s.Colon, token.COLON, indent)
   1110 		if e, isEmpty := s.Stmt.(*ast.EmptyStmt); isEmpty {
   1111 			if !nextIsRBrace {
   1112 				p.print(newline, e.Pos(), token.SEMICOLON)
   1113 				break
   1114 			}
   1115 		} else {
   1116 			p.linebreak(p.lineFor(s.Stmt.Pos()), 1, ignore, true)
   1117 		}
   1118 		p.stmt(s.Stmt, nextIsRBrace)
   1119 
   1120 	case *ast.ExprStmt:
   1121 		const depth = 1
   1122 		p.expr0(s.X, depth)
   1123 
   1124 	case *ast.SendStmt:
   1125 		const depth = 1
   1126 		p.expr0(s.Chan, depth)
   1127 		p.print(blank, s.Arrow, token.ARROW, blank)
   1128 		p.expr0(s.Value, depth)
   1129 
   1130 	case *ast.IncDecStmt:
   1131 		const depth = 1
   1132 		p.expr0(s.X, depth+1)
   1133 		p.print(s.TokPos, s.Tok)
   1134 
   1135 	case *ast.AssignStmt:
   1136 		var depth = 1
   1137 		if len(s.Lhs) > 1 && len(s.Rhs) > 1 {
   1138 			depth++
   1139 		}
   1140 		p.exprList(s.Pos(), s.Lhs, depth, 0, s.TokPos)
   1141 		p.print(blank, s.TokPos, s.Tok, blank)
   1142 		p.exprList(s.TokPos, s.Rhs, depth, 0, token.NoPos)
   1143 
   1144 	case *ast.GoStmt:
   1145 		p.print(token.GO, blank)
   1146 		p.expr(s.Call)
   1147 
   1148 	case *ast.DeferStmt:
   1149 		p.print(token.DEFER, blank)
   1150 		p.expr(s.Call)
   1151 
   1152 	case *ast.ReturnStmt:
   1153 		p.print(token.RETURN)
   1154 		if s.Results != nil {
   1155 			p.print(blank)
   1156 			// Use indentList heuristic to make corner cases look
   1157 			// better (issue 1207). A more systematic approach would
   1158 			// always indent, but this would cause significant
   1159 			// reformatting of the code base and not necessarily
   1160 			// lead to more nicely formatted code in general.
   1161 			if p.indentList(s.Results) {
   1162 				p.print(indent)
   1163 				p.exprList(s.Pos(), s.Results, 1, noIndent, token.NoPos)
   1164 				p.print(unindent)
   1165 			} else {
   1166 				p.exprList(s.Pos(), s.Results, 1, 0, token.NoPos)
   1167 			}
   1168 		}
   1169 
   1170 	case *ast.BranchStmt:
   1171 		p.print(s.Tok)
   1172 		if s.Label != nil {
   1173 			p.print(blank)
   1174 			p.expr(s.Label)
   1175 		}
   1176 
   1177 	case *ast.BlockStmt:
   1178 		p.block(s, 1)
   1179 
   1180 	case *ast.IfStmt:
   1181 		p.print(token.IF)
   1182 		p.controlClause(false, s.Init, s.Cond, nil)
   1183 		p.block(s.Body, 1)
   1184 		if s.Else != nil {
   1185 			p.print(blank, token.ELSE, blank)
   1186 			switch s.Else.(type) {
   1187 			case *ast.BlockStmt, *ast.IfStmt:
   1188 				p.stmt(s.Else, nextIsRBrace)
   1189 			default:
   1190 				// This can only happen with an incorrectly
   1191 				// constructed AST. Permit it but print so
   1192 				// that it can be parsed without errors.
   1193 				p.print(token.LBRACE, indent, formfeed)
   1194 				p.stmt(s.Else, true)
   1195 				p.print(unindent, formfeed, token.RBRACE)
   1196 			}
   1197 		}
   1198 
   1199 	case *ast.CaseClause:
   1200 		if s.List != nil {
   1201 			p.print(token.CASE, blank)
   1202 			p.exprList(s.Pos(), s.List, 1, 0, s.Colon)
   1203 		} else {
   1204 			p.print(token.DEFAULT)
   1205 		}
   1206 		p.print(s.Colon, token.COLON)
   1207 		p.stmtList(s.Body, 1, nextIsRBrace)
   1208 
   1209 	case *ast.SwitchStmt:
   1210 		p.print(token.SWITCH)
   1211 		p.controlClause(false, s.Init, s.Tag, nil)
   1212 		p.block(s.Body, 0)
   1213 
   1214 	case *ast.TypeSwitchStmt:
   1215 		p.print(token.SWITCH)
   1216 		if s.Init != nil {
   1217 			p.print(blank)
   1218 			p.stmt(s.Init, false)
   1219 			p.print(token.SEMICOLON)
   1220 		}
   1221 		p.print(blank)
   1222 		p.stmt(s.Assign, false)
   1223 		p.print(blank)
   1224 		p.block(s.Body, 0)
   1225 
   1226 	case *ast.CommClause:
   1227 		if s.Comm != nil {
   1228 			p.print(token.CASE, blank)
   1229 			p.stmt(s.Comm, false)
   1230 		} else {
   1231 			p.print(token.DEFAULT)
   1232 		}
   1233 		p.print(s.Colon, token.COLON)
   1234 		p.stmtList(s.Body, 1, nextIsRBrace)
   1235 
   1236 	case *ast.SelectStmt:
   1237 		p.print(token.SELECT, blank)
   1238 		body := s.Body
   1239 		if len(body.List) == 0 && !p.commentBefore(p.posFor(body.Rbrace)) {
   1240 			// print empty select statement w/o comments on one line
   1241 			p.print(body.Lbrace, token.LBRACE, body.Rbrace, token.RBRACE)
   1242 		} else {
   1243 			p.block(body, 0)
   1244 		}
   1245 
   1246 	case *ast.ForStmt:
   1247 		p.print(token.FOR)
   1248 		p.controlClause(true, s.Init, s.Cond, s.Post)
   1249 		p.block(s.Body, 1)
   1250 
   1251 	case *ast.RangeStmt:
   1252 		p.print(token.FOR, blank)
   1253 		if s.Key != nil {
   1254 			p.expr(s.Key)
   1255 			if s.Value != nil {
   1256 				// use position of value following the comma as
   1257 				// comma position for correct comment placement
   1258 				p.print(s.Value.Pos(), token.COMMA, blank)
   1259 				p.expr(s.Value)
   1260 			}
   1261 			p.print(blank, s.TokPos, s.Tok, blank)
   1262 		}
   1263 		p.print(token.RANGE, blank)
   1264 		p.expr(stripParens(s.X))
   1265 		p.print(blank)
   1266 		p.block(s.Body, 1)
   1267 
   1268 	default:
   1269 		panic("unreachable")
   1270 	}
   1271 
   1272 	return
   1273 }
   1274 
   1275 // ----------------------------------------------------------------------------
   1276 // Declarations
   1277 
   1278 // The keepTypeColumn function determines if the type column of a series of
   1279 // consecutive const or var declarations must be kept, or if initialization
   1280 // values (V) can be placed in the type column (T) instead. The i'th entry
   1281 // in the result slice is true if the type column in spec[i] must be kept.
   1282 //
   1283 // For example, the declaration:
   1284 //
   1285 //	const (
   1286 //		foobar int = 42 // comment
   1287 //		x          = 7  // comment
   1288 //		foo
   1289 //              bar = 991
   1290 //	)
   1291 //
   1292 // leads to the type/values matrix below. A run of value columns (V) can
   1293 // be moved into the type column if there is no type for any of the values
   1294 // in that column (we only move entire columns so that they align properly).
   1295 //
   1296 //	matrix        formatted     result
   1297 //                    matrix
   1298 //	T  V    ->    T  V     ->   true      there is a T and so the type
   1299 //	-  V          -  V          true      column must be kept
   1300 //	-  -          -  -          false
   1301 //	-  V          V  -          false     V is moved into T column
   1302 //
   1303 func keepTypeColumn(specs []ast.Spec) []bool {
   1304 	m := make([]bool, len(specs))
   1305 
   1306 	populate := func(i, j int, keepType bool) {
   1307 		if keepType {
   1308 			for ; i < j; i++ {
   1309 				m[i] = true
   1310 			}
   1311 		}
   1312 	}
   1313 
   1314 	i0 := -1 // if i0 >= 0 we are in a run and i0 is the start of the run
   1315 	var keepType bool
   1316 	for i, s := range specs {
   1317 		t := s.(*ast.ValueSpec)
   1318 		if t.Values != nil {
   1319 			if i0 < 0 {
   1320 				// start of a run of ValueSpecs with non-nil Values
   1321 				i0 = i
   1322 				keepType = false
   1323 			}
   1324 		} else {
   1325 			if i0 >= 0 {
   1326 				// end of a run
   1327 				populate(i0, i, keepType)
   1328 				i0 = -1
   1329 			}
   1330 		}
   1331 		if t.Type != nil {
   1332 			keepType = true
   1333 		}
   1334 	}
   1335 	if i0 >= 0 {
   1336 		// end of a run
   1337 		populate(i0, len(specs), keepType)
   1338 	}
   1339 
   1340 	return m
   1341 }
   1342 
   1343 func (p *printer) valueSpec(s *ast.ValueSpec, keepType bool) {
   1344 	p.setComment(s.Doc)
   1345 	p.identList(s.Names, false) // always present
   1346 	extraTabs := 3
   1347 	if s.Type != nil || keepType {
   1348 		p.print(vtab)
   1349 		extraTabs--
   1350 	}
   1351 	if s.Type != nil {
   1352 		p.expr(s.Type)
   1353 	}
   1354 	if s.Values != nil {
   1355 		p.print(vtab, token.ASSIGN, blank)
   1356 		p.exprList(token.NoPos, s.Values, 1, 0, token.NoPos)
   1357 		extraTabs--
   1358 	}
   1359 	if s.Comment != nil {
   1360 		for ; extraTabs > 0; extraTabs-- {
   1361 			p.print(vtab)
   1362 		}
   1363 		p.setComment(s.Comment)
   1364 	}
   1365 }
   1366 
   1367 func sanitizeImportPath(lit *ast.BasicLit) *ast.BasicLit {
   1368 	// Note: An unmodified AST generated by go/parser will already
   1369 	// contain a backward- or double-quoted path string that does
   1370 	// not contain any invalid characters, and most of the work
   1371 	// here is not needed. However, a modified or generated AST
   1372 	// may possibly contain non-canonical paths. Do the work in
   1373 	// all cases since it's not too hard and not speed-critical.
   1374 
   1375 	// if we don't have a proper string, be conservative and return whatever we have
   1376 	if lit.Kind != token.STRING {
   1377 		return lit
   1378 	}
   1379 	s, err := strconv.Unquote(lit.Value)
   1380 	if err != nil {
   1381 		return lit
   1382 	}
   1383 
   1384 	// if the string is an invalid path, return whatever we have
   1385 	//
   1386 	// spec: "Implementation restriction: A compiler may restrict
   1387 	// ImportPaths to non-empty strings using only characters belonging
   1388 	// to Unicode's L, M, N, P, and S general categories (the Graphic
   1389 	// characters without spaces) and may also exclude the characters
   1390 	// !"#$%&'()*,:;<=>?[\]^`{|} and the Unicode replacement character
   1391 	// U+FFFD."
   1392 	if s == "" {
   1393 		return lit
   1394 	}
   1395 	const illegalChars = `!"#$%&'()*,:;<=>?[\]^{|}` + "`\uFFFD"
   1396 	for _, r := range s {
   1397 		if !unicode.IsGraphic(r) || unicode.IsSpace(r) || strings.ContainsRune(illegalChars, r) {
   1398 			return lit
   1399 		}
   1400 	}
   1401 
   1402 	// otherwise, return the double-quoted path
   1403 	s = strconv.Quote(s)
   1404 	if s == lit.Value {
   1405 		return lit // nothing wrong with lit
   1406 	}
   1407 	return &ast.BasicLit{ValuePos: lit.ValuePos, Kind: token.STRING, Value: s}
   1408 }
   1409 
   1410 // The parameter n is the number of specs in the group. If doIndent is set,
   1411 // multi-line identifier lists in the spec are indented when the first
   1412 // linebreak is encountered.
   1413 //
   1414 func (p *printer) spec(spec ast.Spec, n int, doIndent bool) {
   1415 	switch s := spec.(type) {
   1416 	case *ast.ImportSpec:
   1417 		p.setComment(s.Doc)
   1418 		if s.Name != nil {
   1419 			p.expr(s.Name)
   1420 			p.print(blank)
   1421 		}
   1422 		p.expr(sanitizeImportPath(s.Path))
   1423 		p.setComment(s.Comment)
   1424 		p.print(s.EndPos)
   1425 
   1426 	case *ast.ValueSpec:
   1427 		if n != 1 {
   1428 			p.internalError("expected n = 1; got", n)
   1429 		}
   1430 		p.setComment(s.Doc)
   1431 		p.identList(s.Names, doIndent) // always present
   1432 		if s.Type != nil {
   1433 			p.print(blank)
   1434 			p.expr(s.Type)
   1435 		}
   1436 		if s.Values != nil {
   1437 			p.print(blank, token.ASSIGN, blank)
   1438 			p.exprList(token.NoPos, s.Values, 1, 0, token.NoPos)
   1439 		}
   1440 		p.setComment(s.Comment)
   1441 
   1442 	case *ast.TypeSpec:
   1443 		p.setComment(s.Doc)
   1444 		p.expr(s.Name)
   1445 		if n == 1 {
   1446 			p.print(blank)
   1447 		} else {
   1448 			p.print(vtab)
   1449 		}
   1450 		p.expr(s.Type)
   1451 		p.setComment(s.Comment)
   1452 
   1453 	default:
   1454 		panic("unreachable")
   1455 	}
   1456 }
   1457 
   1458 func (p *printer) genDecl(d *ast.GenDecl) {
   1459 	p.setComment(d.Doc)
   1460 	p.print(d.Pos(), d.Tok, blank)
   1461 
   1462 	if d.Lparen.IsValid() {
   1463 		// group of parenthesized declarations
   1464 		p.print(d.Lparen, token.LPAREN)
   1465 		if n := len(d.Specs); n > 0 {
   1466 			p.print(indent, formfeed)
   1467 			if n > 1 && (d.Tok == token.CONST || d.Tok == token.VAR) {
   1468 				// two or more grouped const/var declarations:
   1469 				// determine if the type column must be kept
   1470 				keepType := keepTypeColumn(d.Specs)
   1471 				var line int
   1472 				for i, s := range d.Specs {
   1473 					if i > 0 {
   1474 						p.linebreak(p.lineFor(s.Pos()), 1, ignore, p.linesFrom(line) > 0)
   1475 					}
   1476 					p.recordLine(&line)
   1477 					p.valueSpec(s.(*ast.ValueSpec), keepType[i])
   1478 				}
   1479 			} else {
   1480 				var line int
   1481 				for i, s := range d.Specs {
   1482 					if i > 0 {
   1483 						p.linebreak(p.lineFor(s.Pos()), 1, ignore, p.linesFrom(line) > 0)
   1484 					}
   1485 					p.recordLine(&line)
   1486 					p.spec(s, n, false)
   1487 				}
   1488 			}
   1489 			p.print(unindent, formfeed)
   1490 		}
   1491 		p.print(d.Rparen, token.RPAREN)
   1492 
   1493 	} else {
   1494 		// single declaration
   1495 		p.spec(d.Specs[0], 1, true)
   1496 	}
   1497 }
   1498 
   1499 // nodeSize determines the size of n in chars after formatting.
   1500 // The result is <= maxSize if the node fits on one line with at
   1501 // most maxSize chars and the formatted output doesn't contain
   1502 // any control chars. Otherwise, the result is > maxSize.
   1503 //
   1504 func (p *printer) nodeSize(n ast.Node, maxSize int) (size int) {
   1505 	// nodeSize invokes the printer, which may invoke nodeSize
   1506 	// recursively. For deep composite literal nests, this can
   1507 	// lead to an exponential algorithm. Remember previous
   1508 	// results to prune the recursion (was issue 1628).
   1509 	if size, found := p.nodeSizes[n]; found {
   1510 		return size
   1511 	}
   1512 
   1513 	size = maxSize + 1 // assume n doesn't fit
   1514 	p.nodeSizes[n] = size
   1515 
   1516 	// nodeSize computation must be independent of particular
   1517 	// style so that we always get the same decision; print
   1518 	// in RawFormat
   1519 	cfg := Config{Mode: RawFormat}
   1520 	var buf bytes.Buffer
   1521 	if err := cfg.fprint(&buf, p.fset, n, p.nodeSizes); err != nil {
   1522 		return
   1523 	}
   1524 	if buf.Len() <= maxSize {
   1525 		for _, ch := range buf.Bytes() {
   1526 			if ch < ' ' {
   1527 				return
   1528 			}
   1529 		}
   1530 		size = buf.Len() // n fits
   1531 		p.nodeSizes[n] = size
   1532 	}
   1533 	return
   1534 }
   1535 
   1536 // bodySize is like nodeSize but it is specialized for *ast.BlockStmt's.
   1537 func (p *printer) bodySize(b *ast.BlockStmt, maxSize int) int {
   1538 	pos1 := b.Pos()
   1539 	pos2 := b.Rbrace
   1540 	if pos1.IsValid() && pos2.IsValid() && p.lineFor(pos1) != p.lineFor(pos2) {
   1541 		// opening and closing brace are on different lines - don't make it a one-liner
   1542 		return maxSize + 1
   1543 	}
   1544 	if len(b.List) > 5 {
   1545 		// too many statements - don't make it a one-liner
   1546 		return maxSize + 1
   1547 	}
   1548 	// otherwise, estimate body size
   1549 	bodySize := p.commentSizeBefore(p.posFor(pos2))
   1550 	for i, s := range b.List {
   1551 		if bodySize > maxSize {
   1552 			break // no need to continue
   1553 		}
   1554 		if i > 0 {
   1555 			bodySize += 2 // space for a semicolon and blank
   1556 		}
   1557 		bodySize += p.nodeSize(s, maxSize)
   1558 	}
   1559 	return bodySize
   1560 }
   1561 
   1562 // funcBody prints a function body following a function header of given headerSize.
   1563 // If the header's and block's size are "small enough" and the block is "simple enough",
   1564 // the block is printed on the current line, without line breaks, spaced from the header
   1565 // by sep. Otherwise the block's opening "{" is printed on the current line, followed by
   1566 // lines for the block's statements and its closing "}".
   1567 //
   1568 func (p *printer) funcBody(headerSize int, sep whiteSpace, b *ast.BlockStmt) {
   1569 	if b == nil {
   1570 		return
   1571 	}
   1572 
   1573 	// save/restore composite literal nesting level
   1574 	defer func(level int) {
   1575 		p.level = level
   1576 	}(p.level)
   1577 	p.level = 0
   1578 
   1579 	const maxSize = 100
   1580 	if headerSize+p.bodySize(b, maxSize) <= maxSize {
   1581 		p.print(sep, b.Lbrace, token.LBRACE)
   1582 		if len(b.List) > 0 {
   1583 			p.print(blank)
   1584 			for i, s := range b.List {
   1585 				if i > 0 {
   1586 					p.print(token.SEMICOLON, blank)
   1587 				}
   1588 				p.stmt(s, i == len(b.List)-1)
   1589 			}
   1590 			p.print(blank)
   1591 		}
   1592 		p.print(noExtraLinebreak, b.Rbrace, token.RBRACE, noExtraLinebreak)
   1593 		return
   1594 	}
   1595 
   1596 	if sep != ignore {
   1597 		p.print(blank) // always use blank
   1598 	}
   1599 	p.block(b, 1)
   1600 }
   1601 
   1602 // distanceFrom returns the column difference between from and p.pos (the current
   1603 // estimated position) if both are on the same line; if they are on different lines
   1604 // (or unknown) the result is infinity.
   1605 func (p *printer) distanceFrom(from token.Pos) int {
   1606 	if from.IsValid() && p.pos.IsValid() {
   1607 		if f := p.posFor(from); f.Line == p.pos.Line {
   1608 			return p.pos.Column - f.Column
   1609 		}
   1610 	}
   1611 	return infinity
   1612 }
   1613 
   1614 func (p *printer) funcDecl(d *ast.FuncDecl) {
   1615 	p.setComment(d.Doc)
   1616 	p.print(d.Pos(), token.FUNC, blank)
   1617 	if d.Recv != nil {
   1618 		p.parameters(d.Recv) // method: print receiver
   1619 		p.print(blank)
   1620 	}
   1621 	p.expr(d.Name)
   1622 	p.signature(d.Type.Params, d.Type.Results)
   1623 	p.funcBody(p.distanceFrom(d.Pos()), vtab, d.Body)
   1624 }
   1625 
   1626 func (p *printer) decl(decl ast.Decl) {
   1627 	switch d := decl.(type) {
   1628 	case *ast.BadDecl:
   1629 		p.print(d.Pos(), "BadDecl")
   1630 	case *ast.GenDecl:
   1631 		p.genDecl(d)
   1632 	case *ast.FuncDecl:
   1633 		p.funcDecl(d)
   1634 	default:
   1635 		panic("unreachable")
   1636 	}
   1637 }
   1638 
   1639 // ----------------------------------------------------------------------------
   1640 // Files
   1641 
   1642 func declToken(decl ast.Decl) (tok token.Token) {
   1643 	tok = token.ILLEGAL
   1644 	switch d := decl.(type) {
   1645 	case *ast.GenDecl:
   1646 		tok = d.Tok
   1647 	case *ast.FuncDecl:
   1648 		tok = token.FUNC
   1649 	}
   1650 	return
   1651 }
   1652 
   1653 func (p *printer) declList(list []ast.Decl) {
   1654 	tok := token.ILLEGAL
   1655 	for _, d := range list {
   1656 		prev := tok
   1657 		tok = declToken(d)
   1658 		// If the declaration token changed (e.g., from CONST to TYPE)
   1659 		// or the next declaration has documentation associated with it,
   1660 		// print an empty line between top-level declarations.
   1661 		// (because p.linebreak is called with the position of d, which
   1662 		// is past any documentation, the minimum requirement is satisfied
   1663 		// even w/o the extra getDoc(d) nil-check - leave it in case the
   1664 		// linebreak logic improves - there's already a TODO).
   1665 		if len(p.output) > 0 {
   1666 			// only print line break if we are not at the beginning of the output
   1667 			// (i.e., we are not printing only a partial program)
   1668 			min := 1
   1669 			if prev != tok || getDoc(d) != nil {
   1670 				min = 2
   1671 			}
   1672 			p.linebreak(p.lineFor(d.Pos()), min, ignore, false)
   1673 		}
   1674 		p.decl(d)
   1675 	}
   1676 }
   1677 
   1678 func (p *printer) file(src *ast.File) {
   1679 	p.setComment(src.Doc)
   1680 	p.print(src.Pos(), token.PACKAGE, blank)
   1681 	p.expr(src.Name)
   1682 	p.declList(src.Decls)
   1683 	p.print(newline)
   1684 }
   1685