Home | History | Annotate | Download | only in jpeg
      1 // Copyright 2012 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 package jpeg
      6 
      7 import (
      8 	"image"
      9 )
     10 
     11 // makeImg allocates and initializes the destination image.
     12 func (d *decoder) makeImg(mxx, myy int) {
     13 	if d.nComp == 1 {
     14 		m := image.NewGray(image.Rect(0, 0, 8*mxx, 8*myy))
     15 		d.img1 = m.SubImage(image.Rect(0, 0, d.width, d.height)).(*image.Gray)
     16 		return
     17 	}
     18 
     19 	h0 := d.comp[0].h
     20 	v0 := d.comp[0].v
     21 	hRatio := h0 / d.comp[1].h
     22 	vRatio := v0 / d.comp[1].v
     23 	var subsampleRatio image.YCbCrSubsampleRatio
     24 	switch hRatio<<4 | vRatio {
     25 	case 0x11:
     26 		subsampleRatio = image.YCbCrSubsampleRatio444
     27 	case 0x12:
     28 		subsampleRatio = image.YCbCrSubsampleRatio440
     29 	case 0x21:
     30 		subsampleRatio = image.YCbCrSubsampleRatio422
     31 	case 0x22:
     32 		subsampleRatio = image.YCbCrSubsampleRatio420
     33 	case 0x41:
     34 		subsampleRatio = image.YCbCrSubsampleRatio411
     35 	case 0x42:
     36 		subsampleRatio = image.YCbCrSubsampleRatio410
     37 	default:
     38 		panic("unreachable")
     39 	}
     40 	m := image.NewYCbCr(image.Rect(0, 0, 8*h0*mxx, 8*v0*myy), subsampleRatio)
     41 	d.img3 = m.SubImage(image.Rect(0, 0, d.width, d.height)).(*image.YCbCr)
     42 
     43 	if d.nComp == 4 {
     44 		h3, v3 := d.comp[3].h, d.comp[3].v
     45 		d.blackPix = make([]byte, 8*h3*mxx*8*v3*myy)
     46 		d.blackStride = 8 * h3 * mxx
     47 	}
     48 }
     49 
     50 // Specified in section B.2.3.
     51 func (d *decoder) processSOS(n int) error {
     52 	if d.nComp == 0 {
     53 		return FormatError("missing SOF marker")
     54 	}
     55 	if n < 6 || 4+2*d.nComp < n || n%2 != 0 {
     56 		return FormatError("SOS has wrong length")
     57 	}
     58 	if err := d.readFull(d.tmp[:n]); err != nil {
     59 		return err
     60 	}
     61 	nComp := int(d.tmp[0])
     62 	if n != 4+2*nComp {
     63 		return FormatError("SOS length inconsistent with number of components")
     64 	}
     65 	var scan [maxComponents]struct {
     66 		compIndex uint8
     67 		td        uint8 // DC table selector.
     68 		ta        uint8 // AC table selector.
     69 	}
     70 	totalHV := 0
     71 	for i := 0; i < nComp; i++ {
     72 		cs := d.tmp[1+2*i] // Component selector.
     73 		compIndex := -1
     74 		for j, comp := range d.comp[:d.nComp] {
     75 			if cs == comp.c {
     76 				compIndex = j
     77 			}
     78 		}
     79 		if compIndex < 0 {
     80 			return FormatError("unknown component selector")
     81 		}
     82 		scan[i].compIndex = uint8(compIndex)
     83 		// Section B.2.3 states that "the value of Cs_j shall be different from
     84 		// the values of Cs_1 through Cs_(j-1)". Since we have previously
     85 		// verified that a frame's component identifiers (C_i values in section
     86 		// B.2.2) are unique, it suffices to check that the implicit indexes
     87 		// into d.comp are unique.
     88 		for j := 0; j < i; j++ {
     89 			if scan[i].compIndex == scan[j].compIndex {
     90 				return FormatError("repeated component selector")
     91 			}
     92 		}
     93 		totalHV += d.comp[compIndex].h * d.comp[compIndex].v
     94 
     95 		scan[i].td = d.tmp[2+2*i] >> 4
     96 		if scan[i].td > maxTh {
     97 			return FormatError("bad Td value")
     98 		}
     99 		scan[i].ta = d.tmp[2+2*i] & 0x0f
    100 		if scan[i].ta > maxTh {
    101 			return FormatError("bad Ta value")
    102 		}
    103 	}
    104 	// Section B.2.3 states that if there is more than one component then the
    105 	// total H*V values in a scan must be <= 10.
    106 	if d.nComp > 1 && totalHV > 10 {
    107 		return FormatError("total sampling factors too large")
    108 	}
    109 
    110 	// zigStart and zigEnd are the spectral selection bounds.
    111 	// ah and al are the successive approximation high and low values.
    112 	// The spec calls these values Ss, Se, Ah and Al.
    113 	//
    114 	// For progressive JPEGs, these are the two more-or-less independent
    115 	// aspects of progression. Spectral selection progression is when not
    116 	// all of a block's 64 DCT coefficients are transmitted in one pass.
    117 	// For example, three passes could transmit coefficient 0 (the DC
    118 	// component), coefficients 1-5, and coefficients 6-63, in zig-zag
    119 	// order. Successive approximation is when not all of the bits of a
    120 	// band of coefficients are transmitted in one pass. For example,
    121 	// three passes could transmit the 6 most significant bits, followed
    122 	// by the second-least significant bit, followed by the least
    123 	// significant bit.
    124 	//
    125 	// For baseline JPEGs, these parameters are hard-coded to 0/63/0/0.
    126 	zigStart, zigEnd, ah, al := int32(0), int32(blockSize-1), uint32(0), uint32(0)
    127 	if d.progressive {
    128 		zigStart = int32(d.tmp[1+2*nComp])
    129 		zigEnd = int32(d.tmp[2+2*nComp])
    130 		ah = uint32(d.tmp[3+2*nComp] >> 4)
    131 		al = uint32(d.tmp[3+2*nComp] & 0x0f)
    132 		if (zigStart == 0 && zigEnd != 0) || zigStart > zigEnd || blockSize <= zigEnd {
    133 			return FormatError("bad spectral selection bounds")
    134 		}
    135 		if zigStart != 0 && nComp != 1 {
    136 			return FormatError("progressive AC coefficients for more than one component")
    137 		}
    138 		if ah != 0 && ah != al+1 {
    139 			return FormatError("bad successive approximation values")
    140 		}
    141 	}
    142 
    143 	// mxx and myy are the number of MCUs (Minimum Coded Units) in the image.
    144 	h0, v0 := d.comp[0].h, d.comp[0].v // The h and v values from the Y components.
    145 	mxx := (d.width + 8*h0 - 1) / (8 * h0)
    146 	myy := (d.height + 8*v0 - 1) / (8 * v0)
    147 	if d.img1 == nil && d.img3 == nil {
    148 		d.makeImg(mxx, myy)
    149 	}
    150 	if d.progressive {
    151 		for i := 0; i < nComp; i++ {
    152 			compIndex := scan[i].compIndex
    153 			if d.progCoeffs[compIndex] == nil {
    154 				d.progCoeffs[compIndex] = make([]block, mxx*myy*d.comp[compIndex].h*d.comp[compIndex].v)
    155 			}
    156 		}
    157 	}
    158 
    159 	d.bits = bits{}
    160 	mcu, expectedRST := 0, uint8(rst0Marker)
    161 	var (
    162 		// b is the decoded coefficients, in natural (not zig-zag) order.
    163 		b  block
    164 		dc [maxComponents]int32
    165 		// bx and by are the location of the current block, in units of 8x8
    166 		// blocks: the third block in the first row has (bx, by) = (2, 0).
    167 		bx, by     int
    168 		blockCount int
    169 	)
    170 	for my := 0; my < myy; my++ {
    171 		for mx := 0; mx < mxx; mx++ {
    172 			for i := 0; i < nComp; i++ {
    173 				compIndex := scan[i].compIndex
    174 				hi := d.comp[compIndex].h
    175 				vi := d.comp[compIndex].v
    176 				for j := 0; j < hi*vi; j++ {
    177 					// The blocks are traversed one MCU at a time. For 4:2:0 chroma
    178 					// subsampling, there are four Y 8x8 blocks in every 16x16 MCU.
    179 					//
    180 					// For a baseline 32x16 pixel image, the Y blocks visiting order is:
    181 					//	0 1 4 5
    182 					//	2 3 6 7
    183 					//
    184 					// For progressive images, the interleaved scans (those with nComp > 1)
    185 					// are traversed as above, but non-interleaved scans are traversed left
    186 					// to right, top to bottom:
    187 					//	0 1 2 3
    188 					//	4 5 6 7
    189 					// Only DC scans (zigStart == 0) can be interleaved. AC scans must have
    190 					// only one component.
    191 					//
    192 					// To further complicate matters, for non-interleaved scans, there is no
    193 					// data for any blocks that are inside the image at the MCU level but
    194 					// outside the image at the pixel level. For example, a 24x16 pixel 4:2:0
    195 					// progressive image consists of two 16x16 MCUs. The interleaved scans
    196 					// will process 8 Y blocks:
    197 					//	0 1 4 5
    198 					//	2 3 6 7
    199 					// The non-interleaved scans will process only 6 Y blocks:
    200 					//	0 1 2
    201 					//	3 4 5
    202 					if nComp != 1 {
    203 						bx = hi*mx + j%hi
    204 						by = vi*my + j/hi
    205 					} else {
    206 						q := mxx * hi
    207 						bx = blockCount % q
    208 						by = blockCount / q
    209 						blockCount++
    210 						if bx*8 >= d.width || by*8 >= d.height {
    211 							continue
    212 						}
    213 					}
    214 
    215 					// Load the previous partially decoded coefficients, if applicable.
    216 					if d.progressive {
    217 						b = d.progCoeffs[compIndex][by*mxx*hi+bx]
    218 					} else {
    219 						b = block{}
    220 					}
    221 
    222 					if ah != 0 {
    223 						if err := d.refine(&b, &d.huff[acTable][scan[i].ta], zigStart, zigEnd, 1<<al); err != nil {
    224 							return err
    225 						}
    226 					} else {
    227 						zig := zigStart
    228 						if zig == 0 {
    229 							zig++
    230 							// Decode the DC coefficient, as specified in section F.2.2.1.
    231 							value, err := d.decodeHuffman(&d.huff[dcTable][scan[i].td])
    232 							if err != nil {
    233 								return err
    234 							}
    235 							if value > 16 {
    236 								return UnsupportedError("excessive DC component")
    237 							}
    238 							dcDelta, err := d.receiveExtend(value)
    239 							if err != nil {
    240 								return err
    241 							}
    242 							dc[compIndex] += dcDelta
    243 							b[0] = dc[compIndex] << al
    244 						}
    245 
    246 						if zig <= zigEnd && d.eobRun > 0 {
    247 							d.eobRun--
    248 						} else {
    249 							// Decode the AC coefficients, as specified in section F.2.2.2.
    250 							huff := &d.huff[acTable][scan[i].ta]
    251 							for ; zig <= zigEnd; zig++ {
    252 								value, err := d.decodeHuffman(huff)
    253 								if err != nil {
    254 									return err
    255 								}
    256 								val0 := value >> 4
    257 								val1 := value & 0x0f
    258 								if val1 != 0 {
    259 									zig += int32(val0)
    260 									if zig > zigEnd {
    261 										break
    262 									}
    263 									ac, err := d.receiveExtend(val1)
    264 									if err != nil {
    265 										return err
    266 									}
    267 									b[unzig[zig]] = ac << al
    268 								} else {
    269 									if val0 != 0x0f {
    270 										d.eobRun = uint16(1 << val0)
    271 										if val0 != 0 {
    272 											bits, err := d.decodeBits(int32(val0))
    273 											if err != nil {
    274 												return err
    275 											}
    276 											d.eobRun |= uint16(bits)
    277 										}
    278 										d.eobRun--
    279 										break
    280 									}
    281 									zig += 0x0f
    282 								}
    283 							}
    284 						}
    285 					}
    286 
    287 					if d.progressive {
    288 						// Save the coefficients.
    289 						d.progCoeffs[compIndex][by*mxx*hi+bx] = b
    290 						// At this point, we could call reconstructBlock to dequantize and perform the
    291 						// inverse DCT, to save early stages of a progressive image to the *image.YCbCr
    292 						// buffers (the whole point of progressive encoding), but in Go, the jpeg.Decode
    293 						// function does not return until the entire image is decoded, so we "continue"
    294 						// here to avoid wasted computation. Instead, reconstructBlock is called on each
    295 						// accumulated block by the reconstructProgressiveImage method after all of the
    296 						// SOS markers are processed.
    297 						continue
    298 					}
    299 					if err := d.reconstructBlock(&b, bx, by, int(compIndex)); err != nil {
    300 						return err
    301 					}
    302 				} // for j
    303 			} // for i
    304 			mcu++
    305 			if d.ri > 0 && mcu%d.ri == 0 && mcu < mxx*myy {
    306 				// A more sophisticated decoder could use RST[0-7] markers to resynchronize from corrupt input,
    307 				// but this one assumes well-formed input, and hence the restart marker follows immediately.
    308 				if err := d.readFull(d.tmp[:2]); err != nil {
    309 					return err
    310 				}
    311 				if d.tmp[0] != 0xff || d.tmp[1] != expectedRST {
    312 					return FormatError("bad RST marker")
    313 				}
    314 				expectedRST++
    315 				if expectedRST == rst7Marker+1 {
    316 					expectedRST = rst0Marker
    317 				}
    318 				// Reset the Huffman decoder.
    319 				d.bits = bits{}
    320 				// Reset the DC components, as per section F.2.1.3.1.
    321 				dc = [maxComponents]int32{}
    322 				// Reset the progressive decoder state, as per section G.1.2.2.
    323 				d.eobRun = 0
    324 			}
    325 		} // for mx
    326 	} // for my
    327 
    328 	return nil
    329 }
    330 
    331 // refine decodes a successive approximation refinement block, as specified in
    332 // section G.1.2.
    333 func (d *decoder) refine(b *block, h *huffman, zigStart, zigEnd, delta int32) error {
    334 	// Refining a DC component is trivial.
    335 	if zigStart == 0 {
    336 		if zigEnd != 0 {
    337 			panic("unreachable")
    338 		}
    339 		bit, err := d.decodeBit()
    340 		if err != nil {
    341 			return err
    342 		}
    343 		if bit {
    344 			b[0] |= delta
    345 		}
    346 		return nil
    347 	}
    348 
    349 	// Refining AC components is more complicated; see sections G.1.2.2 and G.1.2.3.
    350 	zig := zigStart
    351 	if d.eobRun == 0 {
    352 	loop:
    353 		for ; zig <= zigEnd; zig++ {
    354 			z := int32(0)
    355 			value, err := d.decodeHuffman(h)
    356 			if err != nil {
    357 				return err
    358 			}
    359 			val0 := value >> 4
    360 			val1 := value & 0x0f
    361 
    362 			switch val1 {
    363 			case 0:
    364 				if val0 != 0x0f {
    365 					d.eobRun = uint16(1 << val0)
    366 					if val0 != 0 {
    367 						bits, err := d.decodeBits(int32(val0))
    368 						if err != nil {
    369 							return err
    370 						}
    371 						d.eobRun |= uint16(bits)
    372 					}
    373 					break loop
    374 				}
    375 			case 1:
    376 				z = delta
    377 				bit, err := d.decodeBit()
    378 				if err != nil {
    379 					return err
    380 				}
    381 				if !bit {
    382 					z = -z
    383 				}
    384 			default:
    385 				return FormatError("unexpected Huffman code")
    386 			}
    387 
    388 			zig, err = d.refineNonZeroes(b, zig, zigEnd, int32(val0), delta)
    389 			if err != nil {
    390 				return err
    391 			}
    392 			if zig > zigEnd {
    393 				return FormatError("too many coefficients")
    394 			}
    395 			if z != 0 {
    396 				b[unzig[zig]] = z
    397 			}
    398 		}
    399 	}
    400 	if d.eobRun > 0 {
    401 		d.eobRun--
    402 		if _, err := d.refineNonZeroes(b, zig, zigEnd, -1, delta); err != nil {
    403 			return err
    404 		}
    405 	}
    406 	return nil
    407 }
    408 
    409 // refineNonZeroes refines non-zero entries of b in zig-zag order. If nz >= 0,
    410 // the first nz zero entries are skipped over.
    411 func (d *decoder) refineNonZeroes(b *block, zig, zigEnd, nz, delta int32) (int32, error) {
    412 	for ; zig <= zigEnd; zig++ {
    413 		u := unzig[zig]
    414 		if b[u] == 0 {
    415 			if nz == 0 {
    416 				break
    417 			}
    418 			nz--
    419 			continue
    420 		}
    421 		bit, err := d.decodeBit()
    422 		if err != nil {
    423 			return 0, err
    424 		}
    425 		if !bit {
    426 			continue
    427 		}
    428 		if b[u] >= 0 {
    429 			b[u] += delta
    430 		} else {
    431 			b[u] -= delta
    432 		}
    433 	}
    434 	return zig, nil
    435 }
    436 
    437 func (d *decoder) reconstructProgressiveImage() error {
    438 	// The h0, mxx, by and bx variables have the same meaning as in the
    439 	// processSOS method.
    440 	h0 := d.comp[0].h
    441 	mxx := (d.width + 8*h0 - 1) / (8 * h0)
    442 	for i := 0; i < d.nComp; i++ {
    443 		if d.progCoeffs[i] == nil {
    444 			continue
    445 		}
    446 		v := 8 * d.comp[0].v / d.comp[i].v
    447 		h := 8 * d.comp[0].h / d.comp[i].h
    448 		stride := mxx * d.comp[i].h
    449 		for by := 0; by*v < d.height; by++ {
    450 			for bx := 0; bx*h < d.width; bx++ {
    451 				if err := d.reconstructBlock(&d.progCoeffs[i][by*stride+bx], bx, by, i); err != nil {
    452 					return err
    453 				}
    454 			}
    455 		}
    456 	}
    457 	return nil
    458 }
    459 
    460 // reconstructBlock dequantizes, performs the inverse DCT and stores the block
    461 // to the image.
    462 func (d *decoder) reconstructBlock(b *block, bx, by, compIndex int) error {
    463 	qt := &d.quant[d.comp[compIndex].tq]
    464 	for zig := 0; zig < blockSize; zig++ {
    465 		b[unzig[zig]] *= qt[zig]
    466 	}
    467 	idct(b)
    468 	dst, stride := []byte(nil), 0
    469 	if d.nComp == 1 {
    470 		dst, stride = d.img1.Pix[8*(by*d.img1.Stride+bx):], d.img1.Stride
    471 	} else {
    472 		switch compIndex {
    473 		case 0:
    474 			dst, stride = d.img3.Y[8*(by*d.img3.YStride+bx):], d.img3.YStride
    475 		case 1:
    476 			dst, stride = d.img3.Cb[8*(by*d.img3.CStride+bx):], d.img3.CStride
    477 		case 2:
    478 			dst, stride = d.img3.Cr[8*(by*d.img3.CStride+bx):], d.img3.CStride
    479 		case 3:
    480 			dst, stride = d.blackPix[8*(by*d.blackStride+bx):], d.blackStride
    481 		default:
    482 			return UnsupportedError("too many components")
    483 		}
    484 	}
    485 	// Level shift by +128, clip to [0, 255], and write to dst.
    486 	for y := 0; y < 8; y++ {
    487 		y8 := y * 8
    488 		yStride := y * stride
    489 		for x := 0; x < 8; x++ {
    490 			c := b[y8+x]
    491 			if c < -128 {
    492 				c = 0
    493 			} else if c > 127 {
    494 				c = 255
    495 			} else {
    496 				c += 128
    497 			}
    498 			dst[yStride+x] = uint8(c)
    499 		}
    500 	}
    501 	return nil
    502 }
    503