1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Cgo call and callback support. 6 // 7 // To call into the C function f from Go, the cgo-generated code calls 8 // runtime.cgocall(_cgo_Cfunc_f, frame), where _cgo_Cfunc_f is a 9 // gcc-compiled function written by cgo. 10 // 11 // runtime.cgocall (below) locks g to m, calls entersyscall 12 // so as not to block other goroutines or the garbage collector, 13 // and then calls runtime.asmcgocall(_cgo_Cfunc_f, frame). 14 // 15 // runtime.asmcgocall (in asm_$GOARCH.s) switches to the m->g0 stack 16 // (assumed to be an operating system-allocated stack, so safe to run 17 // gcc-compiled code on) and calls _cgo_Cfunc_f(frame). 18 // 19 // _cgo_Cfunc_f invokes the actual C function f with arguments 20 // taken from the frame structure, records the results in the frame, 21 // and returns to runtime.asmcgocall. 22 // 23 // After it regains control, runtime.asmcgocall switches back to the 24 // original g (m->curg)'s stack and returns to runtime.cgocall. 25 // 26 // After it regains control, runtime.cgocall calls exitsyscall, which blocks 27 // until this m can run Go code without violating the $GOMAXPROCS limit, 28 // and then unlocks g from m. 29 // 30 // The above description skipped over the possibility of the gcc-compiled 31 // function f calling back into Go. If that happens, we continue down 32 // the rabbit hole during the execution of f. 33 // 34 // To make it possible for gcc-compiled C code to call a Go function p.GoF, 35 // cgo writes a gcc-compiled function named GoF (not p.GoF, since gcc doesn't 36 // know about packages). The gcc-compiled C function f calls GoF. 37 // 38 // GoF calls crosscall2(_cgoexp_GoF, frame, framesize). Crosscall2 39 // (in cgo/gcc_$GOARCH.S, a gcc-compiled assembly file) is a two-argument 40 // adapter from the gcc function call ABI to the 6c function call ABI. 41 // It is called from gcc to call 6c functions. In this case it calls 42 // _cgoexp_GoF(frame, framesize), still running on m->g0's stack 43 // and outside the $GOMAXPROCS limit. Thus, this code cannot yet 44 // call arbitrary Go code directly and must be careful not to allocate 45 // memory or use up m->g0's stack. 46 // 47 // _cgoexp_GoF calls runtime.cgocallback(p.GoF, frame, framesize, ctxt). 48 // (The reason for having _cgoexp_GoF instead of writing a crosscall3 49 // to make this call directly is that _cgoexp_GoF, because it is compiled 50 // with 6c instead of gcc, can refer to dotted names like 51 // runtime.cgocallback and p.GoF.) 52 // 53 // runtime.cgocallback (in asm_$GOARCH.s) switches from m->g0's 54 // stack to the original g (m->curg)'s stack, on which it calls 55 // runtime.cgocallbackg(p.GoF, frame, framesize). 56 // As part of the stack switch, runtime.cgocallback saves the current 57 // SP as m->g0->sched.sp, so that any use of m->g0's stack during the 58 // execution of the callback will be done below the existing stack frames. 59 // Before overwriting m->g0->sched.sp, it pushes the old value on the 60 // m->g0 stack, so that it can be restored later. 61 // 62 // runtime.cgocallbackg (below) is now running on a real goroutine 63 // stack (not an m->g0 stack). First it calls runtime.exitsyscall, which will 64 // block until the $GOMAXPROCS limit allows running this goroutine. 65 // Once exitsyscall has returned, it is safe to do things like call the memory 66 // allocator or invoke the Go callback function p.GoF. runtime.cgocallbackg 67 // first defers a function to unwind m->g0.sched.sp, so that if p.GoF 68 // panics, m->g0.sched.sp will be restored to its old value: the m->g0 stack 69 // and the m->curg stack will be unwound in lock step. 70 // Then it calls p.GoF. Finally it pops but does not execute the deferred 71 // function, calls runtime.entersyscall, and returns to runtime.cgocallback. 72 // 73 // After it regains control, runtime.cgocallback switches back to 74 // m->g0's stack (the pointer is still in m->g0.sched.sp), restores the old 75 // m->g0.sched.sp value from the stack, and returns to _cgoexp_GoF. 76 // 77 // _cgoexp_GoF immediately returns to crosscall2, which restores the 78 // callee-save registers for gcc and returns to GoF, which returns to f. 79 80 package runtime 81 82 import ( 83 "runtime/internal/atomic" 84 "runtime/internal/sys" 85 "unsafe" 86 ) 87 88 // Addresses collected in a cgo backtrace when crashing. 89 // Length must match arg.Max in x_cgo_callers in runtime/cgo/gcc_traceback.c. 90 type cgoCallers [32]uintptr 91 92 // Call from Go to C. 93 //go:nosplit 94 func cgocall(fn, arg unsafe.Pointer) int32 { 95 if !iscgo && GOOS != "solaris" && GOOS != "windows" { 96 throw("cgocall unavailable") 97 } 98 99 if fn == nil { 100 throw("cgocall nil") 101 } 102 103 if raceenabled { 104 racereleasemerge(unsafe.Pointer(&racecgosync)) 105 } 106 107 // Lock g to m to ensure we stay on the same stack if we do a 108 // cgo callback. In case of panic, unwindm calls endcgo. 109 lockOSThread() 110 mp := getg().m 111 mp.ncgocall++ 112 mp.ncgo++ 113 114 // Reset traceback. 115 mp.cgoCallers[0] = 0 116 117 // Announce we are entering a system call 118 // so that the scheduler knows to create another 119 // M to run goroutines while we are in the 120 // foreign code. 121 // 122 // The call to asmcgocall is guaranteed not to 123 // grow the stack and does not allocate memory, 124 // so it is safe to call while "in a system call", outside 125 // the $GOMAXPROCS accounting. 126 // 127 // fn may call back into Go code, in which case we'll exit the 128 // "system call", run the Go code (which may grow the stack), 129 // and then re-enter the "system call" reusing the PC and SP 130 // saved by entersyscall here. 131 entersyscall(0) 132 errno := asmcgocall(fn, arg) 133 exitsyscall(0) 134 135 // From the garbage collector's perspective, time can move 136 // backwards in the sequence above. If there's a callback into 137 // Go code, GC will see this function at the call to 138 // asmcgocall. When the Go call later returns to C, the 139 // syscall PC/SP is rolled back and the GC sees this function 140 // back at the call to entersyscall. Normally, fn and arg 141 // would be live at entersyscall and dead at asmcgocall, so if 142 // time moved backwards, GC would see these arguments as dead 143 // and then live. Prevent these undead arguments from crashing 144 // GC by forcing them to stay live across this time warp. 145 KeepAlive(fn) 146 KeepAlive(arg) 147 148 endcgo(mp) 149 return errno 150 } 151 152 //go:nosplit 153 func endcgo(mp *m) { 154 mp.ncgo-- 155 156 if raceenabled { 157 raceacquire(unsafe.Pointer(&racecgosync)) 158 } 159 160 unlockOSThread() // invalidates mp 161 } 162 163 // Call from C back to Go. 164 //go:nosplit 165 func cgocallbackg(ctxt uintptr) { 166 gp := getg() 167 if gp != gp.m.curg { 168 println("runtime: bad g in cgocallback") 169 exit(2) 170 } 171 172 // Save current syscall parameters, so m.syscall can be 173 // used again if callback decide to make syscall. 174 syscall := gp.m.syscall 175 176 // entersyscall saves the caller's SP to allow the GC to trace the Go 177 // stack. However, since we're returning to an earlier stack frame and 178 // need to pair with the entersyscall() call made by cgocall, we must 179 // save syscall* and let reentersyscall restore them. 180 savedsp := unsafe.Pointer(gp.syscallsp) 181 savedpc := gp.syscallpc 182 exitsyscall(0) // coming out of cgo call 183 184 cgocallbackg1(ctxt) 185 186 // going back to cgo call 187 reentersyscall(savedpc, uintptr(savedsp)) 188 189 gp.m.syscall = syscall 190 } 191 192 func cgocallbackg1(ctxt uintptr) { 193 gp := getg() 194 if gp.m.needextram || atomic.Load(&extraMWaiters) > 0 { 195 gp.m.needextram = false 196 systemstack(newextram) 197 } 198 199 if ctxt != 0 { 200 s := append(gp.cgoCtxt, ctxt) 201 202 // Now we need to set gp.cgoCtxt = s, but we could get 203 // a SIGPROF signal while manipulating the slice, and 204 // the SIGPROF handler could pick up gp.cgoCtxt while 205 // tracing up the stack. We need to ensure that the 206 // handler always sees a valid slice, so set the 207 // values in an order such that it always does. 208 p := (*slice)(unsafe.Pointer(&gp.cgoCtxt)) 209 atomicstorep(unsafe.Pointer(&p.array), unsafe.Pointer(&s[0])) 210 p.cap = cap(s) 211 p.len = len(s) 212 213 defer func(gp *g) { 214 // Decrease the length of the slice by one, safely. 215 p := (*slice)(unsafe.Pointer(&gp.cgoCtxt)) 216 p.len-- 217 }(gp) 218 } 219 220 if gp.m.ncgo == 0 { 221 // The C call to Go came from a thread not currently running 222 // any Go. In the case of -buildmode=c-archive or c-shared, 223 // this call may be coming in before package initialization 224 // is complete. Wait until it is. 225 <-main_init_done 226 } 227 228 // Add entry to defer stack in case of panic. 229 restore := true 230 defer unwindm(&restore) 231 232 if raceenabled { 233 raceacquire(unsafe.Pointer(&racecgosync)) 234 } 235 236 type args struct { 237 fn *funcval 238 arg unsafe.Pointer 239 argsize uintptr 240 } 241 var cb *args 242 243 // Location of callback arguments depends on stack frame layout 244 // and size of stack frame of cgocallback_gofunc. 245 sp := gp.m.g0.sched.sp 246 switch GOARCH { 247 default: 248 throw("cgocallbackg is unimplemented on arch") 249 case "arm": 250 // On arm, stack frame is two words and there's a saved LR between 251 // SP and the stack frame and between the stack frame and the arguments. 252 cb = (*args)(unsafe.Pointer(sp + 4*sys.PtrSize)) 253 case "arm64": 254 // On arm64, stack frame is four words and there's a saved LR between 255 // SP and the stack frame and between the stack frame and the arguments. 256 cb = (*args)(unsafe.Pointer(sp + 5*sys.PtrSize)) 257 case "amd64": 258 // On amd64, stack frame is two words, plus caller PC. 259 if framepointer_enabled { 260 // In this case, there's also saved BP. 261 cb = (*args)(unsafe.Pointer(sp + 4*sys.PtrSize)) 262 break 263 } 264 cb = (*args)(unsafe.Pointer(sp + 3*sys.PtrSize)) 265 case "386": 266 // On 386, stack frame is three words, plus caller PC. 267 cb = (*args)(unsafe.Pointer(sp + 4*sys.PtrSize)) 268 case "ppc64", "ppc64le", "s390x": 269 // On ppc64 and s390x, the callback arguments are in the arguments area of 270 // cgocallback's stack frame. The stack looks like this: 271 // +--------------------+------------------------------+ 272 // | | ... | 273 // | cgoexp_$fn +------------------------------+ 274 // | | fixed frame area | 275 // +--------------------+------------------------------+ 276 // | | arguments area | 277 // | cgocallback +------------------------------+ <- sp + 2*minFrameSize + 2*ptrSize 278 // | | fixed frame area | 279 // +--------------------+------------------------------+ <- sp + minFrameSize + 2*ptrSize 280 // | | local variables (2 pointers) | 281 // | cgocallback_gofunc +------------------------------+ <- sp + minFrameSize 282 // | | fixed frame area | 283 // +--------------------+------------------------------+ <- sp 284 cb = (*args)(unsafe.Pointer(sp + 2*sys.MinFrameSize + 2*sys.PtrSize)) 285 case "mips64", "mips64le": 286 // On mips64x, stack frame is two words and there's a saved LR between 287 // SP and the stack frame and between the stack frame and the arguments. 288 cb = (*args)(unsafe.Pointer(sp + 4*sys.PtrSize)) 289 case "mips", "mipsle": 290 // On mipsx, stack frame is two words and there's a saved LR between 291 // SP and the stack frame and between the stack frame and the arguments. 292 cb = (*args)(unsafe.Pointer(sp + 4*sys.PtrSize)) 293 } 294 295 // Invoke callback. 296 // NOTE(rsc): passing nil for argtype means that the copying of the 297 // results back into cb.arg happens without any corresponding write barriers. 298 // For cgo, cb.arg points into a C stack frame and therefore doesn't 299 // hold any pointers that the GC can find anyway - the write barrier 300 // would be a no-op. 301 reflectcall(nil, unsafe.Pointer(cb.fn), cb.arg, uint32(cb.argsize), 0) 302 303 if raceenabled { 304 racereleasemerge(unsafe.Pointer(&racecgosync)) 305 } 306 if msanenabled { 307 // Tell msan that we wrote to the entire argument block. 308 // This tells msan that we set the results. 309 // Since we have already called the function it doesn't 310 // matter that we are writing to the non-result parameters. 311 msanwrite(cb.arg, cb.argsize) 312 } 313 314 // Do not unwind m->g0->sched.sp. 315 // Our caller, cgocallback, will do that. 316 restore = false 317 } 318 319 func unwindm(restore *bool) { 320 if !*restore { 321 return 322 } 323 // Restore sp saved by cgocallback during 324 // unwind of g's stack (see comment at top of file). 325 mp := acquirem() 326 sched := &mp.g0.sched 327 switch GOARCH { 328 default: 329 throw("unwindm not implemented") 330 case "386", "amd64", "arm", "ppc64", "ppc64le", "mips64", "mips64le", "s390x", "mips", "mipsle": 331 sched.sp = *(*uintptr)(unsafe.Pointer(sched.sp + sys.MinFrameSize)) 332 case "arm64": 333 sched.sp = *(*uintptr)(unsafe.Pointer(sched.sp + 16)) 334 } 335 336 // Call endcgo to do the accounting that cgocall will not have a 337 // chance to do during an unwind. 338 // 339 // In the case where a a Go call originates from C, ncgo is 0 340 // and there is no matching cgocall to end. 341 if mp.ncgo > 0 { 342 endcgo(mp) 343 } 344 345 releasem(mp) 346 } 347 348 // called from assembly 349 func badcgocallback() { 350 throw("misaligned stack in cgocallback") 351 } 352 353 // called from (incomplete) assembly 354 func cgounimpl() { 355 throw("cgo not implemented") 356 } 357 358 var racecgosync uint64 // represents possible synchronization in C code 359 360 // Pointer checking for cgo code. 361 362 // We want to detect all cases where a program that does not use 363 // unsafe makes a cgo call passing a Go pointer to memory that 364 // contains a Go pointer. Here a Go pointer is defined as a pointer 365 // to memory allocated by the Go runtime. Programs that use unsafe 366 // can evade this restriction easily, so we don't try to catch them. 367 // The cgo program will rewrite all possibly bad pointer arguments to 368 // call cgoCheckPointer, where we can catch cases of a Go pointer 369 // pointing to a Go pointer. 370 371 // Complicating matters, taking the address of a slice or array 372 // element permits the C program to access all elements of the slice 373 // or array. In that case we will see a pointer to a single element, 374 // but we need to check the entire data structure. 375 376 // The cgoCheckPointer call takes additional arguments indicating that 377 // it was called on an address expression. An additional argument of 378 // true means that it only needs to check a single element. An 379 // additional argument of a slice or array means that it needs to 380 // check the entire slice/array, but nothing else. Otherwise, the 381 // pointer could be anything, and we check the entire heap object, 382 // which is conservative but safe. 383 384 // When and if we implement a moving garbage collector, 385 // cgoCheckPointer will pin the pointer for the duration of the cgo 386 // call. (This is necessary but not sufficient; the cgo program will 387 // also have to change to pin Go pointers that cannot point to Go 388 // pointers.) 389 390 // cgoCheckPointer checks if the argument contains a Go pointer that 391 // points to a Go pointer, and panics if it does. 392 func cgoCheckPointer(ptr interface{}, args ...interface{}) { 393 if debug.cgocheck == 0 { 394 return 395 } 396 397 ep := (*eface)(unsafe.Pointer(&ptr)) 398 t := ep._type 399 400 top := true 401 if len(args) > 0 && (t.kind&kindMask == kindPtr || t.kind&kindMask == kindUnsafePointer) { 402 p := ep.data 403 if t.kind&kindDirectIface == 0 { 404 p = *(*unsafe.Pointer)(p) 405 } 406 if !cgoIsGoPointer(p) { 407 return 408 } 409 aep := (*eface)(unsafe.Pointer(&args[0])) 410 switch aep._type.kind & kindMask { 411 case kindBool: 412 if t.kind&kindMask == kindUnsafePointer { 413 // We don't know the type of the element. 414 break 415 } 416 pt := (*ptrtype)(unsafe.Pointer(t)) 417 cgoCheckArg(pt.elem, p, true, false, cgoCheckPointerFail) 418 return 419 case kindSlice: 420 // Check the slice rather than the pointer. 421 ep = aep 422 t = ep._type 423 case kindArray: 424 // Check the array rather than the pointer. 425 // Pass top as false since we have a pointer 426 // to the array. 427 ep = aep 428 t = ep._type 429 top = false 430 default: 431 throw("can't happen") 432 } 433 } 434 435 cgoCheckArg(t, ep.data, t.kind&kindDirectIface == 0, top, cgoCheckPointerFail) 436 } 437 438 const cgoCheckPointerFail = "cgo argument has Go pointer to Go pointer" 439 const cgoResultFail = "cgo result has Go pointer" 440 441 // cgoCheckArg is the real work of cgoCheckPointer. The argument p 442 // is either a pointer to the value (of type t), or the value itself, 443 // depending on indir. The top parameter is whether we are at the top 444 // level, where Go pointers are allowed. 445 func cgoCheckArg(t *_type, p unsafe.Pointer, indir, top bool, msg string) { 446 if t.kind&kindNoPointers != 0 { 447 // If the type has no pointers there is nothing to do. 448 return 449 } 450 451 switch t.kind & kindMask { 452 default: 453 throw("can't happen") 454 case kindArray: 455 at := (*arraytype)(unsafe.Pointer(t)) 456 if !indir { 457 if at.len != 1 { 458 throw("can't happen") 459 } 460 cgoCheckArg(at.elem, p, at.elem.kind&kindDirectIface == 0, top, msg) 461 return 462 } 463 for i := uintptr(0); i < at.len; i++ { 464 cgoCheckArg(at.elem, p, true, top, msg) 465 p = add(p, at.elem.size) 466 } 467 case kindChan, kindMap: 468 // These types contain internal pointers that will 469 // always be allocated in the Go heap. It's never OK 470 // to pass them to C. 471 panic(errorString(msg)) 472 case kindFunc: 473 if indir { 474 p = *(*unsafe.Pointer)(p) 475 } 476 if !cgoIsGoPointer(p) { 477 return 478 } 479 panic(errorString(msg)) 480 case kindInterface: 481 it := *(**_type)(p) 482 if it == nil { 483 return 484 } 485 // A type known at compile time is OK since it's 486 // constant. A type not known at compile time will be 487 // in the heap and will not be OK. 488 if inheap(uintptr(unsafe.Pointer(it))) { 489 panic(errorString(msg)) 490 } 491 p = *(*unsafe.Pointer)(add(p, sys.PtrSize)) 492 if !cgoIsGoPointer(p) { 493 return 494 } 495 if !top { 496 panic(errorString(msg)) 497 } 498 cgoCheckArg(it, p, it.kind&kindDirectIface == 0, false, msg) 499 case kindSlice: 500 st := (*slicetype)(unsafe.Pointer(t)) 501 s := (*slice)(p) 502 p = s.array 503 if !cgoIsGoPointer(p) { 504 return 505 } 506 if !top { 507 panic(errorString(msg)) 508 } 509 if st.elem.kind&kindNoPointers != 0 { 510 return 511 } 512 for i := 0; i < s.cap; i++ { 513 cgoCheckArg(st.elem, p, true, false, msg) 514 p = add(p, st.elem.size) 515 } 516 case kindString: 517 ss := (*stringStruct)(p) 518 if !cgoIsGoPointer(ss.str) { 519 return 520 } 521 if !top { 522 panic(errorString(msg)) 523 } 524 case kindStruct: 525 st := (*structtype)(unsafe.Pointer(t)) 526 if !indir { 527 if len(st.fields) != 1 { 528 throw("can't happen") 529 } 530 cgoCheckArg(st.fields[0].typ, p, st.fields[0].typ.kind&kindDirectIface == 0, top, msg) 531 return 532 } 533 for _, f := range st.fields { 534 cgoCheckArg(f.typ, add(p, f.offset), true, top, msg) 535 } 536 case kindPtr, kindUnsafePointer: 537 if indir { 538 p = *(*unsafe.Pointer)(p) 539 } 540 541 if !cgoIsGoPointer(p) { 542 return 543 } 544 if !top { 545 panic(errorString(msg)) 546 } 547 548 cgoCheckUnknownPointer(p, msg) 549 } 550 } 551 552 // cgoCheckUnknownPointer is called for an arbitrary pointer into Go 553 // memory. It checks whether that Go memory contains any other 554 // pointer into Go memory. If it does, we panic. 555 // The return values are unused but useful to see in panic tracebacks. 556 func cgoCheckUnknownPointer(p unsafe.Pointer, msg string) (base, i uintptr) { 557 if cgoInRange(p, mheap_.arena_start, mheap_.arena_used) { 558 if !inheap(uintptr(p)) { 559 // On 32-bit systems it is possible for C's allocated memory 560 // to have addresses between arena_start and arena_used. 561 // Either this pointer is a stack or an unused span or it's 562 // a C allocation. Escape analysis should prevent the first, 563 // garbage collection should prevent the second, 564 // and the third is completely OK. 565 return 566 } 567 568 b, hbits, span, _ := heapBitsForObject(uintptr(p), 0, 0) 569 base = b 570 if base == 0 { 571 return 572 } 573 n := span.elemsize 574 for i = uintptr(0); i < n; i += sys.PtrSize { 575 if i != 1*sys.PtrSize && !hbits.morePointers() { 576 // No more possible pointers. 577 break 578 } 579 if hbits.isPointer() { 580 if cgoIsGoPointer(*(*unsafe.Pointer)(unsafe.Pointer(base + i))) { 581 panic(errorString(msg)) 582 } 583 } 584 hbits = hbits.next() 585 } 586 587 return 588 } 589 590 for _, datap := range activeModules() { 591 if cgoInRange(p, datap.data, datap.edata) || cgoInRange(p, datap.bss, datap.ebss) { 592 // We have no way to know the size of the object. 593 // We have to assume that it might contain a pointer. 594 panic(errorString(msg)) 595 } 596 // In the text or noptr sections, we know that the 597 // pointer does not point to a Go pointer. 598 } 599 600 return 601 } 602 603 // cgoIsGoPointer returns whether the pointer is a Go pointer--a 604 // pointer to Go memory. We only care about Go memory that might 605 // contain pointers. 606 //go:nosplit 607 //go:nowritebarrierrec 608 func cgoIsGoPointer(p unsafe.Pointer) bool { 609 if p == nil { 610 return false 611 } 612 613 if inHeapOrStack(uintptr(p)) { 614 return true 615 } 616 617 for _, datap := range activeModules() { 618 if cgoInRange(p, datap.data, datap.edata) || cgoInRange(p, datap.bss, datap.ebss) { 619 return true 620 } 621 } 622 623 return false 624 } 625 626 // cgoInRange returns whether p is between start and end. 627 //go:nosplit 628 //go:nowritebarrierrec 629 func cgoInRange(p unsafe.Pointer, start, end uintptr) bool { 630 return start <= uintptr(p) && uintptr(p) < end 631 } 632 633 // cgoCheckResult is called to check the result parameter of an 634 // exported Go function. It panics if the result is or contains a Go 635 // pointer. 636 func cgoCheckResult(val interface{}) { 637 if debug.cgocheck == 0 { 638 return 639 } 640 641 ep := (*eface)(unsafe.Pointer(&val)) 642 t := ep._type 643 cgoCheckArg(t, ep.data, t.kind&kindDirectIface == 0, false, cgoResultFail) 644 } 645