Home | History | Annotate | Download | only in bits
      1 // Map implementation -*- C++ -*-
      2 
      3 // Copyright (C) 2001-2014 Free Software Foundation, Inc.
      4 //
      5 // This file is part of the GNU ISO C++ Library.  This library is free
      6 // software; you can redistribute it and/or modify it under the
      7 // terms of the GNU General Public License as published by the
      8 // Free Software Foundation; either version 3, or (at your option)
      9 // any later version.
     10 
     11 // This library is distributed in the hope that it will be useful,
     12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
     13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     14 // GNU General Public License for more details.
     15 
     16 // Under Section 7 of GPL version 3, you are granted additional
     17 // permissions described in the GCC Runtime Library Exception, version
     18 // 3.1, as published by the Free Software Foundation.
     19 
     20 // You should have received a copy of the GNU General Public License and
     21 // a copy of the GCC Runtime Library Exception along with this program;
     22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
     23 // <http://www.gnu.org/licenses/>.
     24 
     25 /*
     26  *
     27  * Copyright (c) 1994
     28  * Hewlett-Packard Company
     29  *
     30  * Permission to use, copy, modify, distribute and sell this software
     31  * and its documentation for any purpose is hereby granted without fee,
     32  * provided that the above copyright notice appear in all copies and
     33  * that both that copyright notice and this permission notice appear
     34  * in supporting documentation.  Hewlett-Packard Company makes no
     35  * representations about the suitability of this software for any
     36  * purpose.  It is provided "as is" without express or implied warranty.
     37  *
     38  *
     39  * Copyright (c) 1996,1997
     40  * Silicon Graphics Computer Systems, Inc.
     41  *
     42  * Permission to use, copy, modify, distribute and sell this software
     43  * and its documentation for any purpose is hereby granted without fee,
     44  * provided that the above copyright notice appear in all copies and
     45  * that both that copyright notice and this permission notice appear
     46  * in supporting documentation.  Silicon Graphics makes no
     47  * representations about the suitability of this software for any
     48  * purpose.  It is provided "as is" without express or implied warranty.
     49  */
     50 
     51 /** @file bits/stl_map.h
     52  *  This is an internal header file, included by other library headers.
     53  *  Do not attempt to use it directly. @headername{map}
     54  */
     55 
     56 #ifndef _STL_MAP_H
     57 #define _STL_MAP_H 1
     58 
     59 #include <bits/functexcept.h>
     60 #include <bits/concept_check.h>
     61 #if __cplusplus >= 201103L
     62 #include <initializer_list>
     63 #include <tuple>
     64 #endif
     65 
     66 namespace std _GLIBCXX_VISIBILITY(default)
     67 {
     68 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER
     69 
     70   /**
     71    *  @brief A standard container made up of (key,value) pairs, which can be
     72    *  retrieved based on a key, in logarithmic time.
     73    *
     74    *  @ingroup associative_containers
     75    *
     76    *  @tparam _Key  Type of key objects.
     77    *  @tparam  _Tp  Type of mapped objects.
     78    *  @tparam _Compare  Comparison function object type, defaults to less<_Key>.
     79    *  @tparam _Alloc  Allocator type, defaults to
     80    *                  allocator<pair<const _Key, _Tp>.
     81    *
     82    *  Meets the requirements of a <a href="tables.html#65">container</a>, a
     83    *  <a href="tables.html#66">reversible container</a>, and an
     84    *  <a href="tables.html#69">associative container</a> (using unique keys).
     85    *  For a @c map<Key,T> the key_type is Key, the mapped_type is T, and the
     86    *  value_type is std::pair<const Key,T>.
     87    *
     88    *  Maps support bidirectional iterators.
     89    *
     90    *  The private tree data is declared exactly the same way for map and
     91    *  multimap; the distinction is made entirely in how the tree functions are
     92    *  called (*_unique versus *_equal, same as the standard).
     93   */
     94   template <typename _Key, typename _Tp, typename _Compare = std::less<_Key>,
     95             typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
     96     class map
     97     {
     98     public:
     99       typedef _Key                                          key_type;
    100       typedef _Tp                                           mapped_type;
    101       typedef std::pair<const _Key, _Tp>                    value_type;
    102       typedef _Compare                                      key_compare;
    103       typedef _Alloc                                        allocator_type;
    104 
    105     private:
    106       // concept requirements
    107       typedef typename _Alloc::value_type                   _Alloc_value_type;
    108       __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
    109       __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
    110 				_BinaryFunctionConcept)
    111       __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept)
    112 
    113     public:
    114       class value_compare
    115       : public std::binary_function<value_type, value_type, bool>
    116       {
    117 	friend class map<_Key, _Tp, _Compare, _Alloc>;
    118       protected:
    119 	_Compare comp;
    120 
    121 	value_compare(_Compare __c)
    122 	: comp(__c) { }
    123 
    124       public:
    125 	bool operator()(const value_type& __x, const value_type& __y) const
    126 	{ return comp(__x.first, __y.first); }
    127       };
    128 
    129     private:
    130       /// This turns a red-black tree into a [multi]map.
    131       typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template
    132 	rebind<value_type>::other _Pair_alloc_type;
    133 
    134       typedef _Rb_tree<key_type, value_type, _Select1st<value_type>,
    135 		       key_compare, _Pair_alloc_type> _Rep_type;
    136 
    137       /// The actual tree structure.
    138       _Rep_type _M_t;
    139 
    140       typedef __gnu_cxx::__alloc_traits<_Pair_alloc_type> _Alloc_traits;
    141 
    142     public:
    143       // many of these are specified differently in ISO, but the following are
    144       // "functionally equivalent"
    145       typedef typename _Alloc_traits::pointer            pointer;
    146       typedef typename _Alloc_traits::const_pointer      const_pointer;
    147       typedef typename _Alloc_traits::reference          reference;
    148       typedef typename _Alloc_traits::const_reference    const_reference;
    149       typedef typename _Rep_type::iterator               iterator;
    150       typedef typename _Rep_type::const_iterator         const_iterator;
    151       typedef typename _Rep_type::size_type              size_type;
    152       typedef typename _Rep_type::difference_type        difference_type;
    153       typedef typename _Rep_type::reverse_iterator       reverse_iterator;
    154       typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
    155 
    156       // [23.3.1.1] construct/copy/destroy
    157       // (get_allocator() is also listed in this section)
    158 
    159       /**
    160        *  @brief  Default constructor creates no elements.
    161        */
    162       map()
    163       : _M_t() { }
    164 
    165       /**
    166        *  @brief  Creates a %map with no elements.
    167        *  @param  __comp  A comparison object.
    168        *  @param  __a  An allocator object.
    169        */
    170       explicit
    171       map(const _Compare& __comp,
    172 	  const allocator_type& __a = allocator_type())
    173       : _M_t(__comp, _Pair_alloc_type(__a)) { }
    174 
    175       /**
    176        *  @brief  %Map copy constructor.
    177        *  @param  __x  A %map of identical element and allocator types.
    178        *
    179        *  The newly-created %map uses a copy of the allocation object
    180        *  used by @a __x.
    181        */
    182       map(const map& __x)
    183       : _M_t(__x._M_t) { }
    184 
    185 #if __cplusplus >= 201103L
    186       /**
    187        *  @brief  %Map move constructor.
    188        *  @param  __x  A %map of identical element and allocator types.
    189        *
    190        *  The newly-created %map contains the exact contents of @a __x.
    191        *  The contents of @a __x are a valid, but unspecified %map.
    192        */
    193       map(map&& __x)
    194       noexcept(is_nothrow_copy_constructible<_Compare>::value)
    195       : _M_t(std::move(__x._M_t)) { }
    196 
    197       /**
    198        *  @brief  Builds a %map from an initializer_list.
    199        *  @param  __l  An initializer_list.
    200        *  @param  __comp  A comparison object.
    201        *  @param  __a  An allocator object.
    202        *
    203        *  Create a %map consisting of copies of the elements in the
    204        *  initializer_list @a __l.
    205        *  This is linear in N if the range is already sorted, and NlogN
    206        *  otherwise (where N is @a __l.size()).
    207        */
    208       map(initializer_list<value_type> __l,
    209 	  const _Compare& __comp = _Compare(),
    210 	  const allocator_type& __a = allocator_type())
    211       : _M_t(__comp, _Pair_alloc_type(__a))
    212       { _M_t._M_insert_unique(__l.begin(), __l.end()); }
    213 
    214       /// Allocator-extended default constructor.
    215       explicit
    216       map(const allocator_type& __a)
    217       : _M_t(_Compare(), _Pair_alloc_type(__a)) { }
    218 
    219       /// Allocator-extended copy constructor.
    220       map(const map& __m, const allocator_type& __a)
    221       : _M_t(__m._M_t, _Pair_alloc_type(__a)) { }
    222 
    223       /// Allocator-extended move constructor.
    224       map(map&& __m, const allocator_type& __a)
    225       noexcept(is_nothrow_copy_constructible<_Compare>::value
    226 	       && _Alloc_traits::_S_always_equal())
    227       : _M_t(std::move(__m._M_t), _Pair_alloc_type(__a)) { }
    228 
    229       /// Allocator-extended initialier-list constructor.
    230       map(initializer_list<value_type> __l, const allocator_type& __a)
    231       : _M_t(_Compare(), _Pair_alloc_type(__a))
    232       { _M_t._M_insert_unique(__l.begin(), __l.end()); }
    233 
    234       /// Allocator-extended range constructor.
    235       template<typename _InputIterator>
    236         map(_InputIterator __first, _InputIterator __last,
    237 	    const allocator_type& __a)
    238 	: _M_t(_Compare(), _Pair_alloc_type(__a))
    239         { _M_t._M_insert_unique(__first, __last); }
    240 #endif
    241 
    242       /**
    243        *  @brief  Builds a %map from a range.
    244        *  @param  __first  An input iterator.
    245        *  @param  __last  An input iterator.
    246        *
    247        *  Create a %map consisting of copies of the elements from
    248        *  [__first,__last).  This is linear in N if the range is
    249        *  already sorted, and NlogN otherwise (where N is
    250        *  distance(__first,__last)).
    251        */
    252       template<typename _InputIterator>
    253         map(_InputIterator __first, _InputIterator __last)
    254 	: _M_t()
    255         { _M_t._M_insert_unique(__first, __last); }
    256 
    257       /**
    258        *  @brief  Builds a %map from a range.
    259        *  @param  __first  An input iterator.
    260        *  @param  __last  An input iterator.
    261        *  @param  __comp  A comparison functor.
    262        *  @param  __a  An allocator object.
    263        *
    264        *  Create a %map consisting of copies of the elements from
    265        *  [__first,__last).  This is linear in N if the range is
    266        *  already sorted, and NlogN otherwise (where N is
    267        *  distance(__first,__last)).
    268        */
    269       template<typename _InputIterator>
    270         map(_InputIterator __first, _InputIterator __last,
    271 	    const _Compare& __comp,
    272 	    const allocator_type& __a = allocator_type())
    273 	: _M_t(__comp, _Pair_alloc_type(__a))
    274         { _M_t._M_insert_unique(__first, __last); }
    275 
    276       // FIXME There is no dtor declared, but we should have something
    277       // generated by Doxygen.  I don't know what tags to add to this
    278       // paragraph to make that happen:
    279       /**
    280        *  The dtor only erases the elements, and note that if the elements
    281        *  themselves are pointers, the pointed-to memory is not touched in any
    282        *  way.  Managing the pointer is the user's responsibility.
    283        */
    284 
    285       /**
    286        *  @brief  %Map assignment operator.
    287        *  @param  __x  A %map of identical element and allocator types.
    288        *
    289        *  All the elements of @a __x are copied, but unlike the copy
    290        *  constructor, the allocator object is not copied.
    291        */
    292       map&
    293       operator=(const map& __x)
    294       {
    295 	_M_t = __x._M_t;
    296 	return *this;
    297       }
    298 
    299 #if __cplusplus >= 201103L
    300       /**
    301        *  @brief  %Map move assignment operator.
    302        *  @param  __x  A %map of identical element and allocator types.
    303        *
    304        *  The contents of @a __x are moved into this map (without copying
    305        *  if the allocators compare equal or get moved on assignment).
    306        *  Afterwards @a __x is in a valid, but unspecified state.
    307        */
    308       map&
    309       operator=(map&& __x) noexcept(_Alloc_traits::_S_nothrow_move())
    310       {
    311 	if (!_M_t._M_move_assign(__x._M_t))
    312 	  {
    313 	    // The rvalue's allocator cannot be moved and is not equal,
    314 	    // so we need to individually move each element.
    315 	    clear();
    316 	    insert(std::__make_move_if_noexcept_iterator(__x.begin()),
    317 		   std::__make_move_if_noexcept_iterator(__x.end()));
    318 	    __x.clear();
    319 	  }
    320 	return *this;
    321       }
    322 
    323       /**
    324        *  @brief  %Map list assignment operator.
    325        *  @param  __l  An initializer_list.
    326        *
    327        *  This function fills a %map with copies of the elements in the
    328        *  initializer list @a __l.
    329        *
    330        *  Note that the assignment completely changes the %map and
    331        *  that the resulting %map's size is the same as the number
    332        *  of elements assigned.  Old data may be lost.
    333        */
    334       map&
    335       operator=(initializer_list<value_type> __l)
    336       {
    337 	this->clear();
    338 	this->insert(__l.begin(), __l.end());
    339 	return *this;
    340       }
    341 #endif
    342 
    343       /// Get a copy of the memory allocation object.
    344       allocator_type
    345       get_allocator() const _GLIBCXX_NOEXCEPT
    346       { return allocator_type(_M_t.get_allocator()); }
    347 
    348       // iterators
    349       /**
    350        *  Returns a read/write iterator that points to the first pair in the
    351        *  %map.
    352        *  Iteration is done in ascending order according to the keys.
    353        */
    354       iterator
    355       begin() _GLIBCXX_NOEXCEPT
    356       { return _M_t.begin(); }
    357 
    358       /**
    359        *  Returns a read-only (constant) iterator that points to the first pair
    360        *  in the %map.  Iteration is done in ascending order according to the
    361        *  keys.
    362        */
    363       const_iterator
    364       begin() const _GLIBCXX_NOEXCEPT
    365       { return _M_t.begin(); }
    366 
    367       /**
    368        *  Returns a read/write iterator that points one past the last
    369        *  pair in the %map.  Iteration is done in ascending order
    370        *  according to the keys.
    371        */
    372       iterator
    373       end() _GLIBCXX_NOEXCEPT
    374       { return _M_t.end(); }
    375 
    376       /**
    377        *  Returns a read-only (constant) iterator that points one past the last
    378        *  pair in the %map.  Iteration is done in ascending order according to
    379        *  the keys.
    380        */
    381       const_iterator
    382       end() const _GLIBCXX_NOEXCEPT
    383       { return _M_t.end(); }
    384 
    385       /**
    386        *  Returns a read/write reverse iterator that points to the last pair in
    387        *  the %map.  Iteration is done in descending order according to the
    388        *  keys.
    389        */
    390       reverse_iterator
    391       rbegin() _GLIBCXX_NOEXCEPT
    392       { return _M_t.rbegin(); }
    393 
    394       /**
    395        *  Returns a read-only (constant) reverse iterator that points to the
    396        *  last pair in the %map.  Iteration is done in descending order
    397        *  according to the keys.
    398        */
    399       const_reverse_iterator
    400       rbegin() const _GLIBCXX_NOEXCEPT
    401       { return _M_t.rbegin(); }
    402 
    403       /**
    404        *  Returns a read/write reverse iterator that points to one before the
    405        *  first pair in the %map.  Iteration is done in descending order
    406        *  according to the keys.
    407        */
    408       reverse_iterator
    409       rend() _GLIBCXX_NOEXCEPT
    410       { return _M_t.rend(); }
    411 
    412       /**
    413        *  Returns a read-only (constant) reverse iterator that points to one
    414        *  before the first pair in the %map.  Iteration is done in descending
    415        *  order according to the keys.
    416        */
    417       const_reverse_iterator
    418       rend() const _GLIBCXX_NOEXCEPT
    419       { return _M_t.rend(); }
    420 
    421 #if __cplusplus >= 201103L
    422       /**
    423        *  Returns a read-only (constant) iterator that points to the first pair
    424        *  in the %map.  Iteration is done in ascending order according to the
    425        *  keys.
    426        */
    427       const_iterator
    428       cbegin() const noexcept
    429       { return _M_t.begin(); }
    430 
    431       /**
    432        *  Returns a read-only (constant) iterator that points one past the last
    433        *  pair in the %map.  Iteration is done in ascending order according to
    434        *  the keys.
    435        */
    436       const_iterator
    437       cend() const noexcept
    438       { return _M_t.end(); }
    439 
    440       /**
    441        *  Returns a read-only (constant) reverse iterator that points to the
    442        *  last pair in the %map.  Iteration is done in descending order
    443        *  according to the keys.
    444        */
    445       const_reverse_iterator
    446       crbegin() const noexcept
    447       { return _M_t.rbegin(); }
    448 
    449       /**
    450        *  Returns a read-only (constant) reverse iterator that points to one
    451        *  before the first pair in the %map.  Iteration is done in descending
    452        *  order according to the keys.
    453        */
    454       const_reverse_iterator
    455       crend() const noexcept
    456       { return _M_t.rend(); }
    457 #endif
    458 
    459       // capacity
    460       /** Returns true if the %map is empty.  (Thus begin() would equal
    461        *  end().)
    462       */
    463       bool
    464       empty() const _GLIBCXX_NOEXCEPT
    465       { return _M_t.empty(); }
    466 
    467       /** Returns the size of the %map.  */
    468       size_type
    469       size() const _GLIBCXX_NOEXCEPT
    470       { return _M_t.size(); }
    471 
    472       /** Returns the maximum size of the %map.  */
    473       size_type
    474       max_size() const _GLIBCXX_NOEXCEPT
    475       { return _M_t.max_size(); }
    476 
    477       // [23.3.1.2] element access
    478       /**
    479        *  @brief  Subscript ( @c [] ) access to %map data.
    480        *  @param  __k  The key for which data should be retrieved.
    481        *  @return  A reference to the data of the (key,data) %pair.
    482        *
    483        *  Allows for easy lookup with the subscript ( @c [] )
    484        *  operator.  Returns data associated with the key specified in
    485        *  subscript.  If the key does not exist, a pair with that key
    486        *  is created using default values, which is then returned.
    487        *
    488        *  Lookup requires logarithmic time.
    489        */
    490       mapped_type&
    491       operator[](const key_type& __k)
    492       {
    493 	// concept requirements
    494 	__glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>)
    495 
    496 	iterator __i = lower_bound(__k);
    497 	// __i->first is greater than or equivalent to __k.
    498 	if (__i == end() || key_comp()(__k, (*__i).first))
    499 #if __cplusplus >= 201103L
    500 	  __i = _M_t._M_emplace_hint_unique(__i, std::piecewise_construct,
    501 					    std::tuple<const key_type&>(__k),
    502 					    std::tuple<>());
    503 #else
    504           __i = insert(__i, value_type(__k, mapped_type()));
    505 #endif
    506 	return (*__i).second;
    507       }
    508 
    509 #if __cplusplus >= 201103L
    510       mapped_type&
    511       operator[](key_type&& __k)
    512       {
    513 	// concept requirements
    514 	__glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>)
    515 
    516 	iterator __i = lower_bound(__k);
    517 	// __i->first is greater than or equivalent to __k.
    518 	if (__i == end() || key_comp()(__k, (*__i).first))
    519 	  __i = _M_t._M_emplace_hint_unique(__i, std::piecewise_construct,
    520 					std::forward_as_tuple(std::move(__k)),
    521 					std::tuple<>());
    522 	return (*__i).second;
    523       }
    524 #endif
    525 
    526       // _GLIBCXX_RESOLVE_LIB_DEFECTS
    527       // DR 464. Suggestion for new member functions in standard containers.
    528       /**
    529        *  @brief  Access to %map data.
    530        *  @param  __k  The key for which data should be retrieved.
    531        *  @return  A reference to the data whose key is equivalent to @a __k, if
    532        *           such a data is present in the %map.
    533        *  @throw  std::out_of_range  If no such data is present.
    534        */
    535       mapped_type&
    536       at(const key_type& __k)
    537       {
    538 	iterator __i = lower_bound(__k);
    539 	if (__i == end() || key_comp()(__k, (*__i).first))
    540 	  __throw_out_of_range(__N("map::at"));
    541 	return (*__i).second;
    542       }
    543 
    544       const mapped_type&
    545       at(const key_type& __k) const
    546       {
    547 	const_iterator __i = lower_bound(__k);
    548 	if (__i == end() || key_comp()(__k, (*__i).first))
    549 	  __throw_out_of_range(__N("map::at"));
    550 	return (*__i).second;
    551       }
    552 
    553       // modifiers
    554 #if __cplusplus >= 201103L
    555       /**
    556        *  @brief Attempts to build and insert a std::pair into the %map.
    557        *
    558        *  @param __args  Arguments used to generate a new pair instance (see
    559        *	        std::piecewise_contruct for passing arguments to each
    560        *	        part of the pair constructor).
    561        *
    562        *  @return  A pair, of which the first element is an iterator that points
    563        *           to the possibly inserted pair, and the second is a bool that
    564        *           is true if the pair was actually inserted.
    565        *
    566        *  This function attempts to build and insert a (key, value) %pair into
    567        *  the %map.
    568        *  A %map relies on unique keys and thus a %pair is only inserted if its
    569        *  first element (the key) is not already present in the %map.
    570        *
    571        *  Insertion requires logarithmic time.
    572        */
    573       template<typename... _Args>
    574 	std::pair<iterator, bool>
    575 	emplace(_Args&&... __args)
    576 	{ return _M_t._M_emplace_unique(std::forward<_Args>(__args)...); }
    577 
    578       /**
    579        *  @brief Attempts to build and insert a std::pair into the %map.
    580        *
    581        *  @param  __pos  An iterator that serves as a hint as to where the pair
    582        *                should be inserted.
    583        *  @param  __args  Arguments used to generate a new pair instance (see
    584        *	         std::piecewise_contruct for passing arguments to each
    585        *	         part of the pair constructor).
    586        *  @return An iterator that points to the element with key of the
    587        *          std::pair built from @a __args (may or may not be that
    588        *          std::pair).
    589        *
    590        *  This function is not concerned about whether the insertion took place,
    591        *  and thus does not return a boolean like the single-argument emplace()
    592        *  does.
    593        *  Note that the first parameter is only a hint and can potentially
    594        *  improve the performance of the insertion process. A bad hint would
    595        *  cause no gains in efficiency.
    596        *
    597        *  See
    598        *  http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt07ch17.html
    599        *  for more on @a hinting.
    600        *
    601        *  Insertion requires logarithmic time (if the hint is not taken).
    602        */
    603       template<typename... _Args>
    604 	iterator
    605 	emplace_hint(const_iterator __pos, _Args&&... __args)
    606 	{
    607 	  return _M_t._M_emplace_hint_unique(__pos,
    608 					     std::forward<_Args>(__args)...);
    609 	}
    610 #endif
    611 
    612       /**
    613        *  @brief Attempts to insert a std::pair into the %map.
    614 
    615        *  @param __x Pair to be inserted (see std::make_pair for easy
    616        *	     creation of pairs).
    617        *
    618        *  @return  A pair, of which the first element is an iterator that
    619        *           points to the possibly inserted pair, and the second is
    620        *           a bool that is true if the pair was actually inserted.
    621        *
    622        *  This function attempts to insert a (key, value) %pair into the %map.
    623        *  A %map relies on unique keys and thus a %pair is only inserted if its
    624        *  first element (the key) is not already present in the %map.
    625        *
    626        *  Insertion requires logarithmic time.
    627        */
    628       std::pair<iterator, bool>
    629       insert(const value_type& __x)
    630       { return _M_t._M_insert_unique(__x); }
    631 
    632 #if __cplusplus >= 201103L
    633       template<typename _Pair, typename = typename
    634 	       std::enable_if<std::is_constructible<value_type,
    635 						    _Pair&&>::value>::type>
    636         std::pair<iterator, bool>
    637         insert(_Pair&& __x)
    638         { return _M_t._M_insert_unique(std::forward<_Pair>(__x)); }
    639 #endif
    640 
    641 #if __cplusplus >= 201103L
    642       /**
    643        *  @brief Attempts to insert a list of std::pairs into the %map.
    644        *  @param  __list  A std::initializer_list<value_type> of pairs to be
    645        *                  inserted.
    646        *
    647        *  Complexity similar to that of the range constructor.
    648        */
    649       void
    650       insert(std::initializer_list<value_type> __list)
    651       { insert(__list.begin(), __list.end()); }
    652 #endif
    653 
    654       /**
    655        *  @brief Attempts to insert a std::pair into the %map.
    656        *  @param  __position  An iterator that serves as a hint as to where the
    657        *                    pair should be inserted.
    658        *  @param  __x  Pair to be inserted (see std::make_pair for easy creation
    659        *               of pairs).
    660        *  @return An iterator that points to the element with key of
    661        *           @a __x (may or may not be the %pair passed in).
    662        *
    663 
    664        *  This function is not concerned about whether the insertion
    665        *  took place, and thus does not return a boolean like the
    666        *  single-argument insert() does.  Note that the first
    667        *  parameter is only a hint and can potentially improve the
    668        *  performance of the insertion process.  A bad hint would
    669        *  cause no gains in efficiency.
    670        *
    671        *  See
    672        *  http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt07ch17.html
    673        *  for more on @a hinting.
    674        *
    675        *  Insertion requires logarithmic time (if the hint is not taken).
    676        */
    677       iterator
    678 #if __cplusplus >= 201103L
    679       insert(const_iterator __position, const value_type& __x)
    680 #else
    681       insert(iterator __position, const value_type& __x)
    682 #endif
    683       { return _M_t._M_insert_unique_(__position, __x); }
    684 
    685 #if __cplusplus >= 201103L
    686       template<typename _Pair, typename = typename
    687 	       std::enable_if<std::is_constructible<value_type,
    688 						    _Pair&&>::value>::type>
    689         iterator
    690         insert(const_iterator __position, _Pair&& __x)
    691         { return _M_t._M_insert_unique_(__position,
    692 					std::forward<_Pair>(__x)); }
    693 #endif
    694 
    695       /**
    696        *  @brief Template function that attempts to insert a range of elements.
    697        *  @param  __first  Iterator pointing to the start of the range to be
    698        *                   inserted.
    699        *  @param  __last  Iterator pointing to the end of the range.
    700        *
    701        *  Complexity similar to that of the range constructor.
    702        */
    703       template<typename _InputIterator>
    704         void
    705         insert(_InputIterator __first, _InputIterator __last)
    706         { _M_t._M_insert_unique(__first, __last); }
    707 
    708 #if __cplusplus >= 201103L
    709       // _GLIBCXX_RESOLVE_LIB_DEFECTS
    710       // DR 130. Associative erase should return an iterator.
    711       /**
    712        *  @brief Erases an element from a %map.
    713        *  @param  __position  An iterator pointing to the element to be erased.
    714        *  @return An iterator pointing to the element immediately following
    715        *          @a position prior to the element being erased. If no such
    716        *          element exists, end() is returned.
    717        *
    718        *  This function erases an element, pointed to by the given
    719        *  iterator, from a %map.  Note that this function only erases
    720        *  the element, and that if the element is itself a pointer,
    721        *  the pointed-to memory is not touched in any way.  Managing
    722        *  the pointer is the user's responsibility.
    723        */
    724       iterator
    725       erase(const_iterator __position)
    726       { return _M_t.erase(__position); }
    727 
    728       // LWG 2059
    729       _GLIBCXX_ABI_TAG_CXX11
    730       iterator
    731       erase(iterator __position)
    732       { return _M_t.erase(__position); }
    733 #else
    734       /**
    735        *  @brief Erases an element from a %map.
    736        *  @param  __position  An iterator pointing to the element to be erased.
    737        *
    738        *  This function erases an element, pointed to by the given
    739        *  iterator, from a %map.  Note that this function only erases
    740        *  the element, and that if the element is itself a pointer,
    741        *  the pointed-to memory is not touched in any way.  Managing
    742        *  the pointer is the user's responsibility.
    743        */
    744       void
    745       erase(iterator __position)
    746       { _M_t.erase(__position); }
    747 #endif
    748 
    749       /**
    750        *  @brief Erases elements according to the provided key.
    751        *  @param  __x  Key of element to be erased.
    752        *  @return  The number of elements erased.
    753        *
    754        *  This function erases all the elements located by the given key from
    755        *  a %map.
    756        *  Note that this function only erases the element, and that if
    757        *  the element is itself a pointer, the pointed-to memory is not touched
    758        *  in any way.  Managing the pointer is the user's responsibility.
    759        */
    760       size_type
    761       erase(const key_type& __x)
    762       { return _M_t.erase(__x); }
    763 
    764 #if __cplusplus >= 201103L
    765       // _GLIBCXX_RESOLVE_LIB_DEFECTS
    766       // DR 130. Associative erase should return an iterator.
    767       /**
    768        *  @brief Erases a [first,last) range of elements from a %map.
    769        *  @param  __first  Iterator pointing to the start of the range to be
    770        *                   erased.
    771        *  @param __last Iterator pointing to the end of the range to
    772        *                be erased.
    773        *  @return The iterator @a __last.
    774        *
    775        *  This function erases a sequence of elements from a %map.
    776        *  Note that this function only erases the element, and that if
    777        *  the element is itself a pointer, the pointed-to memory is not touched
    778        *  in any way.  Managing the pointer is the user's responsibility.
    779        */
    780       iterator
    781       erase(const_iterator __first, const_iterator __last)
    782       { return _M_t.erase(__first, __last); }
    783 #else
    784       /**
    785        *  @brief Erases a [__first,__last) range of elements from a %map.
    786        *  @param  __first  Iterator pointing to the start of the range to be
    787        *                   erased.
    788        *  @param __last Iterator pointing to the end of the range to
    789        *                be erased.
    790        *
    791        *  This function erases a sequence of elements from a %map.
    792        *  Note that this function only erases the element, and that if
    793        *  the element is itself a pointer, the pointed-to memory is not touched
    794        *  in any way.  Managing the pointer is the user's responsibility.
    795        */
    796       void
    797       erase(iterator __first, iterator __last)
    798       { _M_t.erase(__first, __last); }
    799 #endif
    800 
    801       /**
    802        *  @brief  Swaps data with another %map.
    803        *  @param  __x  A %map of the same element and allocator types.
    804        *
    805        *  This exchanges the elements between two maps in constant
    806        *  time.  (It is only swapping a pointer, an integer, and an
    807        *  instance of the @c Compare type (which itself is often
    808        *  stateless and empty), so it should be quite fast.)  Note
    809        *  that the global std::swap() function is specialized such
    810        *  that std::swap(m1,m2) will feed to this function.
    811        */
    812       void
    813       swap(map& __x)
    814 #if __cplusplus >= 201103L
    815       noexcept(_Alloc_traits::_S_nothrow_swap())
    816 #endif
    817       { _M_t.swap(__x._M_t); }
    818 
    819       /**
    820        *  Erases all elements in a %map.  Note that this function only
    821        *  erases the elements, and that if the elements themselves are
    822        *  pointers, the pointed-to memory is not touched in any way.
    823        *  Managing the pointer is the user's responsibility.
    824        */
    825       void
    826       clear() _GLIBCXX_NOEXCEPT
    827       { _M_t.clear(); }
    828 
    829       // observers
    830       /**
    831        *  Returns the key comparison object out of which the %map was
    832        *  constructed.
    833        */
    834       key_compare
    835       key_comp() const
    836       { return _M_t.key_comp(); }
    837 
    838       /**
    839        *  Returns a value comparison object, built from the key comparison
    840        *  object out of which the %map was constructed.
    841        */
    842       value_compare
    843       value_comp() const
    844       { return value_compare(_M_t.key_comp()); }
    845 
    846       // [23.3.1.3] map operations
    847       /**
    848        *  @brief Tries to locate an element in a %map.
    849        *  @param  __x  Key of (key, value) %pair to be located.
    850        *  @return  Iterator pointing to sought-after element, or end() if not
    851        *           found.
    852        *
    853        *  This function takes a key and tries to locate the element with which
    854        *  the key matches.  If successful the function returns an iterator
    855        *  pointing to the sought after %pair.  If unsuccessful it returns the
    856        *  past-the-end ( @c end() ) iterator.
    857        */
    858       iterator
    859       find(const key_type& __x)
    860       { return _M_t.find(__x); }
    861 
    862       /**
    863        *  @brief Tries to locate an element in a %map.
    864        *  @param  __x  Key of (key, value) %pair to be located.
    865        *  @return  Read-only (constant) iterator pointing to sought-after
    866        *           element, or end() if not found.
    867        *
    868        *  This function takes a key and tries to locate the element with which
    869        *  the key matches.  If successful the function returns a constant
    870        *  iterator pointing to the sought after %pair. If unsuccessful it
    871        *  returns the past-the-end ( @c end() ) iterator.
    872        */
    873       const_iterator
    874       find(const key_type& __x) const
    875       { return _M_t.find(__x); }
    876 
    877       /**
    878        *  @brief  Finds the number of elements with given key.
    879        *  @param  __x  Key of (key, value) pairs to be located.
    880        *  @return  Number of elements with specified key.
    881        *
    882        *  This function only makes sense for multimaps; for map the result will
    883        *  either be 0 (not present) or 1 (present).
    884        */
    885       size_type
    886       count(const key_type& __x) const
    887       { return _M_t.find(__x) == _M_t.end() ? 0 : 1; }
    888 
    889       /**
    890        *  @brief Finds the beginning of a subsequence matching given key.
    891        *  @param  __x  Key of (key, value) pair to be located.
    892        *  @return  Iterator pointing to first element equal to or greater
    893        *           than key, or end().
    894        *
    895        *  This function returns the first element of a subsequence of elements
    896        *  that matches the given key.  If unsuccessful it returns an iterator
    897        *  pointing to the first element that has a greater value than given key
    898        *  or end() if no such element exists.
    899        */
    900       iterator
    901       lower_bound(const key_type& __x)
    902       { return _M_t.lower_bound(__x); }
    903 
    904       /**
    905        *  @brief Finds the beginning of a subsequence matching given key.
    906        *  @param  __x  Key of (key, value) pair to be located.
    907        *  @return  Read-only (constant) iterator pointing to first element
    908        *           equal to or greater than key, or end().
    909        *
    910        *  This function returns the first element of a subsequence of elements
    911        *  that matches the given key.  If unsuccessful it returns an iterator
    912        *  pointing to the first element that has a greater value than given key
    913        *  or end() if no such element exists.
    914        */
    915       const_iterator
    916       lower_bound(const key_type& __x) const
    917       { return _M_t.lower_bound(__x); }
    918 
    919       /**
    920        *  @brief Finds the end of a subsequence matching given key.
    921        *  @param  __x  Key of (key, value) pair to be located.
    922        *  @return Iterator pointing to the first element
    923        *          greater than key, or end().
    924        */
    925       iterator
    926       upper_bound(const key_type& __x)
    927       { return _M_t.upper_bound(__x); }
    928 
    929       /**
    930        *  @brief Finds the end of a subsequence matching given key.
    931        *  @param  __x  Key of (key, value) pair to be located.
    932        *  @return  Read-only (constant) iterator pointing to first iterator
    933        *           greater than key, or end().
    934        */
    935       const_iterator
    936       upper_bound(const key_type& __x) const
    937       { return _M_t.upper_bound(__x); }
    938 
    939       /**
    940        *  @brief Finds a subsequence matching given key.
    941        *  @param  __x  Key of (key, value) pairs to be located.
    942        *  @return  Pair of iterators that possibly points to the subsequence
    943        *           matching given key.
    944        *
    945        *  This function is equivalent to
    946        *  @code
    947        *    std::make_pair(c.lower_bound(val),
    948        *                   c.upper_bound(val))
    949        *  @endcode
    950        *  (but is faster than making the calls separately).
    951        *
    952        *  This function probably only makes sense for multimaps.
    953        */
    954       std::pair<iterator, iterator>
    955       equal_range(const key_type& __x)
    956       { return _M_t.equal_range(__x); }
    957 
    958       /**
    959        *  @brief Finds a subsequence matching given key.
    960        *  @param  __x  Key of (key, value) pairs to be located.
    961        *  @return  Pair of read-only (constant) iterators that possibly points
    962        *           to the subsequence matching given key.
    963        *
    964        *  This function is equivalent to
    965        *  @code
    966        *    std::make_pair(c.lower_bound(val),
    967        *                   c.upper_bound(val))
    968        *  @endcode
    969        *  (but is faster than making the calls separately).
    970        *
    971        *  This function probably only makes sense for multimaps.
    972        */
    973       std::pair<const_iterator, const_iterator>
    974       equal_range(const key_type& __x) const
    975       { return _M_t.equal_range(__x); }
    976 
    977       template<typename _K1, typename _T1, typename _C1, typename _A1>
    978         friend bool
    979         operator==(const map<_K1, _T1, _C1, _A1>&,
    980 		   const map<_K1, _T1, _C1, _A1>&);
    981 
    982       template<typename _K1, typename _T1, typename _C1, typename _A1>
    983         friend bool
    984         operator<(const map<_K1, _T1, _C1, _A1>&,
    985 		  const map<_K1, _T1, _C1, _A1>&);
    986     };
    987 
    988   /**
    989    *  @brief  Map equality comparison.
    990    *  @param  __x  A %map.
    991    *  @param  __y  A %map of the same type as @a x.
    992    *  @return  True iff the size and elements of the maps are equal.
    993    *
    994    *  This is an equivalence relation.  It is linear in the size of the
    995    *  maps.  Maps are considered equivalent if their sizes are equal,
    996    *  and if corresponding elements compare equal.
    997   */
    998   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    999     inline bool
   1000     operator==(const map<_Key, _Tp, _Compare, _Alloc>& __x,
   1001                const map<_Key, _Tp, _Compare, _Alloc>& __y)
   1002     { return __x._M_t == __y._M_t; }
   1003 
   1004   /**
   1005    *  @brief  Map ordering relation.
   1006    *  @param  __x  A %map.
   1007    *  @param  __y  A %map of the same type as @a x.
   1008    *  @return  True iff @a x is lexicographically less than @a y.
   1009    *
   1010    *  This is a total ordering relation.  It is linear in the size of the
   1011    *  maps.  The elements must be comparable with @c <.
   1012    *
   1013    *  See std::lexicographical_compare() for how the determination is made.
   1014   */
   1015   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
   1016     inline bool
   1017     operator<(const map<_Key, _Tp, _Compare, _Alloc>& __x,
   1018               const map<_Key, _Tp, _Compare, _Alloc>& __y)
   1019     { return __x._M_t < __y._M_t; }
   1020 
   1021   /// Based on operator==
   1022   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
   1023     inline bool
   1024     operator!=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
   1025                const map<_Key, _Tp, _Compare, _Alloc>& __y)
   1026     { return !(__x == __y); }
   1027 
   1028   /// Based on operator<
   1029   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
   1030     inline bool
   1031     operator>(const map<_Key, _Tp, _Compare, _Alloc>& __x,
   1032               const map<_Key, _Tp, _Compare, _Alloc>& __y)
   1033     { return __y < __x; }
   1034 
   1035   /// Based on operator<
   1036   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
   1037     inline bool
   1038     operator<=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
   1039                const map<_Key, _Tp, _Compare, _Alloc>& __y)
   1040     { return !(__y < __x); }
   1041 
   1042   /// Based on operator<
   1043   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
   1044     inline bool
   1045     operator>=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
   1046                const map<_Key, _Tp, _Compare, _Alloc>& __y)
   1047     { return !(__x < __y); }
   1048 
   1049   /// See std::map::swap().
   1050   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
   1051     inline void
   1052     swap(map<_Key, _Tp, _Compare, _Alloc>& __x,
   1053 	 map<_Key, _Tp, _Compare, _Alloc>& __y)
   1054     { __x.swap(__y); }
   1055 
   1056 _GLIBCXX_END_NAMESPACE_CONTAINER
   1057 } // namespace std
   1058 
   1059 #endif /* _STL_MAP_H */
   1060