Home | History | Annotate | Download | only in ext4_utils
      1 /*
      2  * Copyright (C) 2010 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "contents.h"
     18 
     19 #include <sys/stat.h>
     20 #include <string.h>
     21 #include <stdio.h>
     22 
     23 #include "allocate.h"
     24 #include "ext4_utils/ext4_utils.h"
     25 #include "ext4_utils/make_ext4fs.h"
     26 #include "extent.h"
     27 #include "indirect.h"
     28 
     29 #ifdef __ANDROID__
     30 #include <linux/capability.h>
     31 #else
     32 #include <private/android_filesystem_capability.h>
     33 #endif
     34 
     35 #define XATTR_SELINUX_SUFFIX "selinux"
     36 #define XATTR_CAPS_SUFFIX "capability"
     37 
     38 #ifdef _WIN32
     39 #define S_IFLNK 0  /* used by make_link, not needed under mingw */
     40 #endif
     41 
     42 static struct block_allocation* saved_allocation_head = NULL;
     43 
     44 struct block_allocation* get_saved_allocation_chain() {
     45 	return saved_allocation_head;
     46 }
     47 
     48 static u32 dentry_size(u32 entries, struct dentry *dentries)
     49 {
     50 	u32 len = 24;
     51 	unsigned int i;
     52 	unsigned int dentry_len;
     53 
     54 	for (i = 0; i < entries; i++) {
     55 		dentry_len = 8 + EXT4_ALIGN(strlen(dentries[i].filename), 4);
     56 		if (len % info.block_size + dentry_len > info.block_size)
     57 			len += info.block_size - (len % info.block_size);
     58 		len += dentry_len;
     59 	}
     60 
     61 	return len;
     62 }
     63 
     64 static struct ext4_dir_entry_2 *add_dentry(u8 *data, u32 *offset,
     65 		struct ext4_dir_entry_2 *prev, u32 inode, const char *name,
     66 		u8 file_type)
     67 {
     68 	u8 name_len = strlen(name);
     69 	u16 rec_len = 8 + EXT4_ALIGN(name_len, 4);
     70 	struct ext4_dir_entry_2 *dentry;
     71 
     72 	u32 start_block = *offset / info.block_size;
     73 	u32 end_block = (*offset + rec_len - 1) / info.block_size;
     74 	if (start_block != end_block) {
     75 		/* Adding this dentry will cross a block boundary, so pad the previous
     76 		   dentry to the block boundary */
     77 		if (!prev)
     78 			critical_error("no prev");
     79 		prev->rec_len += end_block * info.block_size - *offset;
     80 		*offset = end_block * info.block_size;
     81 	}
     82 
     83 	dentry = (struct ext4_dir_entry_2 *)(data + *offset);
     84 	dentry->inode = inode;
     85 	dentry->rec_len = rec_len;
     86 	dentry->name_len = name_len;
     87 	dentry->file_type = file_type;
     88 	memcpy(dentry->name, name, name_len);
     89 
     90 	*offset += rec_len;
     91 	return dentry;
     92 }
     93 
     94 /* Creates a directory structure for an array of directory entries, dentries,
     95    and stores the location of the structure in an inode.  The new inode's
     96    .. link is set to dir_inode_num.  Stores the location of the inode number
     97    of each directory entry into dentries[i].inode, to be filled in later
     98    when the inode for the entry is allocated.  Returns the inode number of the
     99    new directory */
    100 u32 make_directory(u32 dir_inode_num, u32 entries, struct dentry *dentries,
    101 	u32 dirs)
    102 {
    103 	struct ext4_inode *inode;
    104 	u32 blocks;
    105 	u32 len;
    106 	u32 offset = 0;
    107 	u32 inode_num;
    108 	u8 *data;
    109 	unsigned int i;
    110 	struct ext4_dir_entry_2 *dentry;
    111 
    112 	blocks = DIV_ROUND_UP(dentry_size(entries, dentries), info.block_size);
    113 	len = blocks * info.block_size;
    114 
    115 	if (dir_inode_num) {
    116 		inode_num = allocate_inode(info);
    117 	} else {
    118 		dir_inode_num = EXT4_ROOT_INO;
    119 		inode_num = EXT4_ROOT_INO;
    120 	}
    121 
    122 	if (inode_num == EXT4_ALLOCATE_FAILED) {
    123 		error("failed to allocate inode\n");
    124 		return EXT4_ALLOCATE_FAILED;
    125 	}
    126 
    127 	add_directory(inode_num);
    128 
    129 	inode = get_inode(inode_num);
    130 	if (inode == NULL) {
    131 		error("failed to get inode %u", inode_num);
    132 		return EXT4_ALLOCATE_FAILED;
    133 	}
    134 
    135 	data = inode_allocate_data_extents(inode, len, len);
    136 	if (data == NULL) {
    137 		error("failed to allocate %u extents", len);
    138 		return EXT4_ALLOCATE_FAILED;
    139 	}
    140 
    141 	inode->i_mode = S_IFDIR;
    142 	inode->i_links_count = dirs + 2;
    143 	inode->i_flags |= aux_info.default_i_flags;
    144 
    145 	dentry = NULL;
    146 
    147 	dentry = add_dentry(data, &offset, NULL, inode_num, ".", EXT4_FT_DIR);
    148 	if (!dentry) {
    149 		error("failed to add . directory");
    150 		return EXT4_ALLOCATE_FAILED;
    151 	}
    152 
    153 	dentry = add_dentry(data, &offset, dentry, dir_inode_num, "..", EXT4_FT_DIR);
    154 	if (!dentry) {
    155 		error("failed to add .. directory");
    156 		return EXT4_ALLOCATE_FAILED;
    157 	}
    158 
    159 	for (i = 0; i < entries; i++) {
    160 		dentry = add_dentry(data, &offset, dentry, 0,
    161 				dentries[i].filename, dentries[i].file_type);
    162 		if (offset > len || (offset == len && i != entries - 1))
    163 			critical_error("internal error: dentry for %s ends at %d, past %d\n",
    164 				dentries[i].filename, offset, len);
    165 		dentries[i].inode = &dentry->inode;
    166 		if (!dentry) {
    167 			error("failed to add directory");
    168 			return EXT4_ALLOCATE_FAILED;
    169 		}
    170 	}
    171 
    172 	/* pad the last dentry out to the end of the block */
    173 	dentry->rec_len += len - offset;
    174 
    175 	return inode_num;
    176 }
    177 
    178 /* Creates a file on disk.  Returns the inode number of the new file */
    179 u32 make_file(const char *filename, u64 len)
    180 {
    181 	struct ext4_inode *inode;
    182 	u32 inode_num;
    183 
    184 	inode_num = allocate_inode(info);
    185 	if (inode_num == EXT4_ALLOCATE_FAILED) {
    186 		error("failed to allocate inode\n");
    187 		return EXT4_ALLOCATE_FAILED;
    188 	}
    189 
    190 	inode = get_inode(inode_num);
    191 	if (inode == NULL) {
    192 		error("failed to get inode %u", inode_num);
    193 		return EXT4_ALLOCATE_FAILED;
    194 	}
    195 
    196 	if (len > 0) {
    197 		struct block_allocation* alloc = inode_allocate_file_extents(inode, len, filename);
    198 		if (alloc) {
    199 			alloc->filename = strdup(filename);
    200 			alloc->next = saved_allocation_head;
    201 			saved_allocation_head = alloc;
    202 		}
    203 	}
    204 
    205 	inode->i_mode = S_IFREG;
    206 	inode->i_links_count = 1;
    207 	inode->i_flags |= aux_info.default_i_flags;
    208 
    209 	return inode_num;
    210 }
    211 
    212 /* Creates a file on disk.  Returns the inode number of the new file */
    213 u32 make_link(const char *link)
    214 {
    215 	struct ext4_inode *inode;
    216 	u32 inode_num;
    217 	u32 len = strlen(link);
    218 
    219 	inode_num = allocate_inode(info);
    220 	if (inode_num == EXT4_ALLOCATE_FAILED) {
    221 		error("failed to allocate inode\n");
    222 		return EXT4_ALLOCATE_FAILED;
    223 	}
    224 
    225 	inode = get_inode(inode_num);
    226 	if (inode == NULL) {
    227 		error("failed to get inode %u", inode_num);
    228 		return EXT4_ALLOCATE_FAILED;
    229 	}
    230 
    231 	inode->i_mode = S_IFLNK;
    232 	inode->i_links_count = 1;
    233 	inode->i_flags |= aux_info.default_i_flags;
    234 	inode->i_size_lo = len;
    235 
    236 	if (len + 1 <= sizeof(inode->i_block)) {
    237 		/* Fast symlink */
    238 		memcpy((char*)inode->i_block, link, len);
    239 	} else {
    240 		u8 *data = inode_allocate_data_indirect(inode, info.block_size, info.block_size);
    241 		memcpy(data, link, len);
    242 		inode->i_blocks_lo = info.block_size / 512;
    243 	}
    244 
    245 	return inode_num;
    246 }
    247 
    248 int inode_set_permissions(u32 inode_num, u16 mode, u16 uid, u16 gid, u32 mtime)
    249 {
    250 	struct ext4_inode *inode = get_inode(inode_num);
    251 
    252 	if (!inode)
    253 		return -1;
    254 
    255 	inode->i_mode |= mode;
    256 	inode->i_uid = uid;
    257 	inode->i_gid = gid;
    258 	inode->i_mtime = mtime;
    259 	inode->i_atime = mtime;
    260 	inode->i_ctime = mtime;
    261 
    262 	return 0;
    263 }
    264 
    265 /*
    266  * Returns the amount of free space available in the specified
    267  * xattr region
    268  */
    269 static size_t xattr_free_space(struct ext4_xattr_entry *entry, char *end)
    270 {
    271         end -= sizeof(uint32_t); /* Required four null bytes */
    272 	while(!IS_LAST_ENTRY(entry) && (((char *) entry) < end)) {
    273 		end   -= EXT4_XATTR_SIZE(le32_to_cpu(entry->e_value_size));
    274 		entry  = EXT4_XATTR_NEXT(entry);
    275 	}
    276 
    277 	if (((char *) entry) > end) {
    278 		error("unexpected read beyond end of xattr space");
    279 		return 0;
    280 	}
    281 
    282 	return end - ((char *) entry);
    283 }
    284 
    285 /*
    286  * Returns a pointer to the free space immediately after the
    287  * last xattr element
    288  */
    289 static struct ext4_xattr_entry* xattr_get_last(struct ext4_xattr_entry *entry)
    290 {
    291 	for (; !IS_LAST_ENTRY(entry); entry = EXT4_XATTR_NEXT(entry)) {
    292 		// skip entry
    293 	}
    294 	return entry;
    295 }
    296 
    297 /*
    298  * assert that the elements in the ext4 xattr section are in sorted order
    299  *
    300  * The ext4 filesystem requires extended attributes to be sorted when
    301  * they're not stored in the inode. The kernel ext4 code uses the following
    302  * sorting algorithm:
    303  *
    304  * 1) First sort extended attributes by their name_index. For example,
    305  *    EXT4_XATTR_INDEX_USER (1) comes before EXT4_XATTR_INDEX_SECURITY (6).
    306  * 2) If the name_indexes are equal, then sorting is based on the length
    307  *    of the name. For example, XATTR_SELINUX_SUFFIX ("selinux") comes before
    308  *    XATTR_CAPS_SUFFIX ("capability") because "selinux" is shorter than "capability"
    309  * 3) If the name_index and name_length are equal, then memcmp() is used to determine
    310  *    which name comes first. For example, "selinux" would come before "yelinux".
    311  *
    312  * This method is intended to implement the sorting function defined in
    313  * the Linux kernel file fs/ext4/xattr.c function ext4_xattr_find_entry().
    314  */
    315 static void xattr_assert_sane(struct ext4_xattr_entry *entry)
    316 {
    317 	for( ; !IS_LAST_ENTRY(entry); entry = EXT4_XATTR_NEXT(entry)) {
    318 		struct ext4_xattr_entry *next = EXT4_XATTR_NEXT(entry);
    319 		if (IS_LAST_ENTRY(next)) {
    320 			return;
    321 		}
    322 
    323 		int cmp = next->e_name_index - entry->e_name_index;
    324 		if (cmp == 0)
    325 			cmp = next->e_name_len - entry->e_name_len;
    326 		if (cmp == 0)
    327 			cmp = memcmp(next->e_name, entry->e_name, next->e_name_len);
    328 		if (cmp < 0) {
    329 			error("BUG: extended attributes are not sorted\n");
    330 			return;
    331 		}
    332 		if (cmp == 0) {
    333 			error("BUG: duplicate extended attributes detected\n");
    334 			return;
    335 		}
    336 	}
    337 }
    338 
    339 #define NAME_HASH_SHIFT 5
    340 #define VALUE_HASH_SHIFT 16
    341 
    342 static void ext4_xattr_hash_entry(struct ext4_xattr_header *header,
    343 		struct ext4_xattr_entry *entry)
    344 {
    345 	u32 hash = 0;
    346 	char *name = entry->e_name;
    347 	int n;
    348 
    349 	for (n = 0; n < entry->e_name_len; n++) {
    350 		hash = (hash << NAME_HASH_SHIFT) ^
    351 			(hash >> (8*sizeof(hash) - NAME_HASH_SHIFT)) ^
    352 			*name++;
    353 	}
    354 
    355 	if (entry->e_value_block == 0 && entry->e_value_size != 0) {
    356 		u32 *value = (u32 *)((char *)header +
    357 			le16_to_cpu(entry->e_value_offs));
    358 		for (n = (le32_to_cpu(entry->e_value_size) +
    359 			EXT4_XATTR_ROUND) >> EXT4_XATTR_PAD_BITS; n; n--) {
    360 			hash = (hash << VALUE_HASH_SHIFT) ^
    361 				(hash >> (8*sizeof(hash) - VALUE_HASH_SHIFT)) ^
    362 				le32_to_cpu(*value++);
    363 		}
    364 	}
    365 	entry->e_hash = cpu_to_le32(hash);
    366 }
    367 
    368 #undef NAME_HASH_SHIFT
    369 #undef VALUE_HASH_SHIFT
    370 
    371 static struct ext4_xattr_entry* xattr_addto_range(
    372 		void *block_start,
    373 		void *block_end,
    374 		struct ext4_xattr_entry *first,
    375 		int name_index,
    376 		const char *name,
    377 		const void *value,
    378 		size_t value_len)
    379 {
    380 	size_t name_len = strlen(name);
    381 	if (name_len > 255)
    382 		return NULL;
    383 
    384 	size_t available_size = xattr_free_space(first, block_end);
    385 	size_t needed_size = EXT4_XATTR_LEN(name_len) + EXT4_XATTR_SIZE(value_len);
    386 
    387 	if (needed_size > available_size)
    388 		return NULL;
    389 
    390 	struct ext4_xattr_entry *new_entry = xattr_get_last(first);
    391 	memset(new_entry, 0, EXT4_XATTR_LEN(name_len));
    392 
    393 	new_entry->e_name_len = name_len;
    394 	new_entry->e_name_index = name_index;
    395 	memcpy(new_entry->e_name, name, name_len);
    396 	new_entry->e_value_block = 0;
    397 	new_entry->e_value_size = cpu_to_le32(value_len);
    398 
    399 	char *val = (char *) new_entry + available_size - EXT4_XATTR_SIZE(value_len);
    400 	size_t e_value_offs = val - (char *) block_start;
    401 
    402 	new_entry->e_value_offs = cpu_to_le16(e_value_offs);
    403 	memset(val, 0, EXT4_XATTR_SIZE(value_len));
    404 	memcpy(val, value, value_len);
    405 
    406 	xattr_assert_sane(first);
    407 	return new_entry;
    408 }
    409 
    410 static int xattr_addto_inode(struct ext4_inode *inode, int name_index,
    411 		const char *name, const void *value, size_t value_len)
    412 {
    413 	struct ext4_xattr_ibody_header *hdr = (struct ext4_xattr_ibody_header *) (inode + 1);
    414 	struct ext4_xattr_entry *first = (struct ext4_xattr_entry *) (hdr + 1);
    415 	char *block_end = ((char *) inode) + info.inode_size;
    416 
    417 	struct ext4_xattr_entry *result =
    418 		xattr_addto_range(first, block_end, first, name_index, name, value, value_len);
    419 
    420 	if (result == NULL)
    421 		return -1;
    422 
    423 	hdr->h_magic = cpu_to_le32(EXT4_XATTR_MAGIC);
    424 	inode->i_extra_isize = cpu_to_le16(sizeof(struct ext4_inode) - EXT4_GOOD_OLD_INODE_SIZE);
    425 
    426 	return 0;
    427 }
    428 
    429 static int xattr_addto_block(struct ext4_inode *inode, int name_index,
    430 		const char *name, const void *value, size_t value_len)
    431 {
    432 	struct ext4_xattr_header *header = get_xattr_block_for_inode(inode);
    433 	if (!header)
    434 		return -1;
    435 
    436 	struct ext4_xattr_entry *first = (struct ext4_xattr_entry *) (header + 1);
    437 	char *block_end = ((char *) header) + info.block_size;
    438 
    439 	struct ext4_xattr_entry *result =
    440 		xattr_addto_range(header, block_end, first, name_index, name, value, value_len);
    441 
    442 	if (result == NULL)
    443 		return -1;
    444 
    445 	ext4_xattr_hash_entry(header, result);
    446 	return 0;
    447 }
    448 
    449 
    450 static int xattr_add(u32 inode_num, int name_index, const char *name,
    451 		const void *value, size_t value_len)
    452 {
    453 	if (!value)
    454 		return 0;
    455 
    456 	struct ext4_inode *inode = get_inode(inode_num);
    457 
    458 	if (!inode)
    459 		return -1;
    460 
    461 	int result = xattr_addto_inode(inode, name_index, name, value, value_len);
    462 	if (result != 0) {
    463 		result = xattr_addto_block(inode, name_index, name, value, value_len);
    464 	}
    465 	return result;
    466 }
    467 
    468 int inode_set_selinux(u32 inode_num, const char *secon)
    469 {
    470 	if (!secon)
    471 		return 0;
    472 
    473 	return xattr_add(inode_num, EXT4_XATTR_INDEX_SECURITY,
    474 		XATTR_SELINUX_SUFFIX, secon, strlen(secon) + 1);
    475 }
    476 
    477 int inode_set_capabilities(u32 inode_num, uint64_t capabilities) {
    478 	if (capabilities == 0)
    479 		return 0;
    480 
    481 	struct vfs_cap_data cap_data;
    482 	memset(&cap_data, 0, sizeof(cap_data));
    483 
    484 	cap_data.magic_etc = VFS_CAP_REVISION | VFS_CAP_FLAGS_EFFECTIVE;
    485 	cap_data.data[0].permitted = (uint32_t) (capabilities & 0xffffffff);
    486 	cap_data.data[0].inheritable = 0;
    487 	cap_data.data[1].permitted = (uint32_t) (capabilities >> 32);
    488 	cap_data.data[1].inheritable = 0;
    489 
    490 	return xattr_add(inode_num, EXT4_XATTR_INDEX_SECURITY,
    491 		XATTR_CAPS_SUFFIX, &cap_data, sizeof(cap_data));
    492 }
    493